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ABSTRACT Deciphering the complex semantics within varied dancing sceneries is crucial for a multitude
of AI endeavors. It can facilitate applications like dancing action optimization and dancing education.
In our research, we propose a sophisticated approach to discerning multi-faceted perceptual visual features
for accurately identifying dancing scenic imagery with intricate spatial designs. Our work centers on
crafting a deep hierarchical structure adept at simulating human gaze patterns, utilizing the BING metric
to pinpoint objects and their components within scenes at different scales. To emulate human visual
dynamics, we introduce a Robust Deep Active Learning (RDAL) methodology, systematically creating gaze
shift paths (GSPs) and capturing their profound representations. A key novelty of RDAL is its resilience
to inaccuracies in labeling, employing a strategically designed sparse penalty framework that facilitates
the exclusion of non-informative or irrelevant deep GSP attributes. Furthermore, we propose a manifold-
regularized feature selector (MRFS) to isolate premium deep GSP features, concurrently developing a linear
SVM for dancing scene recognition. Our method’s efficacy, validated through rigorous testing, not only
showcased its enhanced performance across conventional scenic datasets but also highlighted the exceptional
discriminating power of deep GSP features in a specialized dataset for recognizing different dancing actions.
Finally, the dancing actions can be optimized using a probabilistic model.

INDEX TERMS Perceptual, dancing action, manifold-regularized, active learning, deep architecture.

I. INTRODUCTION
In the domain of sophisticated AI technologies, the capacity
for assigning multiple descriptors to every scene plays
a critical role. For example, enhancing the efficiency of
route planning in intelligent navigation systems necessitates
the utilization of various scene-centric details, such as
the configuration of transportation networks, the alignment
of roadways, and the traits of the cityscape. Addition-
ally, contemporary public safety infrastructures depend
on recognizing distinct elements within scenes, like road
signage and inclines, to augment real-time surveillance of
pedestrian and vehicular movements. It has been noted that
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intersections are notably more prone to vehicular incidents
compared to straight segments of roads. Therefore, accurately
distinguishing among various types of scenes allows for
the focused implementation of multi-camera surveillance
networks at crucial junctions, enabling comprehensive
monitoring of atypical interactions between vehicles and
pedestrians. Within the scope of visual categorization and
labeling, cutting-edge algorithms have been crafted to depict
the complexity of scenic imagery across different scales.
These advanced methods include: 1) leveraging Multiple
Instance Learning (MIL) and CNNs for region pinpointing
via weak supervision [42], [43]; 2) employing semantic
graph structures for detailed scene interpretation [47], [48];
and 3) constructing layered frameworks for the targeted
labeling of scenic photographs [44], [45], [46]. However,
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FIGURE 1. An overview of our designed dancing scenery categorization and optimzing by perceptual features integration.

these advancements still face challenges in capturing the
full essence of dancing scenic images, encountering key
obstacles:
• Identifying specific focal objects or segments within
high-resolution dancing images requires an approach
that mirrors the human visual system’s capacity to
zero in on visually or semantically important regions.
The quest is to craft a model adept at discerning and
representing these focal areas accurately. This includes
capturing gaze shift paths (GSP) that mirror shifts in
human attention throughout relevant parts of dancing
images, navigating through label noise common in large-
scale datasets, and embedding semantic labels at the
patch level to authentically convey scene content;

• Significant dancing scene elements are frequently high-
lighted by varied low-level indicators, each spotlighting
distinct aspects of the dancing scenery. Creating an
effective integration of these indicators demands a
structured approach to evenly distribute the impact of
each feature set, made more challenging by the need
to adjust feature channel importance in response to the
diversity of dancing scenic datasets.

To address these challenges, our approach introduces a
pioneering framework for dancing scene classification that
incorporates deep and proactive analyses of human gaze
behavior. Our method begins by applying the BING object-
ness measure [56] to identify object-related patches across
a broad spectrum of scenic images, potentially including
inaccurately labeled examples (Sec III-A). To better align
our model with human visual mechanisms, we integrate
a Robust Deep Active Learning (RDAL) system. RDAL
precisely calculates the human gaze shift path (GSP) and
its in-depth characterizations, tackling issues of label inac-
curacies and redundancies head-on. RDAL employs a semi-
supervised learning approach, utilizing a limited selection of
semantic labels for initial training (Sec III-B). Subsequently,
a manifold-regularized feature selection (MRFS) strategy
is deployed to isolate highly distinct deep GSP attributes,
upon which a linear SVM is formulated for dancing scene
classification (Sec III-C). Extensive tests conducted on six
publicly accessible datasets and our exclusive dancing action
dataset have validated the effectiveness and superiority of
our method, underscoring the advantages of integrating gaze-
driven analysis into scene classification efforts. Moreover,
we propose a Gaussian mixture model (GMM) for optimizing
different dancing actions, wherein competitive performance
can be observed (Sec IV-D).

This research holds two significant contributions: the
creation of the Robust DeepActive Learning (RDAL) system,
which intricately charts human gaze movements while
extracting related visual features, and the development of a
selective feature evaluation method, MRFS, that dynamically
gauges the significance of diverse feature channels relative to
deeply examined GSP attributes.

The organization of this document is: Sec II reviews
the pertinent literature. The next section describes our
sports dancing scenery detection/optimization framework,
highlighting three fundamental elements: 1) the effective
extraction of BING object patches from each dancing
scenery, 2) the application of the RDAL technique for
GSP extraction and deep learning, and 3) the use of
a unified feature selection and classification framework.
Sec IV showcases the empirical validations that underline our
method’s improved effectiveness. Sec V concludes the paper
with a summary of findings and future perspectives.

II. PREVIOUS WORK REVIEW
The field of computer vision has experienced substantial
progress through the incorporation of deep learning tech-
niques specifically tailored for scene analysis. At pthe fore-
front of these advancements are hierarchical Convolutional
Neural Networks (CNNs) and elaborate models, skilled in
analyzing extensive image collections, especially noted with
ImageNet [34]. Research such as [11] has demonstrated
the high precision of these models in scene classification,
utilizing subsets of ImageNet. Though originally broad in
application, the intricate feature-extraction capabilities of
ImageNet-CNNs have significantly contributed to various
tasks in computer vision, ranging from video analysis to
spotting anomalies. Over the last decade, enhancements in
ImageNet-based CNNs have mainly concentrated on enlarg-
ing training sets and advancing model structures. Methods
like selective search [35] have played a crucial role in assem-
bling extensive, category-agnostic patch sets by merging
search strategies with semantic annotations. R-CNNs [36]
have stressed on fetching quality patch samples for in-depth
image insights. Moreover, the creation of expansive, scene-
oriented datasets for training [10] and employing pre-trained
hierarchical CNNs for identifying and representing localized
scene aspects [38] mark notable advancements. Recent
developments have also explored multi-task and multi-
resolution scene classification strategies. These include using
manifold-based regularization [4] and blending low-rank
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feature learning with Markov models for deeper semantic
analysis [5], focusing on preserving feature distributions.
Innovations in unsupervised learning for deep feature extrac-
tion from scenes [6], independent of annotated data, have
paved new paths for model training. Integrated methods
that combine discriminative feature learning with weak label
approaches, utilizing dense sparse autoencoders for enhanced
visual representations, have broadened the scope for scene
analysis [40].

Aerial imagery analysis has significantly gained from
advanced computational models utilizing state-of-the-art
machine learning techniques. A multi-modal learning
approach for annotating high-resolution aerial images was
introduced in [41], heralding a leap forward in the domain.
Meanwhile, [19] delved into a novel multi-attention mech-
anism for evaluating feature relevance within aerial images,
proving its effectiveness across different image resolutions.
Nonetheless, applying these models to low-resolution images
faces challenges, especially in accurately identifying small,
essential objects that appear blurred. Overcoming these
challenges necessitates a focus on region-level modeling to
ensure accurate object detection and localization within low-
resolution aerial images. In enhancing facial recognition, [67]
proposed a group sparsity regularizer to refine the l1-norm
for reducing bias and diminishing outlier effects. The issue
of incomplete multi-view clustering was tackled by [37]
through improving incomplete similarity graphs and creating
detailed tensor representations. For detailed regional analysis
of aerial photos, [17] suggested a multi-layered deep learning
approach for object detection across scales. Aiming for
precision in vehicle localization within both low and high-
resolution aerial images, a deep learning model based on
focal loss was presented in [58]. Additionally, [66] introduced
a geographic object detection model for high-resolution
images, focusing on extracting key features like intersections
and roads. Finally, [65] combined feature engineering with
soft-labeling techniques to develop a durable visual detection
framework tailored for aerial imagery analysis.

III. FRAMEWORK FOR CLASSIFYING SCENERY
A. HIGHLIGHTING SEMANTICALLY ESSENTIAL AREAS
Studies within the realms of visual cognition and psychol-
ogy [49], [50] have consistently demonstrated a fundamental
aspect of human behavior: the predilection for concentrating
on the most semantically or visually pivotal parts of a scene.
Such research elucidates that human focus is selectively
aimed at particular zones deemed crucial for understanding,
rather than being uniformly dispersed across the entire visual
field. In light of this insight, we propose an advanced
technique that merges the detection of object-specific patches
with a Robust Deep Active Learning (RDAL) strategy.
Our goal is to pinpoint and scrutinize those dancing scene
segments most likely to attract human attention.

Observational data validate that the human visual appa-
ratus gives precedence to regions populated by semantically

dense or visually compelling objects, such as dancer arms or
feet, which significantly shape scene perception through their
presence and layout. To adeptly delineate these key areas,
we adopt the BING objectness metric [56], acclaimed for
its capability to efficiently segregate distinct, object-related
patches within varied scenery settings. The BING technique
is distinguished for several reasons: its unrivaled accuracy
in singling out pertinent patches with minimal processing
requirements, its enhancement of the Gaze Shift Paths (GSP)
identification process by supplying superior object-centric
patches, and its exceptional adaptability to different object
classes beyond its initial training scope. These characteristics
guarantee the adaptability and effectiveness of our dancing
scenery classification framework across awide array of visual
datasets.

B. DEPLOYING ROBUST DEEP ACTIVE LEARNING (RDAL)
By applying the BING algorithm [56], a vast array of object-
oriented patches, ranging from the hundreds to thousands,
can be identified within diverse dancing scenic contexts. It’s
imperative to acknowledge, however, that human attention
is often drawn to a limited set of features in a dancing
scene, reflecting a more discerning pattern of observation.
In response to this phenomenon, we deploy an innovative
Robust Deep Active Learning (RDAL) strategy designed to
select an optimal subset of dancing scenic patches, denoted
as L, for the creation of Gaze Shift Paths (GSP) and the
extraction of their deep representations. The RDAL approach
distinctively amalgamates key factors: the geometric con-
figuration of dancing scenes, the inherent semantic value
of certain object patches, and the obstacle presented by
inaccurate semantic labels. This integrated tactic guarantees
a holistic and precise dancing scene portrayal, in line with
human visual preferences.

1) EVALUATING THE SPATIAL DYNAMICS OF DANCING
SCENERY
The efficacy of scenery classification hinges on a thorough
comprehension of the scene’s spatial dynamics, including the
arrangement of elements in the foreground and background.
This comprehension requires a methodology that gauges
the importance of each dancing scenic patch based on its
spatial relation to adjacent patches. Throughout this process,
the relevance of individual object patches is determined
via an optimization method that accounts for the spatial
links between patches. Such an approach affords a detailed
representation of dancing scenic structures, pivotal for
accurate dancing scenery classification.

argmin
E

∑N

i=1
||zi −

∑N

j=1
Fijzj||

s.t.
∑N

j=1
Fij = 1,Fij = 0 if zi /∈ N (zj), (1)

Within this framework, the collection z1, · · · , zN ∈ RN×A

represents the array of deep features derived from N
identified scenic patches through the utilization of the BING
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algorithm [56]. Here, A denotes the complexity or depth of
the feature representation for each patch, and the matrix Fij
measures the impact of the i-th patch on the reconstruction of
the j-th patch. Additionally, N (zi) encompasses the patches
in close spatial proximity to the i-th patch, underlining the
scene’s internal spatial coherence.

2) SEMANTIC SIGNIFICANCE OF DANCING SCENIC PATCHES
In addition to the spatial arrangement of each dancing scene,
the intrinsic semantic content of the selected patches is
integral for the formulation of Gaze Shift Paths (GSPs). Uti-
lizing the reconstruction discrepancy as specified in (1), the
reformulated scenic patches are represented as g1, · · · , gN .
The determination of the L patches endowed with the highest
semantic content is directed by the optimization of the
ensuing equation:

η(g1, · · · , gN )

=

∑L

i=1
||gqi − gqi ||

2
+ τ

∑N

i=1
||gi −

∑N

j=1
Fijgj||2,

(2)

In this scenario, τ serves as the regularization parameter, and
the set gq1 , · · · , gqL includes the L scenic patches identified
by our RDAL method. The goal of this equation is to reduce
the difference, focusing on the spatial characteristics of the
selected patches. It also preserves the semantic coherence
of the dancing scenic patches being reconstructed, ensuring
they closely resemble their original forms. Successfully
minimizing (2) yields a collection of dancing scenic patches
that accurately reflect human scene perception in terms of
both visual and semantic aspects.

For the objective of analysis, we introduce matrices A =
[z1, · · · , zN ] and H = [g1, · · · , gN ]. Meanwhile, matrix
1, an N × N diagonal matrix, denotes the selection of
dancing scenic patches, with 1ii assigned a value of 1 for
i ∈ {q1, · · · , qL}, symbolizing the chosen patches, and 0 for
all other instances. This setup allows for the enhancement of
the objective function (2) as follows:

η(Q) = tr((H− A)T1(H− A))+ τ tr(HTLH), (3)

In this context, the formulation L = (I − F)T (I − F) is
established. To optimize (3), the gradient of η(H) is equated
to zero, leading to the following condition:

1(H− A)+ τLH = 0. (4)

In this scenario, the reconstruction of scenic patches is
determined as follows:

H = (τL+1)−11A. (5)

Utilizing the reconstructed scenic patches, the reconstruction
error can be refined as follows:

η(zq1 , · · · , zqK ) = ||Z−G||2F = ||Z− (τK+1)−11Z||2F
= ||(τK+1)−1τKZ||2F , (6)

FIGURE 2. Architecture of the intricately and semantically encoded Gaze
Shift Path (GSP).

3) THE RDAL METHODOLOGY
Our strategy incorporates a multi-layer method to uncover
the visual elements characterizing each dancing scene,
employing a profound learning framework to decode the
complex features associated with various dancing sceneries.
As depicted in Fig. 2, the RDAL architecture utilizes an R-
level deep structure to methodically decompose the semantic
label matrix G into a sequence of R + 1 matrices, inclusive
of V and UR to U1. This layered approach enables the
precise extraction of deep scenic features and the nuanced
representation of new dancing scenic visuals, starting with
U1 =W1X at the initial layer.
At the heart of the RDAL framework is the utilization

of linear combinations in a sequence to intricately develop
the latent attributes that are fundamental to each dancing
scenery. This core principle allows for a thorough depiction
of dancing scene characteristics without resorting to complex
equations. Consequently, themulti-layered architecture of the
deep learning model is efficiently outlined:

G← PQR,

QR = URPR−1,

· · ·

Q1 = U1Y, (7)

Within our model, Ui is designated as the transformation
matrix for the i-th layer, while P denotes the matrix of seman-
tic labels, which remain indirectly observed. The matrix Qi
illustrates the dancing scene’s representation at the i-th deep
layer. Furthermore, Y is comprised of yi, representing the
B-dimensional comprehensive feature for each scenic patch.
Under the Robust Deep Active Learning (RDAL) framework,
the most profound representation achieved at the highest
layer is represented by Q = QL . As specified in (7),
the training segment of our deep learning structure focuses
on deriving the latent factor P along with the sequence of
transformation matrices UR, · · · ,U1, facilitating a layered
and intricate insight into scene dynamics.

In conclusion, the comprehensive deep-model-driven
active learning process can be mathematically depicted as
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follows:

min
P,1U1,··· ,UR

1
2
||F− PQ||2F +

α

2
||P||2F +

α

2

∑R

i=1
||Ui||

2
F

+
β

2
||U||2,1, (8)

Within this framework, the matrix F ∈ RR×N encapsulates
the semantic labels, where Fij = 1 signifies the association
of the i-th scenic image with the j-th label, and Fij =
0 denotes no such link. Here, R represents the total count
of distinct semantic labels, α serves as the regularization
parameter to mitigate overfitting risks, and β ensures sparsity
across the columns of Ui. Given the potential for visual
features to be interrelated, duplicative, or adversely affected
by noise, adopting a sparse representation through the l21-
norm becomes crucial. This approach effectively filters out
low-quality, noisy features.

It’s important to underscore that, in contrast to the
initial two visual features namely, the spatial organization
of dancing scenery and the semantic delineation at the
patch level. RDAL strategy is implemented within a semi-
supervised framework. This means that the model’s training
leverages only a limited set of semantic labels, as specified
in (8). This method is particularly beneficial for processing
numerous images where comprehensive semantic labeling
is unfeasible due to the prohibitive demands of manual
annotation.

C. MANIFOLD FEATURE SELECTION AND CLASSIFICATION
While the deeply analyzed Gaze Shift Path (GSP) features are
rich in information, they introduce complexities that must be
navigated to improve efficacy: 1) The feature set can expand
to a prohibitive dimensionality, notably with a significant
K , resulting in the accumulation of numerous significant
image patches. This expansion, especially to dimensions
around 128K , can lead to the curse of dimensionality
during the training of classifiers, necessitating a further
compression of the deep GSP feature dimensions. 2) The
limited availability of labeled samples, due to constrained
annotation efforts, calls for a model adept at leveraging
both labeled and unlabeled data for learning. Our aspiration
is not limited to merely reducing dimensionality but also
encompasses the learning of a classifier for scenic imagery.
This ambition motivates the adoption of a semi-supervised
feature selection method described hereafter. 3) The matrix
C = [c1, · · · , cN ] ∈ RN×T is defined to contain the deep
GSP features for all training samples. For ease of explanation,
it’s assumed that the first L scenic images are labeled
(CL = [c1, · · · , cL]), while the remaining are unlabeled
(CU = [cL+1, · · · , cN ]). The label matrix for these L labeled
instances is represented byM = [m1, · · · ,mL].
By applying manifold learning principles [8], we proceed

to construct a semi-supervised Support Vector Machine
(SVM) framework tailored for this scenario.

∥8∥22 =
∑N

i=1

∑N

j=1
(φ(ci)− φ(cj))2Nij = 8TA8, (9)

In this setup,Nij denotes the strength of connectivity between
samples ci and cj, serving as an indicator of their resemblance.
The SVM’s decision function for the entire sample set is
represented as 8 = [φ(c1), · · · , φ(cN )]. For constructing the
graph Laplacian, a key concept in graph theory, we employ
A = T − N, where T is a diagonal matrix with each
diagonal element, Tii, being the aggregate of the weights
Nij corresponding to sample i, detailed by Tii =

∑N
j=1 Aij.

As outlined in [12], the norm || · ||22 evaluates the continuity
of the decision function across the dataset of ci.

Considering a linear SVM, wherein the decision function
for a given sample ci is φ(ci) = qT ci − b, this regularization
approach is refined to ||8||22 = qTCTACq. It is important
to note that the bias b is excluded from the manifold
regularization computation. With these frameworks in mind,
the semi-supervised SVMmodel can be precisely formulated
as follows:

min
w,b,ξ

1
2
∥w∥22 + C

U∑
i=1

ξi +
λ

2
wTCTACw,

s.t. yi(wT xi − b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,U , (10)

In this structure, ξi is the marginal error, with λ ≥ 0 serving as
the balance parameter adjusting the impact of both previously
mentioned regularizers. This objective function enables the
preservation of sample distribution integrity, particularly
maintaining the spatial positioning of samples within the
dataset.

Our semi-supervised Support Vector Machine (SVM)
model further incorporates the aspect of semi-supervised
feature selection (FS). For this endeavor, we define h =
(h1, · · · , hT )T , where each hi ∈ {0, 1} denotes the inclusion
or exclusion of a feature. To streamline this process,
a diagonal matrix E(h) = diag(h1, · · · , hT ) is employed,
which filters the representation of input samples through
CE(h). Given the selection ofA features, the constraint hT e =
A confirms the designated number of feature selections.
Leveraging this approach, (3) is further refined as follows:

min
w,b,ξ,h

1
2
∥w∥22 + C

U∑
i=1

ξi +
λ

2
wTE(h)TCTACE(h)w,

s.t. yi(wT xi − b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,U ,

hT 1 = A. (11)

This equation is reformulated into a min-max optimization
problem, as elaborated in [12].

By summarizing the discussions aforementioned, the
pipeline of the dancing action scenery detection and opti-
mization is provided in Alg. 1.

IV. EVALUATION OF EXPERIMENTAL PERFORMANCE
This section is dedicated to evaluating our dancing scene
classification framework, which utilizes Robust Deep Active
Learning (RDAL). We conduct this evaluation through four
distinct experimental settings. We begin by describing the
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Algorithm 1 Our Proposed Dancing Action Sceneries
Detection and Optimization
input: A rich set of training dancing scenic pictures,
the salient object patch number L, the iteration number of RDAL,
and parameter τ and t;
output: The learned dancing scene classifier and GMM;
1) Use the BING algorithm to generate a rich set of BING object
patches;
2) Leverage our RDAL to select L visually/semantically salient
object patches, based on which the GSP are extraction and its
deep features are calculated simultaneously using (8);
3) Utilize our manifold feature selector to acquire high-quality
deep GSP features for dancing scenery classification by (11);
4) Train the GMM for dancing action optimization by (12).

experimental configurations and introduce six benchmark
datasets that form the basis of our assessment. Subsequently,
a comparative analysis is performed, where the efficacy of our
RDAL-based model is contrasted against an array of scene
recognition models, spanning both shallow and deep learning
approaches. Following this comparative study, we explore
the key factors that contribute to the success of our RDAL
strategy. Lastly, we illustrate the utility of deep Gaze Shift
Path (GSP) features, derived from our approach, in the
specific domain of sports scenery classification, showcasing
their impact on improving scene categorization.

A. DATASETS AND EXPERIMENTAL CONFIGURATION
Our evaluation of the categorization framework is carried
out through extensive testing on six diverse scenic image
datasets, which include both established benchmarks and
more recent compilations. Representative images from these
datasets are presented in Fig.3, demonstrating the variety of
scenes encompassed. Key among these are two fundamental
datasets, Scene-15 [13] and MIT Indoor Scene-67 [14],
utilized as benchmarks to gauge our model’s efficacy.
• Scene-15: This dataset encompasses 15 varied cate-
gories, with 13 originally compiled by Feifei [16].
It features 200 to 400 images per category, with an
average resolution of 320 × 250 pixels. The images
are primarily sourced from the COREL database, aug-
mented by contributions from individual photographers
and Google Images.

• Scene-67: Dedicated to indoor scenes, this expansive
dataset covers a broad spectrum of interior spaces across
67 categories. It is meticulously compiled from Picasa
and Altavista for a diverse range of indoor settings,
specialized photography sharing sites, and the extensive
LabelMe database, offering a detailed view of various
indoor living and public spaces.

Moreover, our assessment extends to four more modern
scenic image collections: ZJU aerial imagery [3], ILSVRC-
2010 [34], SUN [39], and Places [10], each contributing a
unique angle on scenic diversity. In parallel, we introduce
a novel dataset tailored for sports education, termed the
Large-scale Dancing Action (LSDA) dataset. This exclusive

TABLE 1. Characteristics of our LSDA image collection.

collection boasts around 2,300,000 images across 22 dancing
categories, as detailed in Fig. 4. An overview of this extensive
collection is depicted in Fig.4, with detailed statistics and
categorizations provided in Table1, illustrating the dataset’s
scope and its significance in educational scenarios. Before
proceeding with the evaluation of baseline models, we outline
the settings of our empirical analysis, designed for a
thorough and equitable assessment of all algorithms under
consideration:

1) Object Patches Configuration: By employing the BING
algorithm [56], we standardize the extraction of scenic
patches to 1000 per dataset across all six scenic image
datasets. This uniformity ensures comprehensive object
detection within the scenes.

2) Spatial Neighbors Setting: The count of spatial neigh-
bors, indicated by L, is fixed at five for every object
patch. This configuration mirrors the human visual system’s
preference for concentrating on a select group of significant
areas within a scene.

3) Low-Level Feature Extraction: We integrate three spe-
cific low-level features to encapsulate the characteristics of
each object patch: a 16-dimensional color moment [68], a 64-
dimensional Histogram of Oriented Gradients (HOG) [69],
and a 160-dimensional combination of edge and color his-
tograms [9]. These features are chosen for their effectiveness
in capturing essential visual attributes.

4) GSP Internal Regions Count: The number of internal
regions within a Gaze Shift Path (GSP) is established at five,
noted as K . This figure is reflective of the general tendency
for human viewers to focus on a maximum of five key areas
within a scene, grounding our model’s structure in real-world
observation patterns.

5) Patch-Level Deep Feature Dimensionality: The dimen-
sionality of deep features at the patch level is defined to
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FIGURE 3. Sample images from the aforementioned six scene datasets.

be 212. This dimensionality is set to ensure uniformity and
manageability of the feature sets for classification processes.

These configurations are carefully selected to emulate
human visual perception and enhance the efficacy of our
scene categorization model in various visual scenarios.

B. COMPARATIVE ANALYSIS WITH EXISTING MODELS
1) TASK OF SCENERY CLASSIFICATION
This segment of our study positions the efficacy of our
perception-driven scene classification framework against

four traditional shallow classification schemes: Fixed-Length
Walk Kernel (FWK) and Tree Kernel (FTK) [20]: These
kernels are adept at recognizing structural image patterns,
with FTK broadening FWK’s applicability to hierarchical
data structures. Multi-Resolution Histogram (MRH) [27]:
Employing multi-scale texture analysis, MRH provides a
nuanced approach to texture-based scene classification.
Spatial Pyramid Matching with Kernel Techniques (SPM):
This includes three variants - Locality-constrained Linear
Coding plus SPM (LLC-SPM) [21], Sparse Coding plus
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FIGURE 4. Sample images from our large-scale dancing action (LSDA) image collection.

SPM (SC-SPM) [22], and Object Bank plus SPM (OB-
SPM) [23], each enhancing SPM through distinct feature
coding strategies to better represent scenes. Super Vector
Coding (SVC) and Supervised Image Coding (SSC) [24],
[25]: These models advance image categorization through
sophisticated vector quantization and supervised learning
methods, respectively.

For a fair comparison, the configurations for each classi-
fication framework were precisely standardized. Parameters
for both FWK and FTK are optimized across a spectrum
from two to ten to ensure maximum performance. The MRH
technique is applied with RBF smoothing at twelve grayscale
levels for refined texture analysis. The SPM approach and its
variations analyze training images through SIFT descriptors
arranged on a 16 × 16 pixel grid, followed by the creation
of a 400-term codebook via k-means clustering to assemble
a rich feature set specifically tailored for scene classification
challenges.

With the rapid progression of multi-layer recognition tech-
nologies, a comparative study with the latest deep learning-
based scene recognition frameworks was undertaken. This
review encompasses notable models such as ImageNet CNN
(IN-CNN) [11], Region-based CNN (R-CNN) [36], Meta
Object CNN (M-CNN) [38], Deep Mining CNN (DM-CNN)

[28], and Spatial Pyramid Pooling CNN (SPP-CNN) [29].
Apart from M-CNN [38], all models are accessible for
direct comparison without parameter adjustments. For M-
CNN [38], our process involves selecting 192 to 384 region
proposals per image set via Multiscale Combinatorial Group-
ing (MCG) [30] and utilizing a 4096-dimensional feature
vector from the FC7 layer of a comprehensive CNN [10].
Additionally, 400 superpixels per scene are generated using
the SLIC algorithm [2], further processed by either a preset
linear Discriminant Analysis (LDA) method (SP-LDA) or
through selecting 120 visually significant patches identified
by the GBV algorithm (SP-GBV). Our RDAL technique aug-
ments this process by identifying semantically and visually
crucial superpixels, or Gaze Shift Paths (GSPs), from an array
of low-level features, subsequently leveraging these GSPs
to establish a graph-based superpixel framework that forms
the basis of our scene classification kernel machine. The
superiority of using BING-derived rectangular patches over
superpixels is highlighted in Tables 2 and 3, underscoring
the enhanced descriptiveness of our method. Additionally,
our results are compared against recent developments in
scene classification from Mesnil et al. [31], Xiao et al. [32],
and Cong et al. [33], further affirming the comprehensive
adaptability and robustness of our approach.
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Besides the aforementioned 18 shallow/deep recognition
models for comparison, it is necessary to compare ourmethod
with SOTA dancing movement recognition algorithms.
Herein, five recently published dancing action recognition
methods are employed [51], [52], [53], [54], [55]. We use
the default empirical setups as in their publications. As the
comparative results shown in Table 4, our method still
performs the best, that is, the average categorization accuracy
exceeds the second best one by 3.4%. This result again
demonstrates the superiority of our method.

In examining the information presented in Tables 2 and 3,
we undertook a comprehensive quantitative evaluation to
contrast our model’s performance with that of both con-
temporary deep learning-based and conventional visual
recognition frameworks. This evaluation entailed executing
each experiment 20 times to ensure the reliability of
outcomes, with standard deviations noted to gauge the
consistency of results. The findings unequivocally illustrate
that our approach surpasses competing methodologies in
classification accuracy and stability. Particularly noteworthy
is our model’s performance on the exclusive LSDA dataset,
where our Robust Deep Active Learning (RDAL) strategy
markedly outperforms the nearest competitor by an excess
of 8% in classification accuracy. This distinction underscores
the superior capability of our methodology, especially in
specialized or niche datasets that demand intricate and
discerning recognition capabilities.

In addition to the generic visual recognition algorithms
compared above, we further compare our method with five
dance movement recognition models published after 2022.
Li et al. [59] explored using attitude estimation techniques
to enhance dance motion recognition in dance videos,
presenting innovative methods to understand complex dance
movements. Bera et al. [60] focused on deep learning’s
role in identifying fine-grained movements in sports, yoga,
and dance, offering an extensive benchmark analysis for
these applications. Cheng et al. [61] improved action
recognition efficiency in dance by optimizing frame feature
restoration, significantly reducing the data requirement for
effective learning processes. Yu et al. [62] introduced a
novel synchronization framework for speech and dancing
features, employing observably and unobservably learned
features to enhance audio-visual representations in dance
videos. Lastly, Pang and Niu [63] investigated the use of
state-of-the-art AI techniques in dancemotions classification,
aiming to elevate the precision and analytical capabilities
in interpreting dance movements. Reference [64] formu-
lated a sophisticated model designed for dancing action
categorization, leveraging hierarchical fusion techniques and
adaptive graph transformers to analyze and interpret complex
dance movements effectively. As shown in Table 5, our
designed method performs better than the five competitors
significantly on our LSDA image set, which is specifically
compiled to evaluate dance action recognition. For the other
generic image sets, our method’s accuracies are close to its
competitors.

FIGURE 5. Categorization precision by adjusting L.

C. OPTIMIZATION OF PARAMETERS FOR SUPERIOR
PERFORMANCE
To augment the performance of our dancing scene recognition
model, which is grounded in deep learning, we undertake
the fine-tuning of several pivotal parameters, aiming to
elevate its efficiency in dancing scene categorization. This
endeavor entails a precise adjustment and examination of
these parameters to discover the most efficacious config-
uration. The focal points of our parameter optimization
include: 1) L - Adjacency of Object Patches: The extent
of neighboring patches involved in reconstructing an object
patch is varied, to gauge its influence on the precision of
scene recognition by the model. 2) K - Composition of GSP
Object Patches: We scrutinize the impact of altering the count
of object patches comprised within a Gaze Shift Path (GSP)
on the model operational effectiveness. 3) Regularization
Coefficients α, β, γ : These coefficients are integral to the
model’s regularization mechanism, delicately adjusting the
weightage of diverse model facets to avert overfitting and
boost themodel generalizability. 4) The Scene-15 dataset [13]
is primarily employed in our analysis due to its compact
size, which facilitates manageability and circumvents the
high computational load associated with more voluminous
datasets.

Through this targeted strategy, our goal is to ascertain
the optimal parameter settings that significantly enhance the
model accuracy and resilience in dancing scene categoriza-
tion performance. Modifying the parameter L, which repre-
sents the count of adjacent patches involved in reconstructing
a specific dancing scenic patch, plays a crucial role in the
refinement of our model. Preserving the local coherence of
object patches is fundamental for the success of our feature
integration approach. We conducted systematic evaluations
of L values from one to fifteen to assess their effect on the
model scene recognition capability. The findings, illustrated
in Fig. 6, delineate a discernible trend: as L increases, scene
recognition accuracy initially rises, reaching an optimum
when L is set between three and five, and subsequently
decreases with larger values.

This observation implies that a range of three to five
neighboring patches is most conducive for accurately
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TABLE 2. Mean classification performance of the evaluated models across the mentioned datasets.

TABLE 3. Analysis of model performances across the specified datasets.

TABLE 4. Comparative results of our method and five SOTA dancing
action recognizers on our LSDA.

reconstructing scenes. Our detailed examination, especially
using the Scene-15 dataset, indicates that scenic patches
generally coexist with approximately three to five adjacent
patches, affirming the appropriateness of this interval for
preserving locality in scene reconstruction. Furthermore,
Fig. 6 demonstrates that including too many neighboring
patches might introduce extraneous noise and irrelevancy,
thereby negatively impacting the model’s accuracy and effi-
ciency. Our examination further extends to the influence of

the regularization coefficients α, β, and γ on the process
of scene categorization. Commencing with an initial value
of 0.1 for each parameter, we proceed to methodically
adjust them to ascertain the most effective equilibrium.
Specifically, we explore the range of 0 to 0.95 for α and
assess its impact on the accuracy of scene classification.
The results, as depicted in Table 6, indicate a gradual
enhancement in accuracy, reaching an apex at α = 0.25.
Beyond this threshold, a notable decline in performance
is observed, implying that while a modest elevation in α

aids in counteracting overfitting, an excessive focus on
this parameter negatively impacts the model’s capacity for
sparsity management and its semantic analysis of scenic
patches. Thus, we identify α = 0.25 as the ideal parameter
setting.
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TABLE 5. Mean classification accuracies of the evaluated models across the aforementioned datasets.

FIGURE 6. Categorization precision by adjusting M.

The subsequent phase of our analysis involves the fine-
tuning of β and γ , with their respective influences on
scene categorization efficacy recorded in Tables 7 and 8.
Employing a similar investigative approach as with α, the
optimal values for β and γ are determined to be 0.3 and 0.2,
respectively. This precise calibration of parameters ensures
that our model attains an optimal blend of accuracy and
adaptability, rendering it highly effective for the intricate task
of scene categorization.

D. GMM-BASED DANCING ACTION OPTIMIZATION
With the deep features identified for each Gaze Shift Path
(GSP), we can accurately describe each scenic image by its
human perceptual characteristics. Subsequently, we construct
a probabilistic framework that captures the distribution of
these deep GSP features, acquired during the training phase,
to effectively retarget future dancing scenic images.

Interpreting different dancing scenic images is a subjective
task, as individuals may have varied perceptions of the same
scene. To address this diversity, our optimization scenario

TABLE 6. Categorization precision by adjusting α.

TABLE 7. Categorization precision by adjusting β.

TABLE 8. Categorization precision by adjusting γ .

integrates insights from the visual perception of experienced
photographers. AGaussianMixtureModel (GMM) is utilized
to represent the GSP features that have been refined during
training, enabling a nuanced optimizing process based on
human perceptual attributes.

prob(µ|2) =
∑

i
θi ∗ ki(ν|βi, 6i), (12)

In this model, θi signifies the relevance of the i-th component
in the Gaussian Mixture Model (GMM); ν represents the
feature associated with the Gaze Shift Path (GSP); while βi
and 6i are the mean and variance of the GMM, respectively.
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The similarity between chosen GSP features is assessed using
the Euclidean distance.

Based on this, give a testing dancing action picture,
we use (12) to calculate its probability to the training well-
aesthetic dancing actions. If the probability score is larger,
we consider the testing dancing action is better. In our
experiment, we test such optimization on 1342 dancing
action pictures, wherein 1301 dancing actions are accurately
optimized.

V. CONCLUDING REMARKS
The capability to accurately classify dancing scenes into
specific categories is crucial for a wide range of applications
in artificial intelligence (AI). In this study, we present
an innovative approach known as Robust Deep Active
Learning (RDAL), designed to craft a detailed image kernel
that encapsulates human gaze dynamics effectively. Our
methodology begins with a comprehensive set of scene
images, applying a technique that accurately depict each
scene’s unique characteristics. Through the RDAL process,
we pinpoint regions within the scenery that are both visually
compelling and semantically rich, thereby establishing a
GSP that underlies the scene’s deep feature representation.
These deep GSP features are subsequently selected using
the MRFS algorithm, based on which a linear classifier
is trained for the recognition of diverse sceneries. The
efficacy of our approach, inspired by biological perception
mechanisms, is validated by extensive testing, demonstrating
its robustness and accuracy in dancing scene categorization
tasks. Moreover, our learned GMM can well optimize
dancing actions in practice.

However, a limitation arises from the potential discrepancy
between the GSPs produced by our model and the gaze
patterns observed in natural human vision. To address this,
future efforts will involve conducting an exhaustive user
study aimed at contrasting our generated GSPs with authentic
human gaze trajectories. The goal is to refine the RDAL
algorithm to more closely mimic the intricacies of the
human visual system, thereby enhancing the fidelity of our
dancing optimization outcomes. Moreover, we observe that
the training time cost of our RDAL might be intolerable in
practice. In the future, we plan to implement it on the Nvidia
Compute Unified Devices Architecture (CUDA) platform,
wherein the training can be noticeably accelerated.
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