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ABSTRACT Since control instructions are the fundamental component of thermal power generation, the
quality and effectiveness of implementation directly affect the efficiency of the energy system. In order to
improve the efficiency of internal combustion engine control, an optimization method of internal combustion
engine control based on enhanced clustering algorithm and swarm intelligence optimization algorithm is
proposed. The process simplifies the main structure of the gas turbine, divides the combustion engine model
into multi-input single-output systems, and introduces the artificial bee colony algorithm to optimize the
parameters. A new nectar search formula is constructed by using the global optimal nectar, and the control
parameters are calculated by fuzzy logic clustering. The experimental results showed that the modeling
error of the load model of internal combustion engine was in the range of −0.47 MW ∼ 0.51 MW. When
the training iteration speed was tested, the loss value of the research method dropped rapidly in the first
10 iterations. When analyzing the change of the control quantity during load change, if the exhaust flow rate
was taken as the control quantity, the control results of the research method was always kept within 5lbm/s
error. It demonstrates that this research method can effectively improve the running quality of the internal
combustion engine and has a good running efficiency. The research can provide certain technical reference
for gas turbine control in thermal power generation.

INDEX TERMS Combustion engine, control, swarm intelligence optimization algorithm, clustering
algorithm, fuzzy logic, fireworks algorithm.

I. INTRODUCTION
Rapid economic expansion has raised social demand for
energy in the context of globalization, which not only helps
the energy industry flourish but also presents a significant
threat to the sustainable use of energy. Thermal power gen-
eration, as an important part of the global power supply,
consists of the core equipment, the combustion turbine, for
efficient and stable power output [1]. The operating efficiency
of the combustion turbine directly affects the energy effi-
ciency and environmental performance of the entire power
generation process. Due to the inherent complexity of the gas
turbine (GT) system, it makes the traditional control methods
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incompetent in dealing with non-linear, multi-variable cou-
pling problems [2]. Some scholars have conducted relevant
research on the control of GTs. Reggio F et al. proposed a
method using real-time diagnosis to address the issue of GT
control. The study designed shock prevention tools based on
control criteria, optimized procedures for different equipment
types, and designed self-programming software to enhance
flexibility. The experimental results showed that the proposed
method could improve the control parameters of the GT [3].
Ramoji et al. proposed a technology based on voltage fre-
quency unified control to address the load frequency control
problem in GT control. During the process, a tilted integral
differential controller with a filter was used to control the
air state, and a meta heuristic algorithm was combined to
provide controller gain. The experimental results indicated
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that the proposed method had high control sensitivity [4].
Bhuyan et al. proposed a method based on chaotic butterfly
optimization algorithm for frequency control in GT con-
trol. In this process, the study obtained optimization criteria
for dispatchable generating units and integrated the hybrid
micro-grid system as a whole, and the results indicated that
the proposed method had high control accuracy [5]. Stefan
proposed a technology based on material development for
the control of GTs. This study analyzed the diffusion mech-
anism of thermal corrosion and the double atmosphere effect
in the matrix alloy during the process. The experimental
results indicated that the proposed method could effectively
improve the operational efficiency of the GT [6]. Serbin pro-
posed a method based on combustion chamber characteristics
research to address the issue of combustion engine control.
This study analyzed the combustion process of the mixture in
the process, modeled the combustion, and set the conditions
and operating modes for not forming a reverse combustion
zone. The results indicated that the proposed method could
effectively improve the operational quality of GTs [7].
To further improve the control efficiency and quality of

GTs, researchers are also constantly exploringmore advanced
control theories and technologies. The swarm intelligence
optimization algorithm has demonstrated excellent perfor-
mance in global search and local optimization [8]. Some
scholars have conducted relevant research on swarm intelli-
gence optimization algorithms. Su S proposed a technology
based on swarm intelligence optimization algorithm for the
optimization of asymmetric eccentric load steel box girder
structures. During the process, weight reduction was taken as
the calculation objective, and multiple constraint conditions
were established to optimize the cross-sectional parame-
ters. Grey wolf optimization algorithm was introduced for
optimization. The experimental results showed that the tech-
nology based on swarm intelligence optimization algorithm
had good computational performance [9]. Li proposed a tech-
nology based on swarm intelligence optimization algorithm
to address the issue of mine safety blasting design. Dur-
ing the process, fruit fly optimization and sparrow search
were used to process input parameters, combined with root
mean square error and variance ratio to improve performance.
The experimental results showed that the swarm intelli-
gence optimization algorithm had achieved high accuracy in
security prediction [10]. Kivi proposed a method based on
swarm intelligence optimization algorithm for solving com-
plex problems. During the process, the movement of the flock
served as an inspiration, and the guidance of the shepherd
and the proximity of interests between the sheep combined to
set iterative conditions. The ranch was the problem domain.
The experimental results indicated that the proposed method
has good computational speed [11]. Saeed proposed a tech-
nology based on swarm intelligence optimization algorithm
for the problem of unmanned aerial vehicle path planning.
During the process, comprehensive consideration was given
to obstacle avoidance and avoidance speed, searching for

the shortest path between the starting point and the target
point, and optimizing the obstacle avoidance route based on
the position of obstacles. The experimental results indicated
that the proposed method had fast planning efficiency [12].
Chang et al. proposed a technique based on a body intelligent
optimization algorithm for the problem of channel optimiza-
tion. The process performed hierarchical channel clustering
by similarity of feature mapping and generated candidate
populations for iteration to compress the network structure.
According to experimental results, the suggested strategy
achieved a high level of optimization accuracy [13]. The
comparison between research methods and existing advanced
algorithms is shown in Table 1.

SIOA has been shown to be able to solve complex opti-
mization problems, providing a technical basis for application
to optimization solving for combustion engine control. Clus-
tering algorithm (CA), as an unsupervised learning method
in data mining, helps to reveal the intrinsic structural fea-
tures of the data by dividing the samples in the dataset into
clusters based on similarity [14], [15], [16]. In the control
optimization of GT, CA can be used to analyze and identify
different modes in system operation and provide data support
for control strategy development. However, the existing SIOA
or CA still has many challenges in practical applications. For
example, issues such as the algorithm’s parameter selection,
search efficiency, and sensitivity to initial conditions affect
the algorithm’s performance in control optimization prob-
lems [17], [18]. In light of the aforementioned context, the
study endeavors to innovatively combine the artificial bee
colony (ABC) and fireworks algorithm (FA) in SIOA and
utilize clustering through fuzzy logic (FL) as a means of
clustering, thereby proposing a novel technique for solving
the control parameters of combustion turbines and achiev-
ing combustion turbine real-time control of the combustion
engine. This is done with the objective of providing certain
technical references for the thermal power generation and
automation control industry. The contributions of the research
method are as follows: (1) The combustion engine model
is transformed into a multi-input multi-output system. The
global output of the model is calculated using the local
non-linear weighting method, which enhances the adaptabil-
ity of the model to practical engineering problems and the
prediction accuracy. (2) The introduction of FL clustering
serves to enhance the adaptability of data distribution. When
combined with covariance matrix calculation, the over-fitting
problem is effectively avoided, thereby enhancing the robust-
ness of the control strategy.

There are three parts in the research. In the first part, com-
bustion engine control technology (CECT) based on SIOA
and improved clustering algorithm (ICA) is designed, and
the main technical components and implementation ideas are
described. The application analysis and performance testing
of CECT based on SIOA and ICA are the main topics of the
second section. The last part is a discussion and summary of
the whole study.
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TABLE 1. Comparison of existing advanced methods.

FIGURE 1. Main structure of gas turbine.

II. DESIGN OF COMBUSTION ENGINE CONTROL
TECHNOLOGY BASED ON SIOA AND ICA
A. COMBINED COUPLING RELATIONSHIP FOR
COMBUSTION ENGINE MODELING
Thermal power generation, as the most common and stable
source of electric energy, is used in a large number of appli-
cations around the world. However, the combustion engine,
which is the core of thermal power generation, has the prob-
lems of non-linearity as well as being susceptible to external

perturbations, and ordinary control strategies cannot realize
stable and accurate control [19], [20], [21]. To design the
more advanced CECT, the study simplifies the main structure
of GT, as shown in Figure 1.
In Figure 1, during the operation of the GT, ambient air

is first introduced into the pressurizer through the air inlet.
The air is compressed by the axial flow compressor, which
produces a pressurization effect of several tens of times.
During the compression process, the temperature of the air
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FIGURE 2. Input/output system structure.

rises accordingly. The compressed air enters the combustion
chamberwhere it is mixedwith the fuel and burned to produce
a high-temperature, high-pressure gasmixture. The generated
high-temperature and high-pressure gas is fed into the GT to
drive the turbine to rotate, which in turn drives the rotor of
the external load to rotate rapidly [22], [23]. The conversion
of chemical energy to mechanical and electrical energy is
realized by expansion work during the process. In the control
process of GT, achieving high power generation efficiency
and ideal exhaust flow (EF) are the main control objectives
of the system [24], [25]. The fuel supply must be adjusted to
the load’s fluctuating demand in order to maintain the plant’s
efficient operation. By adjusting the opening of inlet guide
vanes (OIGV) of the GT, the amount of air entering the pres-
surizer is varied, which in turn maintains the proper ratio of
fuel to air and sustains the combustion efficiency. In Figure 2,
the study defines the input-output system’s structure.

In Figure 2, the study transforms the combustion engine
model into a multi-input multi-output system and divides
it into several multi-input single-output systems. OIGV and
fuel quantity are taken as system inputs. EF and combustion
engine load are taken as system outputs. The multi-input
single-output system is constructed from two system inputs
and one of the system outputs, respectively. The input vector
(IV) is shown in Equation (1).

ϑ (k) =
[
u1 (k) , . . . , u1 (k − q1) , . . . , up (k) ,

. . . , up
(
k − qp

)
, y (k) , . . . , y (k − τ)

]T (1)

In Equation (1), ϑ (k) is the IV and u is the manipulated
variables. k represents the time series and q represents the
order of the different manipulated variables. τ represents the
order of the output variables. The data of OIGV and fuel
quantity as well as the steady state values of combustion
engine power are imported and equivalently regarded as clus-
tering centers to compute the non-linear outputs as shown in
Equation (2).

yni (k) = yvi (k) + yssi (2)

In Equation (2), yni (k) represents the non-linear output
of rule i. yvi (k) represents the incremental data input and
yssi represents the steady state value of combustion engine
power. The local non-linear weighting calculation is per-
formed to obtain the global output of the model, as shown
in Equation (3).

y (k) =

n∑
i=1

wi · yni (k)

n∑
i=1

wi

(3)

In Equation (3), y (k) is the global output and wi is the
affiliation function.

B. SIOA-BASED OPTIMIZATION ALGORITHM FOR
COMBUSTION ENGINE CONTROL PARAMETERS
When performing optimization of combustion engine control
parameters, the study uses an adaptive approach to select
the clustering center closest to IV. ABC, as a SIOA with
few parameters and strong exploration capability, has good
performance on data search tasks [26], [27]. Compared with
other meta-heuristic algorithms, the ABC algorithm requires
fewer parameters to be adjusted, including only a few key
parameters such as population size, maximum number of
cycles, and maximum number of failures. There is no need to
adjust the learning factors, mutation rates, and crossover rates
that other algorithms need to adjust, reducing the workload
of parameter adjustment and making the algorithm easier
to implement and apply. The ABC algorithm is designed
to identify the optimal solution, with the intelligent selec-
tion of parameters achieved through the simulation of social
behavior observed in bees. Principal component analysis is
a statistical method employed for the reduction of dimen-
sionality in data sets, with the objective of extracting the
principal features of the data. In addition, principal compo-
nent analysis and dimensionality reduction are mainly used
for pre-processing basic data, and can play little role in opti-
mizing GT control parameters. The study introduces ABC for
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FIGURE 3. The process of solving artificial bee colony algorithm.

parameter optimization to determine the combustion engine
model’s premise parameters. The ABC solving process is
shown in Figure 3.

In Figure 3, ABC can be divided into a total of five running
phases when performing the solution: initialization, hiring
bee operation, observing bee operation, recording the optimal
solution, and detecting bee operation. When initialization is
performed, the dimension, population size, maximum retry
limit, andmaximum number of cycles need to be set. Then the
honey source is randomly generated as shown in Equation (4).

xij − xjmin + rand
(
xjmax − xjmin

)
(i = 1, . . . , SN ;

j = 1, . . . ,D) (4)

In Equation (4), xij represents the nectar source as the
center of clustering, and xic is the limit value of the jth
dimension solution. rand (·) is randomized calculation, SN
is the bee colonies, and D is the data dimension. The evo-
lutionary direction of the bee colony population is guided
by the fitness function, and the study uses the clustering
accuracy as the fitness function. When the distance within the
cluster is small, it means that the data points within the cluster
are less different from each other, which indicates that it is
reasonable to group these data points into one cluster [28],
[29], [30]. Equation (5) illustrates the construction of the
fitness function.

fit (Xi) =
Ci
Ji

(5)

In Equation (5), fit (·) represents colony fitness and Ci is
the elements in the ith class. X is the honey source, and Ji
is the distance between the data in the i th class and the
cluster center point. Employed bees perform the honey source
search, and in order to increase the convergence efficiency of
the search. The study constructs a new formula for the honey

source search by introducing the global optimal honey source
as shown in equation (6).

zij = xij + γij
(
xij − xkj

)
+ rand

(
xgj − xij

)
(6)

In Equation (6), zij represents the new nectar source loca-
tion and γij represents a uniformly distributed random number
between −1 and 1. xgj is the value of the global optimal
nectar source in dimension j. The adaptation values are com-
pared based on greedy search to remove the honey sources
with lower adaptation. Roulette is performed by combining
the information obtained by the hired bees, as shown in
Equation (7).

pi =
fiti

SN∑
i=1

fiti

(7)

In Equation (7), Pi represents the nectar source selection
probability. The in-depth search is performed in the vicinity
of high-adaptation nectar sources. However, ABC has insuffi-
cient convergence speed in the whole. There are some defects
in the late exploration ability, and the study introduces FA
to optimize the late computation stage of ABC. If the nectar
source is in the limit number of iterations, the fitness value
remains unchanged, then enter the fireworks explosion search
stage. Figure 4 depicts the firework explosion algorithm’s
flow.

In Figure 4, the firework explosion algorithm needs to
randomly generate a certain number of fireworks first during
operation, search the neighborhood near the fireworks by the
exploding sparks, and enrich the diversity of the solution
space by Gaussian activation. The quality of the sparks is
represented by the fitness value, and the minimum fitness
value is used as the condition for progress determination.
Moreover, the iteration is stopped when the required accuracy
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FIGURE 4. Fireworks explosion algorithm flow.

is reached [31], [32]. In the context of combustion engine con-
trol parameter optimization within the ABC framework, three
nectar sources are selected for the purpose of conducting a
fireworks explosion search. Once the optimal individual has
been identified, the remaining individuals are selected based
on their distance from the optimal individual. Equation (8) is
used to compute the nectar source distances.

S (Xi) =

∑ ∥∥Xi − Xj
∥∥ (8)

In Equation (8), S (Xi) represents the distance between
the nectar sources. The remaining nectar sources are cho-
sen according on probability, and when the fireworks go
off, sparks keep forming around them to create new ones.
Equation (9) shows how many sparks are produced by the
sparks.

Bi = B
fitmax − fit (Xi) + ξ∑ES

i=1 (fitmax − fit (Xi)) + ξ
(9)

In Equation (9), Bi is the ith individual. B is the initialized
number and ξ is a very small constant term. The spark ampli-
tude is obtained and then the position is shifted to produce a
new explosive spark as shown in Equation (10).

X t+1
i = X ti + randAi (10)

In Equation (10), X t+1
i represents the new explosive spark

and X ti represents the original explosive spark. Ai represents
the radius of the ith individual.

C. COMBUSTION ENGINE CONTROL TECHNOLOGY
DESIGN IN CONJUNCTION WITH ICA
When performing combustion engine control parameter opti-
mization, ordinary clustering means are more sensitive to the
initial clustering center. FL-based clustering allows flexibil-
ity in the shape and direction of clusters by introducing an
adaptive distance metric, which better adapts to the actual
distribution of data [33], [34]. The study uses FL’s clustering
as a means of clustering and introduces SIOA into FL’s
clustering for initial cluster center calculation. The initial
clustering center calculation process is shown in Figure 5.

In Figure 5, when using SIOA to calculate the initial clus-
ter centers, the parameters are initialized first, and then the
nectar sources are initialized. The clustering compactness is
obtained after calculating the fitness function, and the global
optimization individual is introduced to generate new nectar
sources and select the best solution. When the number of
times the nectar source is not updated is greater than or equal
to the maximum retry limit, the explosion search phase is
entered. The radius and number of firework explosions are
computed to generate new positions and sorted to obtain the
best solution. The calculation ends when the total number of
cycles reaches the upper limit of predicted cycles, and the
initial clustering center is output. For CA solving, the study
introduces covariance matrix calculation to avoid over-fitting
conditions. The covariance matrix calculation is performed
usingOIGV, fuel quantity, and combustion engine load steady
state as IV as shown in Equation (11).

Fi =

NN∑
k=1

(
µ

(l−1)
ik

)m (
zzk − X li

) (
zzk − X li

)T
NN∑
k=1

(
µ

(l−1)
ik

)m (11)

In Equation (11), Fi represents the covariance matrix
and m represents the fuzzy index. µ represents the affili-
ation matrix, l is the current iterations, and zz is the data
set. A scaling matrix is added to the matrix as shown
in Equation (12).

Fmew = (1 − κ)Fi + κ det (F0)
1
n I (12)

In Equation (12), Fmew represents the scaling matrix and
κ represents the scaling factor. F0 represents the full dataset
covariance matrix. I represents the shape constraints. In clus-
tering analysis, the clustering metric for each dataset is
defined by the local paradigm induction matrix, which serves
as a key variable in the optimization process and serves
to adjust the distance metric to match the local structure
of the data. After completing the chunking matrix update,
all clustering centers are computed and obtained iteratively.
After obtaining the clustering centers, the initial value of
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FIGURE 5. Initial clustering center calculation process.

FIGURE 6. Clustering based on fuzzy logic.

the clustering radius is set to 0. The IV is imported to
search for other clustering centers nearest to the current
clustering center, and the clustering radius is continuously
searched and updated. The FL-based clustering is shown
in Figure 6.

In Figure 6, FL-based clustering divides regions by the
distribution clusters of data points when clustering. The clus-
tering region and type are decided based on the distribution
density of data points. Some of the points that stray from
the main data points are appropriately ignored to ensure
the overall clustering effect. The combustion engine con-
trol parameter identification can generate the relationship
between IV increment and linear output, and process the
obtained combustion engine operation data into more linear
incremental data. When the calculated control parameters of
the combustion engine are input into the controller to realize
the control of the combustion engine, model conversion is
needed first. The sub-models obtained in modeling are fuzzy
weighted to obtain the total model with adaptive capability,

and then the total model is used as the object of global
non-linear control, as shown in Equation (13).

yv =

n∑
i=1

wiyvi

n∑
i=1

wi

(13)

A most suitable adaptive model is converted in each sam-
pling cycle and the adaptive model is shown in Equation (14).

A
(
z−1

)
y (t) = B

(
z−1

)
u (t) +

C
(
z−1

)
e (t)

1
(14)

In Equation (14), y (t) is the control system output and u (t)
is the control system input. e (t) is white noise and 1 is the
difference factor. A

(
z−1

)
is the matrix whose side lengths

are the output quantities, and B
(
z−1

)
is the matrix whose

quantities side lengths are the input and output quantities,
respectively. Diophantine equations are introduced to predict
the future behavior and the obtained control quantities are
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FIGURE 7. Gas turbine control optimization technology operation flow.

used to control the object only in the first step and then
new control quantities are obtained every cycle. The idea of
step control is used to display and plan the future control
increments, generate the optimal control rate, and perform
the control by implementing only the present control quantity
(CQ). Equation (15) is used to calculate the current CQ.

u (t) = u (t − 1) + δ (15)

In Equation (15), u (t) is the current CQ, u (t − 1) is
the previous moment CQ, and δ represents the optimal
control rate. The operation flow of the research-designed
combustion engine control optimization technology is shown
in Figure 7.

In Figure 7, the research method needs to study the main
structure of GT first when performing combustion engine
control and transform the combustion engine model into a
multi-input multi-output system, which is divided into several
multi-input single-output systems. The initial step is to set
the dimensions, population size, maximum retry limit, and
maximum cycle number. Subsequently, the nectar source
should be randomly generated, and the combustion engine
control parameter optimization should be conducted using
the ABC method. When the nectar source adaptation value
remains constant in the limit number of iterations, the fire-
work explosion search phase is entered. The clustering of FL
is used as a means of clustering, and an adaptive distance
metric is introduced to adapt to the actual distribution of the
data. A most suitable adaptive model is transformed in each
sampling cycle, and the step control idea is used to calculate
the CQ of the moment and implement the control of the com-
bustion engine. The ABC algorithm is designed to identify

the optimal solution, with the intelligent selection of param-
eters achieved through the simulation of social behavior
observed in bees. Principal component analysis is a statistical
method employed for the reduction of dimensionality in data
sets, with the objective of extracting the principal features
of the data. In addition, principal component analysis and
dimensionality reduction are mainly used for pre-processing
basic data and can play little role in optimizing GT control
parameters. Therefore, the study added an anomaly detec-
tion mechanism in the stage after data addition to identify
and analyze newly added data points in ABC and remove
outliers from them. Promote ABC to achieve better results
in solving GT control parameters. In order to balance the
computational efficiency and clustering quality of ABC and
principal component analysis methods during runtime, batch
sizes are adjusted based on real-time monitoring of system
load and data characteristics to achieve optimal allocation of
computing resources.

III. EFFECTIVENESS ANALYSIS OF COMBUSTION ENGINE
CONTROL TECHNOLOGY BASED ON SIOA AND ICA
A. PERFORMANCE TESTING OF COMBUSTION ENGINE
CONTROL TECHNOLOGY BASED ON SIOA AND ICA
To analyze the performance of the research-designed CECT
during operation, the study uses the combustion turbine con-
trol system fault dataset and the GT control logic data of
Huadian Electric Power Research Institute (HEPRI) as the
test data. Table 2 displays the fundamental hardware environ-
ment configuration for the investigation.

In conducting the tests, the research method, referred to
as group intelligence-clustering (GI-C), is compared with
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TABLE 2. The experimental basic environmental parameters.

FIGURE 8. Gas turbine load model modeling error.

self-organizing mapping control and multi-variable predic-
tive control techniques. Tests are performed on the modeling
errors (MEs) of the combustion engine load model as shown
in Figure 8.

In Figure 8, theMEs of the combustion turbine loadmodels
of the different methods are in different intervals. Figure 8(a)
shows that the load model ME of the multi-variable pre-
dictive control technique is in the range of −0.55 MW to
0.82 MW for the 3000 sampling points, of which about 7%
of the sampling points have a ME of more than 0.5 MW and
about 50% of the sampling points have a ME of more than
0.3 MW. In Figure 8(b), the ME of the load model for the
self-organizing mapping control is in the range of−0.61MW
to 1.23 MW, in which about 10% of the sampling points have
a ME of 0.5 MW or more, and about 50% of the sampling
points have a ME of 0.45 MW or more. In Figure 8(c), the
load ME of GI-C is in the range of −0.47 MW to 0.51 MW,
in which about 0.1% of the sampling points have a ME of
0.5 MW or more, and about 50% of the sampling points have
a ME of 0.25 MW or more. It suggests that the combustion
turbine load model can be more accurately modeled using
the research approach. The ME of the combustion turbine EF
model is tested as shown in Figure 9.
In Figure 9, the MEs of the combustion engine EF

models of different methods are in different intervals.

FIGURE 9. Modeling error of gas turbine exhaust flow model.

In Figure 9(a), the ME of the combustion engine EF model
of the multi-variable predictive control technique is in the
range of−2.8lbm/s to 4.8lbm/s among 3000 sampling points,
of which about 8% of the sampling points have a ME of
2.0lbm/s or more, and about 50% of the sampling points have
a ME of 1.2lbm/s or more. In Figure 9(b), the ME of the
combustion engine EFmodel for the self-organizing mapping
control technique is in the interval of −2.0lbm/s to 2.2lbm/s,
in which about 1% of the sampling points have a ME of
2.0lbm/s or more, and about 50% of the sampling points
have a ME of 1.4lbm/s or more. In Figure 9(c), the ME of
the combustion engine EF model of GI-C is in the interval
of −1.7lbm/s to 2.9lbm/s, in which less than 0.1% of the
sampling points have a ME of 2.0lbm/s or more, and about
50% of the sampling points have a ME of 1.0lbm/s or more.
It indicates that the research methods have higher modeling
accuracy of the combustion engine EF model. The training
iteration speeds of the different methods are tested, as shown
in Figure 10.
In Figure 10, the training iteration efficiency of different

methods has some differences. Figure 10(a) shows that when
training in the fault data set of the combustion engine control
system, the loss value of the multi-variable predictive con-
trol technique decreases rapidly in the first 5 iterations, and
the loss value decreases to 0.057 when the iterations is up
to 50 times. The loss value of the self-organizing mapping
control technique decreases rapidly in the first 13 iterations,
and the loss value decreases to 0.039 when the iterations
is up to 50 times. the loss value of the GI- C loss value
decreases rapidly in the first 10 iterations, and the loss value
decreases to 0.023 when the number of iterations reaches 50.
In Figure 10(b), the loss value of the multi-variable predictive
control technique decreases rapidly in the first 5 iterations
and the loss value decreases to 0.015 when the iterations is
up to 50 when the training is performed in the GT control
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FIGURE 10. Training iteration speed test.

logic data of theWECC. The loss value of the self-organizing
mapping control technique loss value decreases rapidly in the
first 20 iterations and decreases to 0.021 when the iterations
is up to 50. The loss value of GI-C decreases rapidly in the
first 10 iterations and decreases to 0.007 when the iterations
is up to 50.This indicates that the research method has better
training results.

B. APPLICATION ANALYSIS OF COMBUSTION ENGINE
CONTROL TECHNOLOGY BASED ON SIOA AND ICA
To determine the feasibility and application effectiveness of
the research-designed CECT in carrying out the practical
application, the study selected two combustion engines for
the practical application analysis, called Alpha and Bravo,
respectively. The computation time of the control parameters
is analyzed as shown in Figure 11.
In Figure 11, the computation time of control parameters

for different methods all rise with the increase in the number
of input data bars. Figure 11(a) shows that in the Alpha com-
bustion engine, the computation time of the multi-variable
predictive control technique is 343ms for 1000 input data
bars. The computation time of the multi-variable predictive
control technique is 1891ms for 6000 input data bars. The
computation time of the self-organizing mapping control
technique is 477ms for 1000 input data bars. The computation
time of the multi-variable predictive control technique is
2038ms for 6000 input data bars. The computation time for
GI-C is 88ms for 1000 input data entries. The computation
time for 6000 input data entries is 902ms. In Figure 11(b),
the computation time of the multi-variable predictive control
technique in the Bravo combustion turbine is 427ms for
1000 input data entries, and 2416ms for 6000 input data
entries. The computation time of the self-organizing mapping
control technique is 598ms for 1000 input data entries, and
1864ms for 6000 input data entries. The computation time
for GI-C is 212ms for 1000 input data entries and 1121ms
for 6000 input data entries. This indicates that the computa-
tional speed of the research approach is faster. The parameter
optimization strategy introduced into the algorithm reduces
invalid searches, speeds up convergence, and improves the

ability of the algorithm to solve the problem through intelli-
gent selection and adjustment of control parameters. In this
study, the complex combustion engine model is decomposed
into multi-input single-output systems, which simplifies the
model structure, reduces the complexity of model calculation,
and improves the operation efficiency. The change curve of
the controlled quantity when the load changes is analyzed,
as shown in Figure 12.

Figure 12 shows how the controlled quantity varies from
the set value when various control strategies are applied
during a load shift. As demonstrated in Figure 12(a), when the
combustion engine’s power is used as the controlled quantity,
the power of the engine, under multi-variable predictive con-
trol technology, in the first 400 s can deviate from the set value
by up to 20MW, with the main trend of the change essentially
being the same. The control results of the self-organizing
mapping control technology show a maximum deviation of
10MW from the set value in the first 200s, and the power
decreases and increases in the 300s to 400s. The overall
trend of the control results by GI-C is consistent with the set
value, and the error is kept within 1MW throughout the whole
process. In Figure 12(b), when EF is used as the controlled
quantity, the EF controlled by the multi-variable predictive
control technique shows a maximum deviation of 20lbm/s
from the set value in the first 200s, and the main trend of
change is consistent with the set value. The control results of
the self-organizing mapping control technique show abnor-
mal rise and fall in the intervals from 0s to 100s and from 200s
to 400s, and themaximumdeviation reaches 30lbm/s ormore.
The overall trend of the control results by GI-C is consistent
with the set value, and the error is kept within 5lbm/s through-
out the whole process. It demonstrates that the accuracy of
the load change combustion engine control is improved by
the research approach. The change of the controlled quantity
when the OIGV suffers a disturbance is analyzed, as shown
in Figure 13.
In Figure 13, the control strategies generated by different

methods have certain differences in their ability to eliminate
external disturbances. Figure 13(a) shows that, when the
combustion engine power is the controlled quantity, the con-
trol result of the multi-variable predictive control technique
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FIGURE 11. Control the calculation time of parameters.

FIGURE 12. The change of controlled quantity when the load changes.

FIGURE 13. The change of the controlled quantity when the opening of the inlet guide vane is disturbed.

completely eliminates the fluctuation of the combustion
engine power in more than 300s, and the maximum fluctua-
tion reaches 0.7MW. The control result of the self-organizing
mapping control technique completely eliminates the fluc-
tuation of the combustion engine power in more than 300s,
and the maximum fluctuation reaches 0.4MW. The control
result of the GI-C completely eliminates the fluctuation of
the combustion engine power in less than 100s, and the max-
imum fluctuation remains within 0.2MW. It takes less than
100s and the maximum fluctuation is kept within 0.2MW.

In Figure 13(b), when EF is the controlled quantity, it takes
more than 300s to completely eliminate the EF fluctua-
tion by the multi-variable predictive control technique, and
the maximum fluctuation reaches 1.8lbm/s. It takes about
180s to completely eliminate the EF fluctuation by the
self-organizing mapping control technique, and the maxi-
mum fluctuation reaches 1.8lbm/s. The EF fluctuation is
eliminated by the GI-C technique, with the maximum fluctu-
ation being 0.7mw and the process taking 80s. The maximum
fluctuation is 0.7 lbm/s. It demonstrates how the study
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FIGURE 14. Thermal efficiency of 24h gas turbine.

methodology produces combustion engine control findings
that can lessen the influence of external variations on stability
while also more quickly eliminating their influence. The
thermal efficiency of the 24h combustion engine is analyzed
as shown in Figure 14.

In Figure 14, the different methods for generating the
control strategy lead to different developmental patterns of
the 24h combustion engine thermal efficiency when executed
over a long period of time. The multi-variable predictive
control technique control leads to the 24h combustion turbine
thermal efficiency has a large fluctuation with a maximum
of 63% and a minimum of only 42%. However, the overall
24h combustion turbine thermal efficiency showed a sig-
nificant downward trend during the 24 weeks of operation.
The self-organizing mapping control technique leads to small
fluctuations in the 24h thermal efficiency, with a maximum of
60% and a minimum of 43% over the 24 weeks of operation.
Long-term operation also resulted in a more significant ther-
mal efficiency drop. The GI-C has a strong ability to control
the stability of the 24h thermal efficiency of the combustion
turbine in the long-term control without significant fluctu-
ations. Long-term operation also demonstrates a decreasing
trend. In the second week of the 24-hour thermal efficiency
of the combustion engine, it reached 60%. After 24 weeks,
the 24-hour thermal efficiency of the combustion engine
decreased to 52%. Compared with the multi-variable predic-
tive control technology and self-organizing mapping control
technology, it has better stability and thermal efficiency reten-
tion ability. Compared to existing advanced particle swarm
optimization algorithms and genetic algorithms, research
methods require fewer parameters to be adjusted. Particle
swarm optimization algorithm requires setting parameters
for particle velocity and position updates, while genetic
algorithm involves genetic operation parameters such as
crossover rate and mutation rate. The main parameters of
the research method include population size, maximum num-
ber of cycles, and maximum number of failures, and the
adjustment of these parameters is relatively simple. When
conducting calculations, the research method introduces the
FA to handle large-scale multi-variate problems. Although
the computational complexity increases with the size of the

problem, its growth rate is relatively slow, and the overall
iteration speed is also faster. For example, when the research
method is trained on the fault dataset of the GT control
system, the loss value drops to 0.023 by the time the iteration
reaches 50 times. The FA clustering and covariance matrix
calculation provide data support for the algorithm, enabling
it to better adapt to the actual distribution of data.

IV. CONCLUSION
A CECT combining ABC and CA has been studied and
designed to make an improvement in the work quality of the
combustion engine. The process transforms the combustion
engine model into a multi-input and multi-output system.
It takes EF and combustion engine load as the system outputs,
performs local non-linear weighting calculations to obtain
the global output of the model, introduces FA to optimize
the post-calculation stage of ABC, performs optimization
on the control parameters of the combustion engine, uses
clustering of FL as a means of clustering, and introduces
the covariance matrix calculations to avoid the over-fitting
condition. Finally, the research methodology is analyzed to
determine its validity. The experimental results indicated that
in the analysis of the ME of the EF model of the combustion
engine, the ME of the EF model of the combustion engine
by the research method was in the range of −1.7lbm/s to
2.9lbm/s. The ME of the EF model of the combustion engine
by the research method was in the range of −2.7lbm/s to
2.9lbm/s.When the calculation time of the control parameters
was analyzed, the calculation time of the research method
was only 1121ms when the number of input data was 6000 in
the two combustion turbines. In the analysis of the change
of the controlled quantity when the OIGV was subjected
to perturbation, the research method took less than 100s to
eliminate the power fluctuation of the combustion turbine
completely when the research method was carried out, and
the maximal fluctuation was kept within 0.2 MW. It indicates
that the research method has higher control accuracy of the
combustion engine and canmake the combustion engine enter
the preset working state at a higher speed. However, the study
does not consider the data misalignment caused by possible
power fluctuations in the control system, and more external
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environmental disturbances will be added to the analysis in
order to enrich the experimental results and optimize the
research method, and to expand the scope of application of
the research method.
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