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ABSTRACT Fault classification in power transmission lines is important in distance relaying for identifying
the accurate phases implicated in the fault occurrence. Generally, the accuracy of fault classification
algorithms is evaluated by simulation data, which shows quite different characteristics from real fault data.
Also, most of the previous works on fault classification used a single-stage method such as a rule-based
algorithm or machine learning-based algorithm. Because of the diverse characteristics of real fault data,
the performance of the single-stage method is limited. To address these issues, this paper proposes a novel
two-stage algorithm that combines the strengths of rule-based and machine-learning algorithms to improve
the accuracy of real fault data. A case study using real fault data shows that the proposed two-stage algorithm
outperforms other conventional single-stage algorithms.

INDEX TERMS Two-stage algorithm, rule-based, artificial neural network, root mean square.

ABBREVIATIONS

• IV: Instantaneous Value
• WT: Wavelet Transform
• DWT: Discrete Wavelet Transform
• CWT: Continuous Wavelet Transform
• MODWT-E: Maximal Overlap Discrete Wavelet
Transform Energy

• MODWT:MaximalOverlapDiscreteWavelet Transform
• ITD: Intrinsic Time Decomposition
• DT: Decision Tree
• KNN: K-Nearest Neighbor
• RMS: Root Mean Square
• FRC: Frequency Response Curve

I. INTRODUCTION
Accurate classification of fault types is necessary to restore
power systems after a fault because different recovery
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methods and actions are required depending on the fault
type. In addition, identifying fault types is essential for
the relay decision-making process in transmission networks,
which is pivotal for applications such as single pole tripping,
distance relaying, etc [1]. The accurate classification enables
fast tripping, which reduces further damage to the system,
enhances system reliability, and improves transient system
stability and power quality [2]. In the three-phase system of
transmission lines, 11 different types of line faults can occur:
one type of three-phase fault (LLL), one type of three-phase
to ground fault (LLLG), three types of single line-to-ground
fault (LG), three types of double line to ground fault (LLG),
and three types of line to line fault (LL) [3], [4].

A. LITERATURE REVIEW
Previous research on fault type classification is generally
divided through three perspectives: which ‘‘algorithm’’ is
applied, which ‘‘data’’ is used for validation, and which
‘‘features’’ are used. From these points of view, a literature
review is listed in Table 1.
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From the ‘‘algorithm’’ point of view, there are two main
algorithms for fault classification: rule-based algorithms,
i.e., traditional approach, and machine learning (ML)-based
algorithms.ML-based algorithms can also be categorized into
tree-based algorithms and neural network (NN)-based algo-
rithms. Recently, many works on fault classification using
NN-based algorithms including artificial neural networks
(ANN), convolutional neural networks (CNN), and recurrent
neural networks (RNN) have been actively investigated.
The two types of algorithms, i.e., rule-based and ML-based
algorithms, have different characteristics such as strengths
and limitations. ML-based algorithms classify a fault type
based on features that experts may not have considered
because they are trained from datasets without relying on
expert knowledge. In other words, they are more flexible
compared to rule-based methods. However, one of the
major drawbacks of ML-based algorithms is overfitting
which comes from the disparity between the training and
test data. Especially, an ML-based algorithm trained using
simulation data might show a poor classification performance
in real fault data if the real fault data is not seen in the
simulation [22]. This problem still exists because most of
the previous research has used simulation data as training
data. Rule-based algorithms, on the other hand, are relatively
independent of the quality of the training data because they
rely on the knowledge of experts. However, expert knowledge
alone sometimes makes it difficult to recognize subtle cases
that are close to the threshold.

From the ‘‘data’’ perspective, most models trained using
simulation data have limitations on the performance of
real fault data because simulation cannot perfectly repro-
duce the real environment. Specifically, both rule-based
and ML-based algorithms perform poorly on real fault
data. Previous research, that validated using real fault
data [5], [14], [15], [22], either showed performance degra-
dation or limitations in the reliability of the validation
dataset. For example, the works in [5] and [22] showed
100% accuracy with simulation data, but they showed
96.55% and 96% accuracy with real fault data, respectively.
In particular, [22] compared fault classification models to
previous studies and showed that an average classification
performance degrades about 33% with real fault data than
fault data obtained by simulations. In [14] and [15], their
classification models achieved 100% accuracy with real fault
data. However, the total number of real fault data is very small
(five and six) and their fault category is simple (LLG and LG).

As the input ‘‘feature’’ point of view, most of the previous
research used preprocessed features rather than instantaneous
values (IV), and wavelet transform (WT)-based decomposi-
tion techniques are themainstream. So, various preprocessing
techniques such as DWT, MODWT, CWT, and RMS have
been used in previous research. However, most performance
evaluations have been conducted using simulation data,
making it uncertain how these features will perform in real
fault data. Previous research showed that WT-based features
are generally not robust to noise [24], [25], [26]. Therefore,

to improve the classification accuracy in real fault data,
a detailed analysis of input features using real fault data is
required.

B. CONTRIBUTIONS
In this work, we aim to develop a robust fault classification
algorithm for real fault data. To this end, we propose a
two-stage algorithm that combines rule-based and ML-based
ones. First, the proposed algorithm uses a rule-based method
for initial fault type classification. If the fault data lies near
the borderline for classification, the ML-based algorithm
is employed. Otherwise, the classification result by the
rule-based algorithm is the final result. By combining the
strengths of the two algorithms, the proposed two-stage
algorithm outperforms individual algorithms. Through a case
study, we show that the proposed algorithm successfully
classifies 100% of the real fault data even when it is trained
by simulation data.

The main contributions of this paper are summarized as
follows:
• Two-Stage Classification Algorithm: The paper intro-
duces a novel two-stage algorithm for fault classification
that synergistically combines rule-based and ML-based
algorithms. The rule-based and ML-based algorithms
are used for initial classification and final decisions for
the data in boundary conditions, respectively.

• Feature Analysis: This work gives a detailed analysis of
different features such as IV, RMS,MODWT, and CWT,
used in fault classification algorithms. Among them,
RMS is a robust feature, so it enhances the accuracy and
reliability of the classification.

• Performance Evaluation by ML-based algorithms: This
paper categorizes ML-based algorithms into tree-based
and NN-based methods and compares their perfor-
mance. Case study shows that NN-based algorithms
perform better than tree-based algorithms.

• Validation using different datasets: We validate the
performance of the proposed algorithm using simulation
data, simulation data with noise, and real fault data.
Through this validation, it is confirmed that the proposed
algorithm can be practically applied to real fault data.

The paper is organized as follows: Section II outlines
the background on ML algorithms and features utilized in
this work. Section III introduces the RMS-based rule-based
algorithms and then proposes the two-stage algorithm for
fault classification. Section IV presents a case study to
validate the proposed algorithm including feature extraction,
parameter selection for the rule-based algorithm, and the per-
formance of the proposed algorithms. The paper concludes
with Section V.

II. BACKGROUND
A. REVIEW OF ML ALGORITHMS
This section reviews two types of ML algorithms used for
fault classification in this work: tree-based and NN-based
algorithms.
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TABLE 1. Literature review of fault type classification models.

1) TREE-BASED ALGORITHMS
The core concept behind tree-based algorithms is to construct
a decision tree using training data. Representative tree-based
models include decision trees, random forests, and gradient-
boosting trees. The decision tree, i.e., the basic element of
the tree-based algorithms, is built by splitting features to
maximize information gain. The formula for information gain
IG is as follows:

IG(Dp, fe) = I (Dp)−
(
Nl
Np
I (Dl)+

Nr
Np
I (Dr )

)
, (1)

where fe refers to the feature upon which the data is split at
any node in the tree. And Dp, Dl and Dr denote the datasets
of the parent node, and the left and right child nodes after
the split, respectively. Also, Np, Nl , and Nr are the number
of samples in the parent node, and the left and right child
nodes, respectively. The function I (·) measures the impurity
of a dataset, and the impurity is normally measured by either
entropy IH (·) or Gini impurity IG(·) [27]. Entropy as impurity
is defined as

IH (D) = −
∑
i∈D

pi log2(pi), (2)

where pi represents the proportion of class i within the
dataset. On the other hand, Gini impurity is

IG(D) = 1−
∑
i∈D

p2i . (3)

Because of the criteria to maximize information gain,
decision trees effectively understand the features of the
data and create predictive models. Random forests and
gradient-boosting trees further reduce errors and enhance
performance by using multiple trees.

2) NN-BASED ALGORITHMS
The neural network is a cornerstone of NN-based ML
algorithms. It is designed to estimate the parameters of a
function using training data. Neurons in layer i pass signals
to the next layer of neurons from input vector x which is
expressed as

f (i)(x) = φ(wix+ bi), (4)

wherewi and bi represents theweight and bias vectors of layer
i, respectively. And φ(·) is the activation function. The output
y of the NN for input x is the output of the composition of the
functions corresponding to each layer. That is,

y = (f (L) ◦ f (L−1) ◦ · · · ◦ f (1))(x), (5)

where L is the number of layers and the circle symbol (◦)
denotes function composition.

For classification problems, the loss function uses the
cross-entropy loss L(·) as given as

L(y, ŷ) = −
C∑
c=1

yi log(ŷc), (6)

where y and ŷ denote the true distribution and the estimated
distribution, respectively. And yi is 1 for the correct class and
0 otherwise, and ŷc is the estimated probability for class c.
By the backpropagation, the weights are updated as follows

W := W − η
∂L
∂W

, (7)

where W and η denote the weight matrix and the learning
rate, respectively. The process of applying this gradient to
update the weights is repeated across all layers from the
output back to the input layer, adjusting the network’s weights
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in a way that minimizes the loss, hence improving themodel’s
predictions.

B. CANDIDATE FEATURES FOR FAULT CLASSIFICATION
The accuracy of fault classification algorithms can vary based
on the characteristics of preprocessed features derived from
IV of fault data. Therefore, we focus on evaluating the
accuracy of fault classification models using preprocessed
features as inputs, such as RMS, DWT [10], [15] and
CWT [12], [17], [18]. This section reviews three prepro-
cessing features for fault classification: RMS, MODWT, and
CWT.

1) MOVING WINDOW-BASED RMS
RMS is one of the most common features of voltage and
current. In this paper, we propose the use of moving window-
based RMS. The moving window-based RMS formula
considering the window size and stride is given as

RMSi =

√√√√√ 1
N

N−1∑
j=0

x2(i · S + j), (8)

where N and S denote the size of the window and stride,1

respectively. Also, x is the data sample, and i indicates the
starting index of the window. So, i · S stands for the index
shift due to the stride.

2) MODWT
MODWT [5] is an extension of DWT, and it has strength in
time series analysis. While DWT requires a length of the time
series data to be a power of two, MODWT is not restricted
by the length of the data and allows for overlapping in the
wavelet filtering process. As a result, MODWT is good for
analyzing non-stationary temporal signals where capturing
transient features is essential. The k-th wavelet coefficient
value of the MODWT ωm(k) is calculated as

ωm(k) =
K∑
i=1

h(i)x(k + i− K ), (9)

where h and K are the wavelet filter and the amount of
coefficient of the wavelet filter, respectively.

3) CWT
CWT is designed to decompose a signal into wavelets, which
are essentially small waves located at different intervals.
These wavelets vary in scale and position, allowing for a
precise measurement of how the signal’s frequency content
changes over time. The wavelet coefficient value of the CWT
ωc(·, ·) for a signal x(t) is defined as

ωc(s, τ ) =
1
√
s

∫
∞

−∞

x(t) · ψ∗
(
t − τ
s

)
dt, (10)

1The number of data points skipped each time the window is moved.

where s and τ are the scale factor that stretches or compresses
the wavelet and the translation parameter that shifts the
wavelet along the time axis, respectively. A function ψ(·) is
the wavelet function used to generate all other wavelets by
scaling and translating, and ψ∗(·) is its complex conjugate.
In this work, we use morlet wavelet [28] as a wavelet
function.

III. TWO-STAGE FAULT CLASSIFICATION ALGORITHM
This section introduces the proposed two-stage algorithm
that integrates rule-based and ML-based algorithms to
classify fault data. In Stage 1 (Section III-A), the proposed
algorithm first applies a rule-based classification method
based on the RMS ratio. After verifying the fault coordinate
location, it applies the ML-based algorithm, i.e., Stage 2
(Section III-B). The proposed two-stage fault classification
algorithm is explained in detail in Section III-C. Note that
we use fault current data only because the current is the best
indication of the fault characteristic.

A. STAGE 1: RULE-BASED ALGORITHM USING RMS RAITO
The first stage algorithm is based on a reference work [5].
This section reviews the algorithm in [5] and describes
our contributions to this algorithm. Our contributions are i)
changing the input feature from wavelet coefficient energies
to RMS ratio, ii) optimizing the error threshold ϵ of the fault
coordinate, and iii) creating an additional plane to categorize
LLL and LLLG.

1) RMS RATIO
As the input of the rule-based algorithm, the RMS ratio
of phase current is used instead of the wavelet coefficient
energies in previous work [5] because of the robustness
of RMS for noise [24]. In Section IV-B1, we analyze the
robustness of RMS. RMS current is defined as

IRMSj =

√√√√ 1
Te − Ts

Te∑
t=Ts

I2j (t), j ∈ {A,B,C,G} , (11)

where Ij(t) is the IV of current at t and j is the phase index of
three phases current (A,B,C) and neutral current (G). Given
the non-periodic nature of the fault data, the interval from Ts
to Te is extracted for RMS calculation, rather than employing
a single cycle typical of periodic functions.

After obtaining RMS current for each phase, we define the
RMS ratio of A,B,C , and G as

rj =
IRMSj

IRMSA + IRMSB + IRMSC

, j ∈ {A,B,C,G} . (12)

By definition, the sum of the RMS ratio for three phases
should be 1, i.e., rA + rB + rC = 1.

2) COORDINATES BASED FAULT CLASSIFICATION
The three-dimensional fault coordinate system comprises
three orthogonal axes: A, B, and C . The coordinates A, B, and
C represent each RMS ratio as defined by Eq. (12). On the
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FIGURE 1. Three dimensional fault coordinate.

other hand, coordinate G denoted as rG, is represented by
colors based on the threshold ϵG. If rG < ϵG, the color
of the dot in the coordinate is red. On the other hand, it is
green. Because the sum of the RMS ratio for three phases
should be 1, these fault coordinates lie on a three-dimensional
plane known as the fault triangle, illustrated in Fig. 1. The
placement of A, B, and C on the fault plane allows for
the identification of the phases impacted by the fault, while
the color G indicates ground involvement in the fault.
As shown in Fig. 1, fault planes which are represented

as fault type are separated based on threshold ϵj. Therefore,
if the RMS ratio exceeds a threshold value of ϵj, phase j is
classified as a fault. In [5], ϵj for all j ∈ {A,B,C}was naively
set to 1/3, which is a reliable value to distinguish between
LG, LL, and LLG faults. However, LLL faults have to belong
to all planes, which limits the accurate fault classification.
Therefore, instead of setting ϵj = 1/3, this work chooses
the proper threshold value based on simulation data to create
an additional plane to categorize LLL and LLLG faults. The
detailed parameter settings based on the simulation dataset
for the rule-based algorithm are described in Section IV-B.
With the proper ϵj, the fault planes consist of 7 fault planes
so that 11 faults can be classified, including ground fault cases
represented by colors as shown in Fig. 1.

B. STAGE 2: ML-BASED ALGORITHM
In the second stage, the proposed algorithm uses an
ML-based classification method. Two tree-based algorithms
(XGBoost [29] and LGBM [30]) and two NN-based
algorithms (ANN [31], CNN [32], and LSTM [33]) are con-
sidered in this work. Potential candidates for input features
of these ML-based algorithms are IV, RMS, MODWT, and
CWT. The classification result of the algorithms is one of
11 fault types (three LG, three LL, three LLG, one LLL, and
one LLLG).

We also propose to use a voting method for ML-based
algorithms. Voting is one of the ensemble learning tech-
niques that combines several different models to determine
the final prediction. The aggregation of predictions from
multiple models tends to reduce the variance associated
with individual predictions because the performance of
ML-based algorithms highly depends on the initial value.
This makes the ensemble’s output more predictable and
reliable. After training, the ML-based algorithm provides
multiple classification results and aggregates the results, i.e.,
perform voting. In voting, the final result is decided based on
the class that receives the most votes.

C. TWO-STAGE FAULT CLASSIFICATION ALGORITHM
Both rule-based and ML-based algorithms have advantages
and disadvantages. The rule-based algorithm shows reason-
able and explainable results, but it cannot distinguish subtle
differences. On the other hand, ML-based algorithms have
the advantage of distinguishing subtle differences, but they
always have the potential for overfitting. Therefore, the
proposed two-stage fault classification algorithm applies the
rule-based algorithm first, and then the ML-based algorithm
is applied if the fault coordinates are located in a plane near
the threshold as shown in the red and green points of Fig 2.
In Fig. 2, the conditions (

∣∣rj − ϵj∣∣ = 1j) of ABC phases and
neutral current are represented by the dotted line and color,
respectively. The condition of ‘‘

∣∣rj − ϵj∣∣ ≤ 1j’’ is called a
‘‘boundary condition’’ in this work.

FIGURE 2. Condition for progressing to stage 2.

The detailed process of the proposed two-stage classifica-
tion algorithm is outlined in Algorithm 1.

The operation of Algorithm 1 is iterative for each fault
data. The algorithm is explained as follows: The rule-based
algorithm runs first. (Line 2) calculate RMS ratio rj (j =
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Algorithm 1 Two-Stage Algorithm
1: Initialize fault type F = ∅

Stage 1: Rule-based algorithm
2: Calculate RMS ratio rA, rB, rC , rG by Eq. (12)
3: for j ∈ {A,B,C,G} do
4: if rj ≥ ϵj then
5: F ← F ∪ {j}
6: end if
7: end for
8: if for any

∣∣rj − ϵj∣∣ ≤ 1j then
Stage 2: ML-based algorithm

9: Re-initialize fault type F = ∅
10: Initialize an empty list of predictions P = ∅
11: for i ∈ {1, 2, . . . ,M} do
12: ypredi ← Prediction from ML model i

13: P← P ∪
{
ypredi

}
14: end for
15: F ← Choose the most frequent case in P
16: end if
17: return F=0

FIGURE 3. Schematic diagram of experiment.

A,B,C,G) by Eq. (12). (Lines 3-7) If any value of the RMS
ratio rj exceeds threshold ϵj, the phase is added to fault type
set F . After checking the condition for all phases, the initial
fault type is decided. (Line 8) At least one of the phases
satisfies the boundary condition, (Lines 9-15) The ML-based
algorithm is executed M times and the final classification
result is decided by voting method. Otherwise, the initial fault
type is the final classification result.

IV. CASE STUDY
In this section, we compare the classification performance
of the proposed two-stage algorithm with single-stage
algorithms and another two-stage algorithm. Fig 3 shows a
schematic diagram of the experiment. Section IV-A describes
the power system simulation and hyperparameter settings for
ML algorithms. Section IV-B shows the process of setting up
features and thresholds for a rule-based algorithm. Finally,
in Section IV-C, the classification result for each algorithm is
demonstrated.

The experiments were conducted on a PC equipped
with a 13th Gen Intel(R) Core(TM) i9-13900KF processor
running at 3.00 GHz, 64 GB of RAM, and an NVIDIA

TABLE 2. The parameter of PSCAD simulation.

FIGURE 4. Power system model.

TABLE 3. Configuration of real fault data.

GeForce RTX-4090 GPU. The machine learning tasks were
implemented using Python with scikit-learn and TensorFlow
packages.

A. EXPERIMENT SETUP
1) POWER SYSTEM SIMULATION
To simulate and generate line faults in transmission lines,
we modeled the power system using the PSCAD program as
shown in Fig. 4. Actual load and transformer parameters from
the South Korean transmission lines were used to closely
mimic real system faults where real fault data is stored [22].
We generated a total of 700 fault data, i.e., 7 (angles) × 10
(locations) × 10 (fault types2), by organizing fault types,
transmission line lengths, and phase angles as shown in
Table 2. The generated fault waveforms are 64 samples per
cycle and 2 cycles after the fault. Then, the basic input of IV
data is preprocessed for input to rule-based and ML-based
algorithms. Among the generated 700 fault data, we use 90%
of the data for training, while the remaining 10% data, along
with 52 real field data samples, were used for test.

2) REAL FAULT DATA
We have 52 real fault data with fault types of LG,
LL, LLG, and LLL, obtained by Korea Electric Power

2While LLLG fault can occur in the real power system, it is difficult to
simulate LLLG fault with characteristics that distinguish them from LLL
fault, especially in the simulation of transmission lines. We generated fault
data except for LLLG type. Accordingly, the ML-based algorithm that learns
with simulation data can classify into 10 types of faults, excluding LLLG
type.
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TABLE 4. List of features and their size.

TABLE 5. Hyperparameters of ML-based algorithm.

Corporation (KEPCO). The real-time fault events were
recorded during different fault types on various phases of
different transmission lines in Korea. The fault signals were
recorded in COMTRADE format and its sampling rates
vary. We resampled the data to 64 samples per cycle for
consistency. Table 3 shows the fault type of the 52 data. These
data are not used in training but used in tests.

3) ML ALGORITHMS SETUP
We analyze how features influence the classification accuracy
of real fault data, aiming to optimize model performance
by selecting the most effective features. The sizes of each
feature and the hyperparameters of ML-based algorithms are
listed in Table 4 and Table 5, respectively. The number of
homogeneous models applied to the voting method M is set
as 10. The value of1j as the boundary condition threshold is
designed to be 25% of ϵj.

To make a robust algorithm, which is one of the main
purposes of this work, we set the hyperparameters of the
ML algorithms to minimize overfitting. Specifically, NN-
based algorithms incorporate dropout layers. In addition,
to ensure a fair comparison, the number of neurons in the
NN-based algorithms, such as ANN, CNN, and LSTM, was
kept consistent, and the tree-based algorithms used default
models.3

B. RULE-BASED ALGORITHM SETUP
1) RMS RATIO FOR FEATURE
To illustrate the robustness of features, we use signal-to-
noise ratio (SNR) of which the mathematical definition in
dB is

SNRdB = 20 log10

(
Ps
Pn

)
, (13)

where Ps and Pn denote the powers of original and noise
signals, respectively. The change of MODWT-E and RMS
ratio values depending on SNR are evaluated by comparing
with the original data: cosine similarity andmean square error
(MSE). Cosine similarity CS measures the similarity of two
data sets with a higher number indicating more similarity. It is
defined as

CS =
1
N

N∑
i=1

xis · x
i
n∣∣xis∣∣ ∣∣xin∣∣ , (14)

where xs and xn denote the vectors of the original and noise
signals of each phase, respectively, and N denotes the size of
vectors. BecauseMSE is an error indicator, lowerMSE stands
for more similarity. The definition of MSE is

MSE =
1
4N

N∑
i=1

∣∣∣xis − xin∣∣∣2. (15)

The change of ratio for cosine similarity and MSE
according to SNR are shown in Tables 6 and 7, respectively.
As the SNR decreases, the MSE of MODWT-E spikes,
and the cosine similarity plummets, whereas the RMS ratio
shows relatively stable in both metrics. Also, we compare
features of the original and noisy data. Figs. 5 and 6 show
examples of the RMS ratio comparing original and noisy
data for MODWT-E and RMS, respectively. According to
the results, the MODWT-E ratio shows that the faulted
phase is clearly characterized in the original data but
becomes unclear in the data with an SNR of 25, while
the RMS shows that the original and noisy data are
indistinguishable.

These results show that RMS is more robust to noise than
MODWT-E. Therefore, we choose RMS as the main feature
of the rule-based algorithm.

3These hyperparameters were not selected by the real fault data, i.e., test
data, but by trial and error based on simulation data, i.e., training data.
Therefore, the accuracy performance obtained by simulation data is not
guaranteed with real fault data. as shown in the following sections.
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TABLE 6. Comparison of cosine similarity according to SNR.

TABLE 7. Comparison of MSE according to SNR.

FIGURE 5. Comparison of MODWT-E ratio between original data and
noisy data. The cell value of the heat map means the MODWT-E ratio.

FIGURE 6. Comparison of RMS ratio between original data and noisy
data. The cell value of the heat map means the RMS ratio.

2) THRESHOLDS SELECTION
This section explains the process of two thresholds selection
for the rule-based algorithm: ϵj where j ∈ {A,B,C}, called
ϵP and ϵG. We first find the range of (ϵj, ϵG) where the
classification accuracy of the simulation data is above 0.95,
i.e., white big box in Fig. 7. Considering the discrepancy
between simulation data and real fault data, a margin of
0.05 is added to the range. Then, we select (ϵP, ϵG) at the
value of the white small box in Fig. 7. The reason for this is
as follows.
• ϵG: The ϵG is the threshold value to detect fault type
including ground. In fault classification, the neutral
current is used for distinguishing between ground fault
and short circuit. The neutral current in the real fault
involving the three-phase imbalance characteristic is

FIGURE 7. Accuracy according to (ϵP , ϵG). White big and small boxes are
the range with accuracy above 0.95 and selected values, respectively.

FIGURE 8. Relationship between ϵP and accuracy.

relatively large compared to the simulation because the
simulation assumes a three-phase balance environment.
Considering the three-phase imbalance of the real
environment, we select the maximum value of ϵG as
0.09 among the possible range, i.e., white big box in
Fig. 7. The selecting process of ϵG is visualized with
horizontal arrows in the figure.

• ϵP: We select ϵP by analyzing relationship between ϵP
and accuracy performance. Fig. 8 shows the accuracy
performance as a function of ϵP and the range with
ϵG = 0.09. To choose ϵP as a reasonable value,
we needed to experiment to see which labels would
be disadvantageous to predict if we deviated from the
optimal range. Therefore, we analyzed the point-wise
results for ϵP = 0.20, ϵP = 0.27, which are out of the
optimal range, and ϵP = 0.235, which is in the optimal
range as a reference value. Fig. 9 shows the classification
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FIGURE 9. Point-wise result of fault classification with three different
values of ϵP using simulation data. Among the three values,
ϵP = 0.235 shows a balanced performance.

results. It shows that the smaller the value (ϵP = 0.2),
the higher the percentage of misclassified LG fault,
and conversely, the higher the value (ϵP = 0.27),
the higher the percentage of misclassified LLL fault.
Considering the result that the relatively unpredictable
label has a trade-off based on the value of ϵP, it seems
reasonable to select ϵP as the average (ϵP = 0.235) of
the optimal range based on simulation data for fault type
classification of real fault data. The selecting process of
ϵP is visualized with vertical arrows in Fig. 7.

C. PERFORMANCE EVALUATIONS AND ANALYSIS
This section first shows the performance of two single-
stage algorithms: rule-based and ML-based algorithms.
After analyzing their limitations, the proposed two-stage
algorithm’s performance is presented.

1) PERFORMANCE EVALUATION OF RULE-BASED
ALGORITHM
We evaluated the proposed rule-based algorithm by setting
ϵP = 0.235 and ϵG = 0.09 as shown in Section IV-B2.
Because tree-based algorithms also work with thresholds,
the performance of two representative tree-based algorithms,
i.e., LGBM and XGBoost, are evaluated to highlight the
effectiveness of the expert knowledge-based algorithm, i.e.,
rule-based algorithm. For a fair comparison, we use the same
input feature (RMS ratio) for both ML-based and rule-based
algorithms.

The classification accuracy of the rule-based algorithm
is 0.9571 and 0.9423 for simulation and real fault data,
respectively. The accuracy of 0.9423 for real fault data means
that the algorithm successfully classified 49 cases out of
52 cases and that it misclassified the other three cases.
The two tree-based algorithms show an accuracy of 1 in
simulation data, while their accuracy severely degrades to
0.5961 and 0.6538 for XGBoost and LGBM in real fault data,
respectively. These results confirm that tree-based algorithms
trained by simulation data tend to be overfitting, so the
algorithms perform poorly with different data sets. On the

FIGURE 10. Cases for lying boundary condition in real fault dataset. Red
and green dots are data points meeting three-phase and neutral current
boundary conditions, respectively.

other hand, because the rule-based algorithm uses expert
knowledge, it is more robust to data uncertainty.

2) ANALYSIS OF MISCLASSIFIED DATA BY RULE-BASED
ALGORITHM
If the value of the RMS ratio lies in the boundary condition,
the decision made by the rule-based algorithm could be
wrong with a high probability. It is one of the core reasons for
the proposed two-stage classification algorithm.We visualize
the cases that satisfy the boundary condition as shown in
Fig. 10. In detail, twelve cases lie in the boundary condition
in the real fault dataset. The twelve cases include all the
misclassified results, i.e., three cases, by the rule-based
algorithm.

Table 8 shows more detailed results of misclassified data
for real fault data. The first row shows that a CG fault
is misclassified as a BCG fault. This is because the fault
currents of A, B, and C are small and similar. Also, the
rule-based algorithm misclassifies LLL fault as LLLG fault,
which means that the neutral current of LLL fault in real
fault data is relatively large compared to simulation data.
Therefore, the proposed rule-based algorithm is not possible
to classify correctly in these cases.

3) PERFORMANCE EVALUATION OF ML-BASED
ALGORITHMS
In this section, we compare the performance of four ML-
based algorithms: XGBoost, LGBM, ANN, CNN, and
LSTM. The candidate features for inputs of the ML-based
algorithms are IV, moving window RMS (hereinafter referred
to as RMS), MODWT, and CWT explained in Section II-B.

Tables 9 and 10 show the accuracy results using simulation
data and real data, respectively. All fiveML-based algorithms
are good at the classification of the four features in simulation
data. In particular, LGBM and CNN show perfect accuracy
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TABLE 8. Result of misclassified real fault data by rule-based algorithm.

TABLE 9. Comparison accuracy on simulation test data.

TABLE 10. Comparison accuracy on real fault data.

for all features. So, we can conclude that the differences
among the algorithms and the features are negligible in
the simulation data. For real fault data, NN-based algo-
rithms show better classification performance than those of
tree-based algorithms as discussed in Section IV-C1. Except
CNN, RMS shows the best performance for all ML-based
algorithms in real fault data. Because CNN was originally
designed for image data, it shows better performance with
highly fluctuating features like IV. Nevertheless, CNN with
RMS also shows a good performance. It confirms that RMS
is robust to noise as discussed in Section IV-B1. Note that
an accuracy of 0.9615, the best performance among all ML-
based algorithms, means that two cases out of 52 cases are
misclassified.

Because real fault data includes noise, we examine the
robustness against noise for various features. To compare the
robustness against noise, we use NN-based algorithms, which
showed a good performance in real fault data. The range
of noise levels is SNR of 20, 40, 60, and 80 dB. Fig. 11
shows the accuracy performance of NN-based classification
algorithms according to noise level. WT-based features, i.e.,
MODWT and CWT, decrease relatively fast in accuracy
performance as the SNR decreases. This is because noise at
the boundaries of the signal can produce large coefficients
with WT. RMS shows the best performance in the three
NN-based algorithms. This result is consistent with the
performance degradation in real fault data shown in Table 10.

FIGURE 11. Comparison of robustness to noise among features (MODWT,
CWT, RMS, and IV).

TABLE 11. Comparison accuracy on simulation test data.

4) ANALYSIS OF MISCLASSIFIED DATA BY ML-BASED
ALGORITHMS
This section explains the two misclassified cases by ML-
based algorithms. Fig. 12 shows the distribution of the
training dataset, i.e., the simulation dataset, and the real
fault dataset. The ‘‘x’’ markers in Fig. 12b indicate the two
misclassified data in the real fault data by CNN-IV and ANN-
RMS based algorithms. Given that the simulated training data
by label has a clustered distribution, it is obvious that two
misclassified data points are far from any cluster. We can
conclude that these misclassification results come from the
fundamental overfitting problem of ML-based algorithms.
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FIGURE 12. Distribution of RMS ratio. It is observed that the distributions
of the simulation data and the real fault data are different.

5) PERFORMANCE EVALUATION OF TWO-STAGE
ALGORITHMS
The classification results of the proposed two-stage algo-
rithms using simulation data and real fault data are summa-
rized in Table 11 and Table 12, respectively. The proposed
algorithm shows 100% accuracy with simulation data in all
cases except for the ANN-MODWT and LSTM-MODWT
based algorithms. Also, the results for real fault data show
that the two-stage algorithm outperforms the single-stage
methods of XGBoost, LGBM, ANN, CNN, and LSTM
by 94.3%, 83.7%, 28.4%, 18.2%, and 62.8% on average,
respectively.

Among the 20 ML-feature combinations, six cases
outperform all single-stage algorithms: ANN-RMS, ANN-
CWT, CNN-IV, CNN-RMS, CNN-CWT, and LSTM-RMS.
AmongML-based algorithms, only NN-based algorithms are
meaningful to integrate with the rule-based algorithm, which

TABLE 12. Comparison accuracy on real fault data. Cases that
outperformed compared to the rule-based and ML-based algorithms are
bolded.

FIGURE 13. Point-wise classification result of previous algorithm.

is consistent with the results in Section IV-C3. In particular,
the ANN-RMS and CNN-IV cases show the perfect accuracy
performance, while none of the single-stage algorithms
achieve it.

The average execution times for rule-based, ML-based,
and two-stage algorithms are 0.11 ms, 84 ms, and 32 ms,
respectively. It includes the time from data preprocessing to
the final fault type decision for the whole 52 real fault data.
The rule-based algorithm, which has a simple preprocessing
compared to ML, shows the fastest computation speed,
followed by the proposed two-stage algorithm. The proposed
algorithm only executes the ML stage if the boundary
condition is met, resulting in the second-highest speed.

6) PERFORMANCE OF ANOTHER HYBRID ALGORITHM
To demonstrate the effectiveness of the proposed two-
stage algorithm, we demonstrate another hybrid algorithm’s
performance. To the best of our knowledge, there is no
two-stage classification algorithm. Therefore, we add a
hybrid approach to previous works [34].

The previous work uses single-phase current as an input
feature to determine the fault of each phase, thereby deriving
the final fault type. Leveraging this structural characteristic,
we implement a hybrid approach that horizontally integrates
rule-based and ML-based methods. Specifically, the fault
states of the three phases are derived using the ML-based
method, while the fault state of the neutral current is derived
using a rule-based method because the neutral current shows
the largest discrepancy between simulation data and real data.
As algorithm settings, the ANN-RMS case is chosen for the
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ML-based method, and the rule-based is the same algorithm
used in this paper.

The accuracy of the previous work for real fault data is
0.9038. That is, five cases out of 52 cases are misclassified.
Fig. 13 shows the point-wise classification result of the
previous work. The misclassified data of this algorithm are
the sum of the misclassified data of rule-based and ML-
based algorithms. This result indicates that performance
improvement cannot be expected by simply integrating two
methods, but also shows the effectiveness of the proposed
two-stage algorithm.

V. CONCLUSION
In this work, we proposed a two-stage fault classification
algorithm combining rule-based and machine learning (ML)-
based methods. The two-stage approach overcomes the
limitations of single-stage algorithms: the threshold problem
of the rule-based algorithm and the overfitting problem of
the ML-based algorithms. The proposed algorithm shows
100% classification accuracy for real fault data without using
the real data during the training period. Through diverse
experiments, it is confirmed that the RMS is the most robust
and reliable feature and that NN-based algorithms such as
ANN and CNN outperform tree-based algorithms. Due to the
robust performance of the proposed algorithm, it is expected
that its application in the field can reduce unnecessary
investment and enable efficient operations and management
through core reinforcements.

However, the performance of the proposed two-stage
algorithm cannot be guaranteed for fault data that deviates
significantly from the simulation data. This limitation is a
common problem inherent in all fault classification algo-
rithms. To overcome this, we plan to generate more general
fault data using generative adversarial networks (GAN).
Additionally, we aim to apply the two-stage algorithm to
other fault diagnosis scenarios, such as fault localization and
fault prediction, to enhance the robustness and utility of the
power system.
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