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ABSTRACT In the context of the current rapid development of the financial market, how to establish an
effective stock price index model to avoid investment risks and enhance investment returns for investors
has become a subject of great concern. On this basis, a new method of stock price index prediction
employing deep neural networks is investigated. This paper employs the Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) technique to break down the time series of the
stock index into its constituent Intrinsic Modal Functions (IMFs). According to the similarity of the values
of Fuzzy Entropy (FE), the subsequence is reorganized to become a new sequence, which highlights the
fluctuation state of the stock index at different frequencies and improves the forecasting efficiency. In terms
of a forecasting method, the combination of Temporal Convolutional Network (TCN), Gated Recurrent Unit
(GRU), andConvolutional BlockAttentionModule (CBAM) is used to forecast the reorganized subsequence,
and the final forecast results are reconstructed to obtain the final prediction value. To further evaluate the
performance of the proposed CEEMDAN-TCN-GRU-CBAM model, this paper selects four representative
stock indices in emerging and developed markets while comparing them with the benchmark model. It uses
four evaluation metrics to measure the model performance. The study shows that the proposed model
outperforms other benchmark models has better robustness and universality, and has higher forecasting
accuracy.

INDEX TERMS Stock index forecasting, sequence decomposition, deep learning, combinatorial models.

I. INTRODUCTION
The stockmarket plays a vital role within the financial market
as the main channel for corporate finance and one of the
key indicators for investors to make investments. Stock index
forecasting can help investors develop smarter investment
strategies, including buying stocks, holding stocks, selling
stocks, futures, and other financial assets. Investors can better
manage risk and capture returns by forecasting market trends
and price movements. Stock index forecasting is likewise an
important topic of research in finance, economics, and other
disciplines, and the study of stock index forecasting models
and methods can contribute to the academic community’s in-
depth understanding of the behavior and laws of financial
markets. However, stock index data, as time series, are
characterized by high noise, dynamics, and nonlinearity,
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so it is necessary to find a reasonable stock index feature
extraction method and construct a nonlinear forecasting
model that can describe the complex stock market, to further
reveal the internal operation law of the stock market, better
play the function of the stock market, and prevent and resolve
the financial risks promptly. Nowadays, stock index series
forecasting techniques are classified into three categories:
conventional time series approaches, artificial intelligence
algorithms, and hybrid forecasting methodologies.

Traditional time series methods have a more complete
mathematical and theoretical foundation, and the Autoregres-
sive Integrated Moving Average (ARIMA [1]) model, the
Generalized Autoregressive Conditional Heteroskedasticity
(GARCH [2]) model, the Grey Markov (GM [3]) model, etc.
can rigorously test the constructed models and parameters
and assess the model’s goodness-of-fit. However, these
models usually have strict assumptions on the data, such as
having conditions such as stability. Stock price indices have
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characteristics such as non-stationarity and non-linearity,
which make it difficult for traditional time series methods to
model them effectively, and therefore it is difficult to achieve
high-accuracy forecasts of the stock market.

Artificial intelligence algorithms bypass the limitations
of traditional statistical assumptions and do not require
pre-processing of data. AI models have significant advan-
tages over conventional time series methods in predicting
financial time series data with non-stationary and non-
linear characteristics. As science and technology advance,
conventional machine learning algorithms, like the Artificial
Neural Networks (ANN [4]), Support Vector Machines
(SVM [5]), and Extreme Gradient Boosting (XGBOOST [6])
are challenging to precisely characterize the autocorrelation
between time series, thereby constraining the precision
of time series prediction. In addition, these traditional
AI models often lack the mining of deep structure, thus
limiting the comprehensiveness of time series data analysis
and the precision of prediction. Based on the original AI
techniques, researchers have continuously developed new
deep learning models, such as the Convolutional Neural
Network (CNN [7]), the Long Short-TermMemory Networks
(LSTM [8]), the Gated Recurrent Unit (GRU [9]), and
the Temporal Convolutional Network (TCN [10]), etc., and
used them for financial forecasting, which all have higher
forecasting accuracy compared with traditional models,
providing a new way to analyze and forecast time series data
in the financial field with more effective tools for time series
analysis and forecasting.

Hybrid models have been more widely used by com-
bining models based on a single model with enhanced
feature extraction capabilities and more precise prediction
outcomes.Researchers often combine signal decomposition
algorithms and artificial intelligence models, and the choice
and implementation of signal decomposition algorithms sig-
nificantly influence the predictive performance of the hybrid
model. Compared to the Wavelet Transform (WT [11]),
ordinary Empirical Mode Decomposition (EMD [12]) does
not necessitate the establishment of primitive functions as
required by the transform, conferring a notable advantage
in handling non-smooth and nonlinear complex signals.
In recent years, numerous research endeavors have merged
EMD or its variations including Ensemble Empirical Mode
Decomposition (EEMD [13]), Variational Mode Decomposi-
tion (VMD [14]), and Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN [15]) with
deep learning techniques for forecasting financial time series.
Findings from these studies indicate a substantial enhance-
ment in prediction accuracy when employing hybrid models
integrating signal decomposition algorithms compared to
individual models.

To enhance the prediction precision of stock indices,
this paper introduces a novel stock index prediction
model CEEMDAN-TCN-GRU-CBAM. The model inte-
grates the CEEMDAN decomposition method with the
fuzzy entropy algorithm to construct a hybrid network of

TCN-GRU-CBAM, which can effectively capture both the
local features and long-term dependencies present in the
stock index series data, thereby enhancing the representation
of its feature capabilities, thus enhancing the model’s
robustness and improving its prediction accuracy. This paper
makes the following contributions:

A. IMPROVEMENT OF DECOMPOSITION METHOD
To more effectively capture the features and patterns within
the sequences, this paper utilizes the CEEMDAN decom-
position method for sequence decomposition, calculates the
Fuzzy Entropy (FE), and reorganizes the chaotically similar
components to form a new subsequence. It not only reduces
the size of the subsequent prediction but also avoids the error
superposition caused by multiple predictions.

B. IMPROVEMENT OF PREDICTION METHOD
To effectively improve the prediction precision and robust-
ness, this study adopts the TCN-GRU-CBAM hybrid model,
where TCN extracts the features and patterns in the sequence
data, the inclusion of GRU addresses long-term dependencies
within the time series, while the integration of the attention
mechanism via CBAM enhances the focus on crucial
information within the sequence, ultimately leading to a
notable enhancement in prediction accuracy.

C. COMPARISON OF MODEL UNIVERSALITY
To ascertain the general applicability of the proposed model,
emerging and developed markets serve as the contextual
backdrop. Four key stock markets, namely, the Chinese mar-
ket, the Indianmarket, the Americanmarket, and the Japanese
market are selected for conducting extensive experiments.
The findings consistently demonstrate the paper introduces
a model that exhibits superior forecasting precision and
reliability compared to alternative models.

The rest of the paper’s structure is as follows: Section II
provides a literature review of stock forecasting, including
statistical learning methods, artificial intelligence methods,
and combinatorial modeling forecasting methods. Section III
gives the combination framework of the proposed model.
Section IV describes in detail the methodology used in this
paper. Section V provides the empirical study and analysis,
including data description, data processing, time-step com-
parison, comparison of ablation experiments, comparison of
the combination prediction models, and examination of the
outcomes. SectionVI provides a summary of thewhole paper,
and provides the follow-up research prospects.

II. RELATED WORKS
With the continuous development of financial markets, the
topic of stock index forecasting has received continuous
attention. Various forecasting methods, including statistical
learning methods, artificial intelligence methods, and com-
binatorial modeling methods, have been developed to further
improve the accuracy of financial time series forecasting, help
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investors increase their investment returns, and appropriately
avoid risks.

A. STATISTICAL LEARNING METHODS
Researchers have utilized different data and various methods
to forecast stock prices. Given the nonlinear characteristics
of stock prices, researchers first use the mathematical
techniques of curve fitting, parameter estimation, and residual
analysis to construct models and predict future trends, which
are called statistical learning methods. Wang and Niu [16]
used the seasonal ARIMAmodel to forecast Nasdaq data, and
comparing it with the ARMAmodel, the forecasting effect is
improved. Liu and Hung [17] used distributed GARCH and
asymmetric GARCH to forecast volatility and consider the
more suitable type of GARCH in the case of different data
characteristics. Wang et al. [18] used the GM (1, 1) model to
make short-term market forecasts and propose solutions.

B. ARTIFICIAL INTELLIGENCE METHODS
The stock market has a certain degree of complexity, and
the use of statistical analysis to forecast stock prices requires
a strong assumption base, in the era of big data, the
applicability of such methods has been reduced to a certain
extent. So far, machine learning methods have emerged,
which can model non-stationary and non-linear data and have
some applicability to financial time series data. Vui et al. [19]
investigated various techniques for stock market forecasting
using Artificial Neural Networks (ANN), reviewing the
application in stock market forecasting. PrasadDas and
Padhy [20] used two machine learning techniques, BP and
SVM to forecast the futures trading prices in the Indian
stock market. Jidong and Ran [21] constructed a dynamically
weighted multifactor stock-picking strategy based on the
XGBoost model. Manurung et al. [22] proposed an algorithm
and a model based on the Long Short TermMemory (LSTM)
for forecasting the foreign exchange market in Indonesia and
compared it with the ARIMA model. Rahman et al. [23]
proposed a model for predicting future prices in the stock
market using gated recurrent units (GRUs) neural networks.

C. COMBINATORIAL MODELING METHODS
The effectiveness of hybrid stock index prediction models
has been well-established by a plethora of existing studies,
hybrid stock index prediction model usually uses the signal
decomposition method to preprocess the nonlinear data
to carry out the subsequent prediction work. Wen et al.
[24] employed principal component analysis to isolate key
technical indicators influencing stock prices, conducted data
dimensionality reduction, and subsequently utilized LSTM
for stock price modeling and prediction; Fang et al. [25]
based on GRU, added the VIX information and the minimum
absolute contraction and selection operator (Lasso) method,
a new prediction model was proposed; Yao et al. [26] used
multivariate empirical modal decomposition (MEMD) to put
the output components into the TCN model for prediction,

and the model predicted better; Han and Yu [27] proposed
a Bidirectional Long Short-Term Memory (BiLSTM) model
to predict the future prices of the historical prices of stocks;
Yan [28] combined the AdaBoost feature selection with
a two-layer long and short-term memory based model for
predicting stock index futures prices. Although a single
neural network model is simple, intuitive, easy to understand,
and less computationally expensive, it is prone to overfitting
and underfitting. In response to such problems, research in
sequence prediction tends to combine individual networks
or algorithms while enhancing the interpretability of the
model predictions. Sunny et al. [29] combined RNN models,
i.e., LSTM models and BiLSTM models, with appropriate
hyper-parameter tuning;Mehtab and Sen [30] built regression
models including two-layer CNN and three-layer LSTM
networks to perform multi-step predictions; Jaiswal and
Singh [31] built a hybrid convolutional recurrent modeling
architecture based on two different deep learning models,
CNN and GRU, for stock price prediction; Janssen et al.
[32] improved TCN performance by adding an attention
mechanism to TCN as a way to enhance the effectiveness of
predicting stock prices; Xiaoyan et al. [33] proposed a TCN-
GRU approach for short-term power load forecasting, using
TCN to extract local features of time series and GRU for
nonlinear fitting.

In summary, using the modal decomposition algorithm
to decompose the original stock index series into sub-
series with different time scales can capture and predict
the volatility of the stock index series more accurately.
Still, the complexity of the computation is relatively high.
There is not enough differentiation between the sub-series,
to address this problem, so this paper introduces fuzzy
entropy (FE [34]). It combines it with the CEEMDAN
algorithm, which reconstructs the decomposed series and
reduces the sub-number of sequences. Based on previous
research ideas, this paper utilizes TCN for feature extraction
of stock index sequences, GRU to capture the long-term
dependencies of sub-sequences, and introduces the CBAM
to improve the prediction accuracy based on the TCN-
GRU model, which, compared with the traditional attention
mechanism, CBAM focuses on the different aspects of the
data from the perspectives of both the channel attention and
the spatial attention to effectively improve the prediction
ability of the model [35].

III. COMBINATORIAL MODELING FRAMEWORK
This paper utilizes the CEEMDAN decomposition algorithm
to fully decompose the original series, thereby generating
multiple subsequences across various time scales. Simul-
taneously, the following enhancements are implemented to
overcome the limitations of existing stock price prediction
models relying on modal decomposition. First, for the prob-
lem of large scale of subsequent prediction caused by modal
decomposition, the fuzzy entropy algorithm is introduced,
which not only reduces the scale of subsequent prediction, but
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FIGURE 1. Construction framework of the CEEMDAN-TCN-GRU-CBAM model.

also avoids the superposition of errors brought by multiple
predictions; second, through the use of a combination of
TCN, GRU, and CBAM for learning and prediction of
recombined sequences, it realizes the fuller exploitation of
effective information of discontinuous features among the
data, resulting in more dependable final prediction outcomes.
The results are more reliable. The CEEMDAN-TCN-GRU-
CBAM model mainly contains three parts, and the model
framework is shown in FIGURE 1. The procedure is outlined
as follows:

Step 1: During the data processing phase, firstly, the clos-
ing price data are processed by the CEEMDAN algorithm,
and decomposed into a series of relatively smooth eigenmode
functions and one residual component; secondly, the normal-
ized fuzzy entropy value is calculated, and the sequences are
reorganized according to the magnitude of the fuzzy entropy
value to get a new set of sequences;

Step 2: During the prediction phase, the obtained new
sequences are input into the TCN-GRU-CBAM model
respectively, and the predicted values of different fluctuation
frequency subsequences are obtained;

Step 3: During the result combination phase, the prediction
outcomes of all closing price sub-sequences are aggregated
and reconstructed to derive the final closing price prediction
value.

IV. METHODOLOGY
In order to improve the prediction accuracy of stock indices,
this study proposes a new hybrid prediction model, the
construction of which consists of two parts: data decomposi-
tion and reorganization and combined model prediction. The
data decomposition and restructuring technique is utilized to

distinguish the frequency domain of sequence fluctuations
and reduce the computational complexity, and the proposed
new combined model prediction method fully integrates the
advantages of the sub-models and improves the accuracy of
the model prediction.

A. DATA DISAGGREGATION AND REORGANIZATION
We use decomposition followed by reconstruction for stock
index series prediction, which utilizes the CEEMDAN
method to separate the different frequency components. The
decomposed components contain less noise and allow the
model to more accurately capture the patterns in the data
and make predictions only for the respective components,
which reduces the learning of the noise and reduces the risk of
overfitting. This improves the predictive performance of the
model compared to the direct prediction of the original data.

This subsection describes the research methods specif-
ically used in the data decomposition and reconstruction
part of the model. The CEEMDAN decomposition method
decomposes the original data and is used to distinguish the
sequence fluctuation frequency domain; the fuzzy entropy
algorithm is introduced to reconstruct the decomposed
subsequence to reduce the complexity of the time series. The
combination of the two methods avoids error superposition in
the subsequent prediction.

1) CEEMDAN DECOMPOSITION
To address the issue of modal aliasing present in the
decomposed signal of the EMD algorithm, both EEMD and
CEEMD algorithms mitigate this problem by introducing
pairwise positive and negative Gaussian white noises into
the signal during decomposition. Despite this, there is still
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some remaining white noise within the intrinsic modal
components, which could negatively impact the analysis
and processing of subsequent signals. In response to these
challenges, Torres et al. [36] introduced CEEMDAN based
on the original decomposition method. Compared with the
traditional empirical modal decomposition (EMD), CEEM-
DAN can better separate the frequency intervals between
different modes; unlike the traditional frequency-domain
methods (e.g., Fourier transform) or methods based on fixed
basis functions (e.g., wavelet transform), CEEMDAN is an
adaptive decomposition method. Illustrated in FIGURE 2,
the CEEMDAN decomposition method involves adding IMF
components containing auxiliary noise post-EMD decom-
position, performing an overall averaging calculation after
obtaining the first-order IMF components, and subsequently
acquiring the final first-order IMF components. The proce-
dure is repeated for the residual part, effectively resolving the
issue of transferring and propagating white noise from high-
frequency to low-frequency components.

Define EMDn(·) as the modal component generated at
the nth stage by the EMD algorithm, while the CEEMDAN
algorithm generates the nth modal component denoted as
IMFn, and the algorithm is structured as follows:

The signal f (t) earmarked for decomposition is augmented
with a Gaussian white noise sequence, featuring a mean
value of 0, for n iterations. This process constructs the
sequence f i(t).intended for decomposition across a total of
n experiments.

f i(t) = f (t) + ε0ω0(t), i = 1, 2, . . . , n (1)

where ε0 is the signal-to-noise ratio and ωi(t) is the ith added
white noise sequence.

Utilize the EMD algorithm on each f i(t) for decomposition
to extract the first modal component (IMF) and the initial
unique residual component r1(t):

IMF1(t) =
1
n

n∑
i=1

IMF i1(t) =
1
n
EMD1(f i(t)) (2)

r1(t) = f (t) − IMF1(t) (3)

The residual component obtained after decomposition
is added to the noise to continue applying EMD for
decomposition:

IMFk (t) =
1
n

n∑
i=1

EMD1(rk−1(t) + εk−1EMDk−1(ωi(t))),

k = 2, 3, . . . , n (4)

rk (t) = rk−1(t) − IMFk (t) (5)

Terminate the CEEMDANalgorithmwhen the residuals do
not exceed two extreme points and the decomposition cannot
be continued. At this point, the residual trend is obvious and
direct, and the original signal sequence is disassembled into
n modal components along with a residual term R(t):

f (t) =

n∑
k=1

IMFk (t) + R(t) (6)

2) FUZZY ENTROPY
FE, introduced by Chen et al. [37] in 2007, was ini-
tially applied in myoelectric model processing and later
adopted in various domains such as fault diagnosis and
image processing. It is an enhanced method derived from
Approximate Entropy and Sample Entropy, designed to
gauge the likelihood of generating a new pattern within
a time series as its dimensionality changes. FE enhances
Sample Entropy by incorporating an exponential function
called the fuzzy affiliation function. The calculation of fuzzy
entropy is outlined as follows: For a time series signal
{u(i) : 1 ≤ i ≤ N } of length N, given m, form a vector
sequence

{
Xmi , i = 1, . . . ,N − m+ 1

}
as follows:

Xmi = {u(i), u(i+ 1), . . . , u(i+ m− 1)} − u0(i) (7)

where u0(i) denotes the average value of m successive x(i):

u0(i) =
1
m

m−1∑
j=0

u(i+ j) (8)

Define dmij as the maximum difference value between the
corresponding elements of the twom-dimensional vectorsXmi
and Xmj :

dmij = d
[
Xmi ,Xmj

]
= max

k∈(0,m−1)
(|(u(i+ k) − u0(i)) − (u(j+ k)− u0(j))|)

(9)

where, i, j = 1, 2, . . . ,N − m, i ̸= j.
Calculate the similarity Dmij : of X

m
i and Xmj based on the

fuzzy function:

Dmij = µ(dmij , n, r) = exp(−(
dmij
r
)n) (10)

hereµ(dmij , n, r) is the exponential function, and n and r are
the gradient and width of the exponential function boundary,
respectively.

Construct the relation dimension8m(n, r) inm dimensions:

8m(n, r) =
1

N − m

N−m∑
i=1

(
1

N − m− 1

N−m∑
j=1,j̸=i

Dmij ) (11)

Similarly, construct m+1 dimensional vectors according to
the above description:

8m+1(n, r) =
1

N − m

N−m∑
i=1

(
1

N − m− 1

N−m∑
j=1,j̸=i

Dm+1
ij ) (12)

Define the fuzzy entropy as:

FE(m, n, r) = lim
N→∞

(ln8m(n, r) − ln8m+1(n, r)) (13)

The computation of fuzzy entropy entails the selection of
four parameters: the data length N, the embedding dimension
m, and the boundary-related parameters r and n. Typically,
an embedding dimension of m = 2 is employed. The
parameter r is the breadth of the fuzzy function boundary,
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FIGURE 2. Specific steps of CEEMDAN decomposition.

often ranging between 0.1 and 0.25 times the standard
deviation of the sequence (SD(x)). Meanwhile, n dictates
the slope of the similarity tolerance boundary; larger values
of n yield steeper gradients. Additionally, n functions as
a weighting factor in determining the similarity among
fuzzy entropy vectors. For capturing intricate details, smaller
integer values like 2 or 3 are frequently employed during the
computational process.

B. FORECASTING METHODOLOGY
This subsection describes the deep learning techniques
and attention mechanisms used in combinatorial predictive
modeling. Temporal convolutional networks are used to
extract features and patterns in the time series, which are
specifically introduced in two parts: causal convolution
and null convolution; GRU has a simpler model structure
and requires fewer parameter settings than LSTM; and the
introduction of the CBAM attention module enhances the
attention to important information, which is introduced in
two aspects: spatial attention and spatial attention, which are
introduced in this attention mechanism.

1) TEMPORAL CONVOLUTIONAL NETWORK
In this paper, we utilize TCN to deal with the long-term
dependency of time series, the convolution in TCN supports
parallel computation and has more efficient computational
efficiency compared to RNN and LSTM. It can flexibly
adjust the sensory field and can capture complex patterns and
features in the data for subsequent modeling prediction.

TCN [38] adopts the idea of CNN and uses convolutional
operations to capture local patterns and long-term depen-
dencies in the input sequence, which avoids the problems
of gradient vanishing and gradient explosion in RNNs, and
has a longer ‘‘memory’’, which makes it easier to compute
in parallel. It combines causal convolution, inflationary
convolution, and residual network structure to make the
receptive field larger and better modeling of time series data.

The causal convolution structure, as depicted in FIGURE3,
operates under strict time constraints. Within this framework,

the value of the preceding layer at time ‘t’ is determined
solely by the value of the subsequent layer at time ‘t’ and
earlier instances. Unlike conventional convolutional neural
networks, causal convolution lacks access to future data, thus
embodying a unidirectional design. Consequently, it earns its
name ‘‘causal convolution’’.

FIGURE 3. Structure of the causal convolution.

The modeling capacity of a single causal convolution is
constrained by the size of the convolution kernel, limiting
its ability to capture longer dependencies. To address this
limitation, researchers have introduced inflated convolution.
This is shown in FIGURE 4. Inflated convolution enables
spaced sampling of the input, with the sampling rate
determined by parameter d in FIGURE 4. A value of d
= 1 implies that every point is sampled as input, while
d = 2 indicates that every 2 points are sampled from the
input. Typically, as the layer increases, the value of d also
increases. Consequently, inflated convolution facilitates the
exponential expansion of the effective window size as the
number of layers increases. Essentially, the convolutional
network achieves a broad sensory field using relatively few
layers.

The residual module improves network training and
gradient propagation by introducing residual connections.
Consider x as the input value within the residual module, let
F(·) denote the mapping function whose output is added to
the input value x of the residual module. The output value
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FIGURE 4. Structure of the dilated convolution.

generated by the residual module can be represented as:

o = Activation(x + F(x)) (14)

This enables layers to focus on learning adjustments to
the identity mapping rather than the entire transformation,
favoring deeper nets. The receptive field of a TCN is
contingent upon the network’s depth (n), filter size (k), and
expansion factor (d). Ensuring stability often requires larger
and deeper TCNs. Each layer of the network comprises
multiple filters for feature extraction. Hence, rather than
conventional convolutional layers, a generic residual module
is employed in the TCN model, as illustrated in FIGURE 5.

FIGURE 5. Residual module of the TCN model.

2) GATED RECURRENT UNIT
GRU originated from Chung et al. [39] in 2014. It addresses
issues like gradient vanishing and explosion encountered in
standard RNNs, enhancing the model’s capability to capture
long-term dependencies. Compared to the LSTM model,
GRU simplifies the architecture by consolidating the three
gates into two: the update gate and the reset gate. This
streamlining reduces the model’s complexity, trims down
the number of trainable parameters, accelerates fitting, and
shortens training durations.

The GRU model’s structure is depicted in FIGURE 6,
where ht−1 denotes the previous state, h̃t denotes the

candidate state, zt denotes the update gate, which controls
how much information is retained by ht from ht−1 as well
as the amount of information to be received, rt represents
the reset gate, determining whether information from the
previous state should be retained or discarded, and σ is the
activation function.

FIGURE 6. GRU model structure.

3) CONVOLUTIONAL BLOCK ATTENTION MODULE
CBAM was proposed by Woo et al. [40] to enhance the
degree of attention of CNN to different regions in an image
to improve the performance of the network, which was
later applied in the field of sequence prediction. CBAM
consists of two components, the spatial attention module and
the channel attention module, which can focus on the key
features, ignore the useless features, and focus on the inputs in
a global and localized way different aspects of the data. This
adaptable and streamlined module is designed to seamlessly
integrate into different convolutional neural networks for end-
to-end training. Illustrated in FIGURE 7 and FIGURE 8,
when provided with a feature layer F , the channel attention
module computes a one-dimensional channel attention vector
Mc, indicating the relevance of each channel. Similarly,
the spatial attention model computes a three-dimensional
spatial attention map Ms, highlighting significant locations
of various attention. The entire procedure unfolds as follows:

F ′
= Mc(F) ⊗ F (15)

F ′′
= Ms(F ′) ⊗ F ′ (16)

where ⊗ notes element-by-element multiplication, the chan-
nel attention module directs its attention to significant aspects
within the input data. CBAM comprises two pools: MaxPool
and AvgPool. The outputs from these pools are separately
processed through the same fully connected layer. The
resulting outcomes are then combined and normalized to
yield the weight matrix across the channels. FIGURE 7
illustrates the configuration of the channel attention module.

Mc(F) = σ (MLP(Avgpool(F)) +MLP(Maxpool(F))) (17)

The spatial attention module identifies the positional
information that holds significance, acting as a complement
to the channel attention, as depicted in FIGURE 8. In the
input feature layer, both the maximum and average values
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are computed across the channels for each feature point.
Subsequently, these two results are concatenated together.

Ms(F) = σ (Conv([AvgPool(F);MaxPool(F)])) (18)

where σ (·) represents the Sigmoid function, MaxPool(·)
represents maximum pooling, AvgPool(·) represents average
pooling, MLP(·) denotes multilayer perceptron (MLP), and
Conv(·) denotes the 3D convolutional layer.

FIGURE 7. Channel attention module.

FIGURE 8. Spatial attention module.

4) TCN-GRU-CBAM COMBINED PREDICTION MODELS
Different network architectures possess distinct advantages
in capturing data features, and a judicious combination
of these structures can enhance the model’s prediction
accuracy. The integrated prediction model employs TCNs to
capture information across various time scales, effectively
extracting both local patterns and long-term dependencies
within the time series data, with the added benefit of
efficient parallelization. By incorporating the GRU network,
the model further extracts temporal correlations within the
features, mitigating the issue of gradient vanishing inherent
in recurrent neural networks. Additionally, the introduction of
the CBAM attention mechanism guides the model to focus on
crucial information within the sequence, thereby enhancing
the model’s capability to predict sequence features. Within
the CBAM module, a 1-dimensional convolutional layer
is included at the module’s input, where the input feature
layer is first multiplied by the output weight of the channel
mechanism, followed by multiplication with the output
weight of the spatial mechanism. The combination of these
two components is employed to capture important feature
information within the sequence. Refer to FIGURE 9 for a
detailed depiction of the model structure.

C. MEASUREMENT METRICS
In terms of model evaluation, this paper chooses four
indicators [41], namely, the coefficient of determination R2,

FIGURE 9. Structure of the TCN-GRU-CBAM model.

the root mean square error (RMSE), the mean absolute error
(MAE), and the mean absolute percentage error (MAPE),
to test the performance of the model, and the formulas for
these indicators are as follows. Where: ŷi is the predicted
value, yi is the initial actual value, n is the total count of
forecasted values, and ȳ is the mean of the initial values.

R2(y, ŷ) = 1 −

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
(19)

RMSE(y, ŷ) =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (20)

MAE(y, ŷ) =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (21)

MAPE(y, ŷ) =
100%
n

n∑
i=1

∣∣∣∣ yi − ŷi
yi

∣∣∣∣ (22)

R2 represents the degree of agreement between the model
and the data, and as the value approaches 1, the model is
more accurately fitted. The RMSE and MAE values signify
the discrepancy between predicted and actual values, where
smaller values suggest enhanced prediction accuracy within
the model. Similarly, a lower MAPE value also indicates
better predictive accuracy.

V. EMPIRICAL ANALYSIS
This section outlines the dataset, the model evaluation
metrics, the experimental analysis of comparative models,
and the outcomes. Prediction studies are conducted using
the TensorFlow deep learning framework. To mitigate the
influence of random weight initialization on the prediction
outcomes, this paper repeats the experiment several times to
get the final prediction results.

A. DATA DESCRIPTION
Emerging markets and developed markets have different
economic and market characteristics, and stock indices under
different markets have different data characteristics; stock
indices under emerging markets have high volatility, while
stock indices in underdeveloped markets have relatively
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TABLE 1. Description of the stock index dataset.

FIGURE 10. Trends in closing price volatility of equity indices.

smooth data. Therefore, the four most representative stock
indices in developed and emerging markets that can capture
the overarching shifts of their markets are selected as the
research objects to test the universality and accuracy of the
proposed model in this paper. The dataset includes SSEC
(China), BSESN (India), SPX500 (America), and N225
(Japan), which are described in TABLE 1. In this paper,
the closing prices of the four stock indices are used as
the datasets for the time interval from August 2, 2013,
to November 10, 2023, and the data are obtained from the
website (http://cn.investing.com). Each stock index dataset is
split into two segments: the training set, comprising 80% of
the dataset, and the test set, comprising the remaining 20%,
which is used for model training and performance testing,
respectively. TABLE 1 lists the details of all the datasets. The
closing price fluctuation trend of each stock index is shown
in FIGURE 10.

After the decomposition algorithm obtains the subse-
quence, to accelerate the neural network training process and
mitigate the impact of sequence dimensions on the results,
it is essential to standardize the subsequence. This paper
employs the maximum-minimum normalization technique,
which scales the data to the range [0, 1]. The normalization
formula is expressed as follows:

x ′
t =

xt − min
max−min

(23)

TABLE 2 demonstrates the specifics of the descriptive
statistics for the four stock indexes. The normality test using
the JB (Jarque-Bera) statistic shows that the four stock index
data reject the original hypothesis and the series do not
follow a normal distribution; the autocorrelation of the series
is assessed using the LB (Ljung-Box) statistic. The results
indicate that all p-values are below 0.05 at the highest 30th
order, rejecting the original hypothesis, and the data have a
strong autocorrelation; in this paper, the Augmented Dickey-
Fuller (ADF) test is additionally employed to evaluate the
data’s stationarity, as depicted in TABLE 3, the p-value for
each stock index dataset exceeds 0.05, and the test value of
ADF is −2.7565, −0.1953, −0.7015, −1.0438, respectively,
which surpass the critical test value at various significance
levels, indicating that the time series under investigation lack
smoothness. To summarize, the stock index series data exhibit
non-stationarity and are characterized by significant noise,
so the data is decomposed to continue with the subsequent
forecasting.

B. DATA DECOMPOSITION AND REORGANIZATION
In this paper, we use Python 3.11.5 and the CEEMDAN
function within the EMD-signal 1.0.0 module to decompose
and reorganize the stock price indices from two perspectives,
emerging markets and developed markets, SSEC and BSESN
for emerging markets, and SPX500 and N225 for developed
markets, and the decomposition outcomes of the stock indices
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TABLE 2. Descriptive statistics.

TABLE 3. ADF test.

are illustrated in FIGURE 11, from top to bottom, as follows
raw data, 8 IMF components and 1 residual component.
The horizontal axis represents the quantity of stock index
closing price time series, while the vertical axis represents
values in dollars. Assuming consecutive closing prices for
each trading day and disregarding intervals between trading
days, from IMF0-IMF7 to the residual, both the frequency
and complexity of the sequence gradually diminish. The trend
of change is more visually apparent compared to the initial
sequence, making the general price trend clearer.

The sequence obtained after CEEMDAN decomposition is
normalized, and then the fuzzy entropy is calculated to assess
the intricacy of the subsequence, FIGURE 12 shows the fuzzy
entropy of the decomposed elements under different data sets.
Grouping time series with comparable fuzzy entropy values
can streamline computation, enhance modeling efficiency,
and mitigate overfitting concerns. Taking the SSEC dataset
as an example, the decomposed sequences are reorganized
according to the fuzzy entropy results, and the new
sequence is obtained as {imf0, imf1, imf2+imf3, imf4+imf5,
imf6+imf7+imf8}, using this recombination sequence for
subsequent forecasting. The recombination series for the four
stock indices are shown in FIGURE 13, where the frequency
of fluctuations in the different sub-sequences is visible.

C. TIME STEP COMPARISON
The time step size immediately impacts the model’s capacity
to capture changes across various time scales. A time
step that is too small may result in longer training times,
increased computational expenses, and a heightened risk of
overfitting. Conversely, if the time step is excessively large,
the model might fail to detect significant temporal patterns,
leading to the loss of information and reduced prediction

accuracy. Hence, selecting an appropriate time step is crucial.
In the experiments, time steps of 5 d, 10 d, 15 d, and
20 d were utilized. FIGURE 14 illustrates the performance
evaluation outcomes of the TCN-GRU-CBAM model across
varying time steps. Based on the evaluation outcomes for
MAE, MAPE, RMSE, and R2, it’s evident that the model
achieves superior prediction performance when the time step
is configured to 10 d. Therefore, the time input steps of the
models in this paper are all set to 10d.

D. TCN-GRU-CBAM MODEL PREDICTION
To illustrate the superior performance of the combined TCN-
GRU-CBAM model, the model proposed in this paper is
contrasted with other benchmark models. The experiments
are conducted using 50 epochs with a batch size of 32,
and the training set and test set share are 80% and 20%,
respectively. In addition, the parameter settings of both the
proposed model and the comparison model are fine-tuned
using the grid search algorithm, and the ultimate experimental
parameters of the model are presented in TABLE 4, and the
parameters of the comparison model are consistent with those
of the proposed model.

TABLE 4. Parameters of the TCN-GRU-CBAM model.

The results of the comparison experiments based on
different datasets are displayed in TABLE 5, TABLE 6,
TABLE 7, and TABLE 8, the prediction results of BPNN and
RNN in the SSEC dataset are the same, and the prediction
results of LSTM and GRU are better than those of BPNN and
RNN, the combined model, which integrates a single model
with TCN, demonstrates superior prediction results compared
to standalone models. Additionally, the performance of the
TCN-GRU combined model surpasses that of other hybrid
models. The TCN-GRU model is based on the functionality
of the CBAM module, and comparing the results of TCN-
GRU and TCN-GRU-CBAM, the MAPE value of TCN-GRU
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FIGURE 11. Decomposition results for stock index series.

is 1.0679, the RMSE value is 41.6028, the MAE value is
34.4503, and the R2 value is 0.9276; TCN-GRU-CBAM’s
MAPE value is 0.9855, the RMSE value is 41.6028, the
MAE value is 32.0122, and the R2 value is 0.9592, which
shows that the prediction on the original dataset is better
than the TCN-GRU model for TCN-GRU-CBAM. On the
SPX500 stock index dataset, the MAPE for TCN-GRU-
CBAM value is 0.9746, the RMSE value is 52.1874, the
MAE value is 40.4149, and the R2 value is 0.9658, which
shows that this model exhibits the smallest error and the
highest level of fit in contrast with alternative models.
In summary, for forecasting stock index data with diverse

characteristics, the TCN-GRU-CBAM model exhibits the
most accurate prediction performance, which indicates that
this prediction model has a certain degree of universality and
robustness.

Comparing the TCN-GRU-CBAMprediction performance
on different datasets in Tables 5-Table 8, namely, the bolded
part of the table, the values of RMSE and MAE are also
similar due to the similar data scales of SSEC and SPX500,
and the similar data scales of BSESN and N225, respectively.
The performance of the model is improved compared with the
benchmark model. SPX500 shows a long-term stable growth
trend, SSEC,N225, andBSESN are all characterized by sharp
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FIGURE 12. Fuzzy entropy corresponding to each component under different data sets.

FIGURE 13. Recombination sequences on each dataset.

peaks and thick tails with bias, and the performance of the
proposed model in this paper is better than the comparison
model under different data characteristics.

The prediction results of all comparison models on
different datasets are depicted in FIGURE 15, FIGURE 16,
FIGURE 17, and FIGURE 18. The blue curves denote the
actual values, while the orange curves represent the predicted
values. It is evident that there is a lag in the prediction results

of BPNN, RNN, LSTM, and GRU, indicating that the models
have a delay in capturing and adapting to new information,
and are unable to extract information pertinent to forthcoming
trends from the data. By adding TCN to a single model for
feature extraction, the lag is mitigated, and the combined
model predictions fit the actual values better compared to
a single model. Adding the CBAM module to TCN-GRU
effectively diminishes the delay in model prediction, and the
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FIGURE 14. Comparison of model performance tests with different time
steps.

TABLE 5. Comparative experiments of the TCN-GRU-CBAM model based on the SSEC dataset.

TABLE 6. Comparative experiments of the TCN-GRU-CBAM model based on the BSESN dataset.

fitting effect is greatly improved. On different stock index
datasets, the prediction and fitting effect of the TCN-GRU-
CBAM model outperforms other comparative models, but it
is not able to achieve accurate prediction in the face of some

mutation points, so it is necessary to decompose the data
first, and then carry out subsequent prediction, to improve
the model prediction effect, and to improve the model’s
predictive capability.
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TABLE 7. Comparative experiments of the TCN-GRU-CBAM model based on the SPX500 dataset.

TABLE 8. Comparative experiments of the TCN-GRU-CBAM model based on the N225 dataset.

FIGURE 15. Plot comparing predicted and actual values for the SSEC dataset.

E. COMBINED MODEL PREDICTIONS
To confirm the effectiveness of each constituent module in
the proposed approach, this paper utilizes the CEEMDAN
decomposition to reorganize the subsequence for ablation
experiments, taking the SSEC dataset as an example.
First, the TCN model is utilized for forecasting alone;
second, the GRU model is utilized for forecasting alone;
third, the combined model of TCN and GRU is utilized for
forecasting the stock index series; fourth, the combination of

TCN and CBAM modules is utilized for forecasting; fifth,
the combination of GRU and CBAM attention modules is
utilized for forecasting; and lastly, it refers to the combined
forecastingmodel proposed in this paper, TCN-GRU-CBAM.
Performing the above ablation experiments allows us to verify
the extent to which each module in the combined model
contributes to the prediction performance. TABLE 9 quan-
titatively gives the evaluation indicators of the six models on
the SSEC dataset, and the model proposed in this paper has a
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FIGURE 16. Plot comparing predicted and actual values for the BSESN dataset.

FIGURE 17. Plot comparing predicted and actual values for the SPX500 dataset.

MAPE value of 0.3784, an RMSE value of 15.1367, an MAE
value of 12.2692, and an R2 value of 0.9920, which are all
the better than the single and combined models. This ablation
experiment demonstrates that the combined TCN-GRU
model outperforms individual models in terms of prediction
accuracy by utilizing TCN to capture the local patterns
and long-term dependencies, and GRU to extract temporal
correlations in the features. TCN-CBAM and GRU-CBAM
experimental results indicate that the addition of the CBAM
attention module improves prediction performance compared
to models without it, suggesting that the CBAM attention
module can extract crucial information from sequences,
enhancing predictive capabilities. The experimental results
of TCN-GRU-CBAM demonstrate that the proposed model
achieves the best results in all evaluation metrics, effectively
combining the advantages of individual models.

FIGURE 19 illustrates the contrast between the predictive
outcomes of the six models and the factual values in the
ablation trials, where blue signifies the actual values and
dark red represents the predicted values of the TCN-GRU-
CBAM model. The graph highlights the superior alignment
of the proposed predictive model with the actual values,
consistently outperforming other models. This underscores
the model’s comprehensive amalgamation of module advan-
tages within the integrated framework, leading to enhanced
predictive outcomes.

It is known that the predictive efficacy of the TCN-GRU-
CBAM model surpasses that of both individual and amalga-
mated models, so the TCN-GRU-CBAMmodel is used as the
model for the prediction part, which is utilized to assess the
efficacy of the integrated model in combination with different
decomposition methods and to make a prediction by using
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FIGURE 18. Plot comparing predicted and actual values for the N225 dataset.

TABLE 9. Prediction efficacy of the integrated model.

FIGURE 19. Comparison of predicted results from ablation experiments.

the subsequence data, and only the decomposition algorithms
are changed in this part, which includes the EMD, EEMD,
and VMD, CEEMDAN, the four decomposition algorithms,
andCEEMDANcombinedwith fuzzy entropy. The predictive
outcomes of the combined model under varied markets are
displayed in FIGURE 20, FIGURE 21, FIGURE 22, and

FIGURE 23, and the comparison of their performance tests is
displayed in TABLE 10. Taking SSEC in emergingmarkets as
an example, the MAPE value of the model proposed in this
paper is 0.3784, the RMSE value is 15.1367, and the MAE
value is 12.2692, all of which are lower than that of the hybrid
model consisting of other decomposition methods, and with
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TABLE 10. Comparison of portfolio model forecasts under emerging markets.

FIGURE 20. Comparison across all models using the SSEC dataset.

an R2 value of 0.9920, the fitting effect is also better than that
of other combination models; taking SPX500 in developed
markets as an example, the model proposed in this paper has
a MAPE value of 0.9746, an RMSE value of 52.1874, and
an MAE value of 40.4149, all of which are better than the
other combination models in terms of model performance
ability, and an R2 value of 0.9658, which is a certain degree
of improvement in model fitting ability.

The impact of the model performance in terms of
the characteristics of different stock indices is analyzed.
Figures 20-23 show the prediction effect of four stock index

sequences, red represents the predicted value of the proposed
model, and blue represents the original value, it can be seen
that the original value of the four sequences is very close
to the predicted value, which indicates that the proposed
model in this paper can get good prediction effect on different
stock index data. Table 10 shows the performance of different
stock indexes on the model performance, the bolded words
represent the optimal effect, the prediction effect of the model
proposed in this paper is better than the combination of other
decomposition methods and the prediction method proposed
in this paper. In the model proposed in this paper, the MAPE

122540 VOLUME 12, 2024



S. Li et al.: Stock Index Forecasting Using a Novel Integrated Model

FIGURE 21. Comparison across all models using the BSESN dataset.

FIGURE 22. Comparison across all models using the SPX500 dataset.

FIGURE 23. Comparison across all models using the N225 dataset.

values of the two stock index series of emerging markets are
0.3784 and 0.3806, which are not much different from each
other, while the values of RMSE are 15.1367 and 279.0546,
and the values of MAE are 12.2692 and 227.9442, which
occurs because of the difference in the data scales of the two

stock indices but the errors are all reduced when compared
with the comparison model, the errors are reduced. The
RMSE values of SPX500 and N225 in developed markets are
52.1874 and 326.9706, and theMAPE values are 40.4149 and
263.5874, respectively. Combined with Fig. 10, it can be seen
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that the different data scales and volatility have an impact on
the performance of the model, but the predictive performance
of the model proposed in this paper is improved compared to
the other models over different data.

The experimental results indicate that the predictive
performance of the decomposition using the CEEMDAN
algorithm is better, and the reorganization of the sequences
using fuzzy entropy on top of the CEEMDAN algorithm is a
practice that further improves the predictive efficiency of the
model. The predictive efficiency of this model is improved
under different markets, and it has a certain degree of
universality and stability. The model maximizes the benefits
of the sub-models and the prediction results are improved on
different stock index datasets. The combination prediction
models based on the decomposition algorithm are all able
to forecast the forthcoming stock index trends better, but
in comparison to other combination models, the forecasted
values from the model introduced in this paper closely align
with the actual trend of the closing price, indicating higher
accuracy.

VI. CONCLUSION
As artificial intelligence technology continues to expand
and evolve, the concept of ‘‘decomposition forecasting’’
has surged in popularity for analyzing time series data,
particularly within the domain of stock index prediction.
This approach holds great practical significance given the
profound impact of stock markets on the broader economy
and people’s lives.

This paper introduces a novel stock index portfolio
prediction model that leverages modal decomposition and
deep learning techniques to enhance the accuracy of stock
index predictions. In terms of modeling, the prediction
accuracy is improved after two stages of improvement; in
terms of data selection, four stocks representative of emerging
and developed markets are studied, namely, SSEC, BSESN,
SPX500, and N225.

In this paper, extensive experimentation validates the
efficacy of the proposed hybrid model. Here are the findings
from the experimental analysis: firstly, the predictive per-
formance of the proposed hybrid model TCN-GRU-CBAM
is verified. Through comparisons with various fundamental
models such as BPNN, RNN, LSTM, etc., the comprehen-
sive evaluation demonstrates the robustness of the hybrid
model proposed in this paper against noise interference, its
efficacy in information extraction, and its superior predictive
performance. Secondly, ablation experiments are carried
out using the recombined subsequence after CEEMDAN
decomposition to the efficacy of individual modules within
the proposedmethodology outlined in this paper. Finally, four
distinct decomposition approaches, EMD, EEMD,VMD, and
CEEMDAN, are combined with the model for experiments,
and findings indicate that the prediction model utilizing the
CEEMDAN decomposition method yields the most effective
results. Moreover, integrating the CBAM attention module
further enhances the predictive efficiency of the model, and

the combined model CEEMDAN-TCN-GRU-CBAM utilizes
the advantages of each constituent module to advantages
to obtain more accurate prediction results. These results
robustly showcase the enhanced prediction accuracy of the
model for stock indices and highlight its practical value in
stock index series prediction.

Although this paper has a certain degree of novelty and
contribution, the model proposed in this paper still has some
limitations. For example, the model’s performance is more
sensitive to selecting hyperparameters, and an empirical and
tuning process needs to be utilized to select appropriate
hyperparameters. Other decomposition methods can also be
tried in data decomposition, and optimization algorithms can
be used to optimize the model parameters to further enhance
the noise reduction ability of the model. In the prediction
model, other attention modules can be selected to improve the
prediction ability. In addition, the application of the model
can be extended to wind speed prediction, electric charge
prediction, and traffic flow prediction in the future.
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