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ABSTRACT Ubiquitous computing is a key component of future wireless communications and Internet of
Things (IoT) applications. By using distributed fog computing, data obtained from sensors can be timely
processed and different tasks can be computed efficiently. As a result, IoT applications can make timely
decisions and improve application reliability. In this paper, we consider a Partial Offloading to Multiple
Helper (POMH) scenario where IoT device divide their tasks into subtasks that can be computed in a parallel
manner. We propose a modified many-to-many matching-based task offloading algorithm to reduce the task
latency in a POMH scenario. To overcome the externalities due to the dynamic preference profile of fog
nodes, an intelligent proposal-based scheme is also introduced. The performance analysis of the proposed
techniques shows that they provide quicker task computation as compared to different techniques available
in the literature.

INDEX TERMS Internet of Things, computing, fog networks.

I. INTRODUCTION
Internet of Things (IoT) technologies along with wireless
communication systems, data communications, Artificial
Intelligence (AI), and learning techniques have enabled
efficient machine-to-machine communications. Because of
these advancements, our lifestyle has evolved and now,
we desire to access all information and control all devices
online, via a single device for which, more and more devices
are getting connected to the Internet at a very rapid pace [1],
[2], [3], [4].

For a long, cloud computing has been at the centre
stage to serve IoT technologies, but cloud computing
being a centralized solution, will be inefficient to meet
extreme low-latency requirements of future applications.
In comparison, fog computing is the decentralized solution,
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that brings computing and storage resources within proximity
of the IoT devices [5], [6]. This enables the devices to offload
their computation tasks and cache data onto these fog nodes
with improved latency and low energy requirements [7], [8].

In fog computing, the challenges related to computational
offloading and resource allocation have been under the spot-
light for several years. Their research is mostly focused on
the objective functions of improving task latency or achieving
energy efficiency. These objectives are achieved, mostly by
managing the offloading technique through tailored network
policies. These offloading techniques carefully select the size
of offloading task and the location where to offload it, that
best suits achieving its desired objectives. When taking the
offloading decision, the whole task can be considered as
an entity or it may be divided into a variable number of
sub-tasks according to the offloading technique, also called
binary offloading problem and partial offloading problem,
respectively.
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Partial offloading is a complex process, based on multiple
interlinked factors, such as the user’s class of service, link
quality, and available computation and power resources [9].
Partial offloading can be done only with that data/ task/
application, which can be decomposed into smaller parts, e.g.,
face recognition and image processing [10]. If we consider
a modular application, whose modules can be processed
individually at different devices, then the job of offloading
technique is to decide which module to execute locally and
which one to offload. and most importantly, where to offload
the module. Partial offloading can be further classified
according to the number of helping devices contributing
to completing the task. If the sub-tasks are offloaded to a
single device, then it is called Partial Offloading with Single
Helper (POSH) and when the sub-tasks use multiple helper
devices for the execution of the tasks, then it is called Partial
Offloading with Many Helpers (POMH).

In POMH, there are multiple partitions of a task. In most
cases, one of these sub-tasks is processed on the device itself
locally whereas the rest of the subtasks are computed at
multiple helper nodes/ devices. These sub-tasks are processed
in parallel in these devices, which greatly reduces the task
latency. The offloading decision in POMH depends upon
multiple interlinked factors, which need to be balanced
such that, the desired objective functions are met with opti-
mal utilization of available network resources. Conflicting
user requirements, competition for computation and energy
resources among users, and, interference in communication
channels are some of the contributing factors, which dictate
POMH resource allocation decisions.

Recently, matching theory has been in the spotlight to
model and solve a large class of tasks offloading problems.
It is a powerful mathematical tool with low complexity that
can make offloading decisions based on strict preference
orders for players of the opposite side. It produces stable
matching assignments, in which every player is content and
has no motivation to get a different allocation. Matching
theory with its attractive features has not been able to gain
much attention from POMH researchers.

We could only find the work of Zu et al. in [11], which
uses matching theory for POMH. However, this work did
not incorporate externalities in the matching process, without
which, we believe that matching theory cannot be used for
POMH-based allocation of computational resources.

In POMH, each subtask is processed at a different
location. The sub-task that takes the longest time to compute
defines the overall task delay. For efficient utilization of
allocated resources, subtasks computation must be finished
concurrently. This necessitates adjustment of sub-task sizes
based on multiple inter-dependent factors like (a) task
size, (b) computation capability of offloading and offloaded
devices, (c) number of helper devices that have committed
their resources to compute the task, etc. This implies that
during the matching process, subtask sizes are changed at
each step of the allocation. As a result, related time delay
calculations of helper devices for offloading device tasks

change the preference profile of helper devices. This is a case
of externalities in matching theory, where preference profiles
of helper devices keep on changing. As a result, matching
at one helper device affects the matching of all other helper
devices.

In this paper, we have developed a novel many-to-many
Externalities-based Matching Algorithm (EMA), which is
specifically designed to solve externalities problems associ-
ated with POMH-based task offloading. EMA always makes
stable matching assignments.

To the best of our knowledge, we are the first ones to use
the many-to-many matching technique with externalities to
solve the resource allocation problem in the POMH scenario.
The main contributions of this paper can be summarized as:

1) We formulate the resource allocation problem as a
many-to-many matching problem, and ensure that
subtasks complete their execution at the same time, thus
enhancing the utilization of allocated resources.

2) We propose a novelmany-to-manymatching algorithm,
specially designed to address externalities associated
with the POMH problem.

3) Our literature review suggests that we are the first
ones to use the many-to-many matching technique with
externalities to solve the POMH problem.

The paper organization is as follows. Section II presents
a review of the current work in the literature. Section III
describes the system model and Section IV explains the
proposed technique. Details about results and relevant
discussion is given in Section V. Conclusions are highlighted
in Section VI.

II. LITERATURE REVIEW
Task offloading has been a major challenge in fog
computing-based IoT networks and several works have
addressed this problem.

In [11], a stable matching-based technique known as
SMETO is proposed to minimize energy consumption
during the task offloading process. A many-to-one matching
algorithm is proposed to allocate fog node resources to the
tasks. The preference list is developed based on two metrics,
the first measures the service level that can be provided
to the tasks, and the second is the energy consumption for
computation of the task. The work proposed two algorithms,
the first is based on Deferred Acceptance. The second
algorithm assigns several tasks to the helper nodes based
on energy ranking. Results show improved energy efficiency
achieved by the proposed technique.

The work in [12] proposes an algorithm to achieve energy
efficiency while maintaining fairness in the network. The
focus of the work is on battery-operated fog nodes. The
work considers the energy consumption history of fog nodes,
current task energy, and priority for making offloading
decisions. An optimization algorithm is used to minimize
energy consumption for task offloading. Results indicate that
the proposed technique reduces the energy consumption of
the fog nodes and achieves fair task offloading.
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In [13], a fog task offloading algorithm known as POST
is proposed. The work considers splitting tasks into subtasks
and converts this problem into a Nash equilibrium problem.
Gauss-Seidel algorithm is used to find out task offloading
decision that meets Nash equilibrium criteria. The work
shows improvement in terms of task delay.

In [14], a many-to-one matching algorithm is used for
offloading tasks on different fog nodes. It is considered that
the CPU of each fog node has Virtual Resource Units (VRUs)
to compute the tasks. To meet task deadlines and reduce
task outages, a stable matching technique combined with
variable VRU sizing is proposed. Results show significant
improvement in terms of reducing task outages.

The work in [15] proposes a parallel offloading technique
in which fog nodes are considered to accept only a single
task. A many-to-one matching technique is used to allocate
subtasks to the fog nodes. To handle externalities, the
JM algorithm is used to remove unstable matching pairs.
Simulation results show improved computational delay at
different network densities.

As compared to the previous techniques in the literature,
there are two unique aspects of our proposed technique.
We consider that a fog node accepts several computation
tasks based on its computational capacity and utilizes amany-
to-many matching technique for subtasks to fog node VRU
allocation. Furthermore, we propose a novel technique that
solves the externalities problem formany-to-many-matching-
based POMH.

III. SYSTEM MODEL
The system model in this paper considers a fog-enabled
IoT network consisting of two types of fog nodes as shown
in Fig. 1. The first node is Task Nodes (TNs) that have
tasks that require computation. The second node type is
the Helper Nodes (HNs) which have better processing and
storage capabilities and provide services to the TNs. The
role of HNs and TNs is pre-defined and can not be changed.
The HNs are sited to provide maximum assistance to TNs in
completing their tasks. There also exists a central controller
termed a Fog Node Controller (FNC) that coordinates the
assignment of TN tasks to HNs. We consider that the number
of TNs is m and the number of HNs is k . In this study,
the POMH offloading situation has been taken into account.
We assume that all tasks produced by TNs are generic split-
able tasks, which may be broken down into any number
of heterogeneous-sized sub-tasks. Face detection and image
processing are examples of such split-able tasks [13]. (Note:
The method of task division is outside the purview of our
work.)

We define the size of each original task generated by a
TN as Wm. With POMH, the task is split into r + 1 smaller
subtasks. The size of each subtask is represented by Sm. One
of the tasks is computed locally at the TN. In percentage
terms, the local computed task is αloc percent of the total task
size. Similarly, αk represents the task percentage of offloaded
tasks at the k th HN. Thus, the sum of the local and the

offloaded components add up to make the complete task.

αloc +

r∑
k=1

αk = 1 (1)

It is assumed that the storage capacity of the HNs is divided
into Virtual Resource Units (VRUs). We represent free VRUs
at a HN by qk . A HN maintains homogeneity in its VRU
sizes and to account for variation, different HNs demonstrate
heterogeneity in their VRU sizes and numbers.

A. COMMUNICATION MODEL
A single wireless link is required to offload the sub-tasks
from one HN to a single TN. When resources of r number
of HNs are allocated to a TN, r number of wireless links are
required to offload sub-tasks to respectiveHNs. Arranging for
such several wireless links is a difficult proposition to handle.
Therefore, to allow contention-free access to wireless links,
we resort to Orthogonal Frequency Division Multiple Access
(OFDMA) technique, in which fixed channel bandwidth is
allocated in an average way to all the users, i.e., if HNk has
bandwidth Bk and is assigned qk number of sub-tasks, then
each assigned TN task will get Bk/qk amount of bandwidth
resources [16], [17].

The transmission delay for a single subtask is given as;

Tk =
αkWm

Rk
(2)

Here the data rate for mth TN and k th HN is represented by
Rk . In OFDM, Rk can be calculated as:

Rk =
Bk
qk
log2

(
1 +

Ptmgk
σ 2

)
(3)

Here Ptm is the mth transceiver’s transmission power, the
channel gain that considers path loss and signal attenuation is
represented by gk , and noise power is represented by σ [18].
OFDMA enables HN to simultaneously receive sub-tasks

from multiple TNs. However, for TN, we assume that there
is a single antenna that can only transmit the sub-tasks
serially. Therefore, sub-tasks have to wait for their turn for
transmission, let us call this time as waiting time. The waiting
time for a subtask can be given as:

Twait = Wm

k−1∑
k=1

αk

Rk
(4)

The time taken to transmit all subtasks can be calculated
using Eq. 2 and Eq. 4 as:

T txm = Wm

r−1∑
k=1

αk

Rk
+

αkWm

Rk
(5)

B. TIME DELAY MODEL
The time delay of the task is divided into two main parts, the
local computation delay and the HN computation delay.
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FIGURE 1. System model.

1) LOCAL COMPUTATION DELAY
The local computation delay T lm at a TN can be given as:

T lm =
αlocWmCr

Cm
(6)

Here Cr is the number of cycles in which the task can be
computed and Cm is the speed of TN’s CPU.

2) HN COMPUTATION DELAY
The offloaded computation delay T ck at HNs can be given as:

T ck =
αkWmCr
Ck

(7)

Here Cr is the number of cycles in which the task can be
computed and Ck is the speed of HN’s CPU.

In the time delay model, we ignore any queuing delay.
We also consider that the time taken to transmit the result of
the task is negligible [19].

The computation delay for the offloaded task by HN can be
given as (1) when it is the sole resource donor to taskWm and,
(2) when other HNs are also contributing towards computing
Wm is given by Eq. 8 and Eq. 9, respectively:

Tmk =
αkWm

Rk
+

αkWmCr
Ck

(8)

Tmk =
αkWm

Rk
+

αkWmCr
Ck

+Wm

k−1∑
k=1

αk

Rk
(9)

3) TOTAL DELAY
Every sub-task will experience different delays. The total task
delay is dependent on the sub-task that is computed at the end.

Tm = maximum
{
T lm,Tmk

}
(10)

For the task to be completed, the task delay must be less
than the task deadline. i.e., Tm ≤ Tmaxm

C. SIZING α’s TO COMPLETE SUB-TASKS AT SAME TIME
Careful analysis of Eq. 10 reveals that we can achieve
effective utilization of allocated resources if the time delay of
all subtasks is the same. To achieve this, sub-task sizes need
to be adjusted such that the following equation is satisfied.

T lm = Tm1 = Tm2 . . . = Tmr (11)

In the case of single HN, the value of αk at which equal
time delay is achieved can be found by equating Eq. 6 to Eq.
8 as:

αk =
αlocRkCrCk

Cm(Ck + RkCr )
(12)

The corresponding value of αloc can be found by using
value of αk from Eq. 12 in Eq. 1, as:

αloc = 1/
(
1 +

RkCrCk
Cm(Ck + RkCr )

)
(13)

Similarly, for r number of HNs, r+1 number of equations
can be derived. By solving these equations, we can find the
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FIGURE 2. Proposed many-to-many matching algorithm.

inter-dependent values of all α’s such that, they all complete
at the same time.

IV. PROPOSED TECHNIQUE
In this section, we explain in detail the working of the
proposed technique.

A. SUMMARY OF THE TECHNIQUE
The goal of the proposed technique is to minimize the time
delay of the task offloading by using partial offloading to
multiple helpers in the IoT network. To achieve this task,
we utilize many-to-many matching to allocate subtasks of
TNs to the VRUs of the HNs. The developed matching
scenario is faced with externalities problems caused by to
dynamically changing preference profile of HNs. To solve
this problem, we propose a novel algorithm that handles
the dynamic preference profiling issue of HNs on the fly
while matching TN sub-tasks to HN resources. We call
our proposed algorithm an Externalities-based Matching
Algorithm (EMA).

The working process of the proposed EMA is shown in
Fig. 2. TN tasks are shown as row players HNs are shown
as column players and their preference profile is shown as
horizontal and vertical arcs, respectively.

B. PREFERENCE PROFILES
In the proposed EMA, TN tasks have strict preference
profile ≻ S over the HNs whereas no pre-hand preference
profile is set for HNs. The preference of TN towards HN
is based on task computation time, thus the HN which
provides the lowest computation time is ranked the highest
in preference by the TN.

On the other hand, the HN node wants to minimize
the network-level task computation time. For this purpose,
the HN calculates the difference in computation time
when the task is allocated to the HN and when the task
is allocated to some other HN. Thus, HN prefers TNs for
which computation time advantage is highest. For POMH, all
subtasks are required to be completed at the same time (from
equation 11). During the matching process, the offloaded task
percentages αk change at each iteration, and the preference of
HNs changes dynamically leading to externalities.

C. SOLVING EXTERNALITIES AND AVOIDING CYCLES
Unlike work in [20] and [21], where the externalities problem
is solved after the initial stable matching assignments are
obtained, EMA solves the externalities problem during the
matching process. For this HNs on their turn to propose,

VOLUME 12, 2024 123847



U. M. Malik et al.: On the POMHs-Based Task Offloading for IoT Networks

Algorithm 1 Proposed EMA

1 Input: Ck , Cr , Cm, Tmaxm , Hk , ≻Sm , Sm
2 Output:Matching allocation: λout
3 λin = [ ]
4 while (λin ̸= λout ) do
5 for ∀H do
6 for ∀(S ∈ Hk ) do
7 if (Hk /∈ blocking pair of Sm) then
8 if (| held matches |== rm) then
9 Note held match, lowest in ≻Sm

10 Find % improvement in task time
11 else
12 Find % improvement in task time
13 end
14 else
15 Do not propose Sm
16 end
17 end
18 Propose qk tasks with best % time

improvement
19 Define noted match (if any) as blocking pair
20 if (Hk does not propose Sm′ ) then
21 Delete Hk from Sm′ held proposals
22 Reset blocking pairs of Sm′

23 end
24 end
25 λin = λout
26 end

calculate the priority order of TN tasks based on the
percentage time improvement the task will experience,
if accepted by HN.

Before proposing, HN also checks the blocking pair (if
two nodes prefer each other instead of their current matching
allocation) list of TN tasks and proposes TN tasks where their
request is guaranteed to be accepted. As a result, algorithm
convergence time is reduced, as are the chances of developing
cyclic patterns (the scenario where a single blocking pair
generates another one and the process continues and enters
a loop), as expected by Knuth [22].

D. WORKING OF PROPOSED EMA
Proposed EMA is based on polyandrous polygamy
algorithm [23]. We have modified this algorithm to solve the
externalities problem by deferring proposal acceptance until
finished, i.e., we have incorporated features of the Deferred
Acceptance Algorithm (DAA) in EMA [24].

In the proposed EMA, HNs have dynamic preference
profiles and are the only ones allowed to make proposals.
To address the externalities problem, HNs work out their
preference profile ≻ H at the time of proposal making and
make calculated matching decisions. HN Hk can propose qk
number of TN tasks, whereas, TN task Sm can hold up to rm
number of proposals.

When the number of held proposals equals rm, Sm examines
its preference profile ≻ Sm and classifies all HNs with
a priority lower than the lowest priority held proposal,
as dominating/ blocking pairs. A TN task will not be matched
to its blocking pairs.

Due to the dynamic nature of HN preference profiles,
there is an equal probability that an HN Hk may not propose
the same TN task Sm in the next iteration. In this situation,
the number of proposals held by Sm, against which it had
defined blocking pairs, will become less than its allowed
quota rm. If this happens, all HNs defined as their blocking
pairs will be unblocked and Sm will be able to match all
HNs.

When the number of held proposals equals rm again, the
TN task will start redefining its blocking pairs. Therefore,
in the proposed EMA, the TN tasks blocking pairs are not
permanent. The HNs continue to be defined within and
outside of the blocking pairs.

E. STEP BY STEP PROCEDURE OF EMA
The proposed EMA takes the following actions to find stable
matching assignments in polynomial time:

• Initial matching assignments are set to empty set.
• On its turn to make proposals, HN Hk finds the ranking
of TN tasks in terms of preference. For this, Hk first
examines the blocking pair list of TN task Sm to see ifHk
is defined in that list or not. IfHk is defined as a blocking
pair, it does not propose Sm.

• If Hk is not defined in the blocking pair list of Sm, Hk
checks the number of proposals held by Sm and does
following:

– If the number of held proposals with Sm equals
its quota rm, the lowest preferred held proposal
from ≻Sm will be deleted and defined as blocking
pair, if Hk proposes Sm. This held proposal is
marked individually. Leaving beside this proposal,
Hk calculates αk and percentage improvement in
task completion time, if Sm is computed by Hk .

– If the number of held proposals with Sm is less
then its quota rm, Hk considers all held proposals
with Sm and calculates αk and percentage improve-
ment in task completion time, if Sm is computed
by Hk .

• Hk shortlists qk number of TN tasks with the best
percentage improvement in time and proposes them.

• If proposed TN task Sm had marked held proposal, that
held proposal is rejected and defined as a blocking pair.

• If Hk does not proposes a TN task Sm′ , which it had
proposed last time, Hk match with Sm′ is deleted. All
blocking pairs of Sm′ are reset.

• Initial matching assignments are set equal to the
assignment that is matched at the end of the iteration.

The above algorithm repeats till the time a balance is
achieved, i.e., the initial matching assignment is equal to the
assignment that is matched at the end of the iteration.
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TABLE 1. Simulation settings.

FIGURE 3. Average Task Latency with Four Task Splits.

V. RESULTS AND DISCUSSION
We present a detailed simulation-based evaluation of the
proposed EMA technique in this section.

A. SIMULATION SCENARIO
A simulation setup was developed that consists of a fog-based
IoT network using MATLAB. The key values of the
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FIGURE 4. Number of TNs which are non-beneficial as a result of offloading.

simulation parameters are listed in Table 1. The network
consists of 10 HNs, which are evenly distributed within
a geographical area of 60 m x 60 m. The computational
capacity of HNs varies for every node and has a minimum
value of 4 GHz and a maximum value of 5 GHz. To test the
performance of EMA at different network densities, the TNs
are varied between a minimum value of 10 and a maximum
value of 120. These TNS are considered to be generally
scattered in the area. The computational capacity of TNs is
set to be between 0.8 GHz to 1.2 GHz.

For task splitting, we consider the maximum possible
subtasks to be 6. However, the exact number depends on
the number of TN to HN matches obtained. Out of these
subtasks, one task is computed locally whereas the others
are processed at the HNs. The subtask size is selected such
that the computation time of each of them is the same.
To accommodate for many-to-many matching and utilize

complete resources of HNs, the VRUs numbering is selected
to be equal to the total number of sub-tasks, the TNs need to
offload. The bandwidth for task transmission from TN to HN
is 5 MB. The TN transceiver’s transmission power is selected
as 100 mW. The free space path loss model is used as per the
reference [25].

B. COMPARISON OF EMA WITH OTHER TECHNIQUES
The performance of the proposed EMA is compared with
four other techniques namely, SMETO [11], FEMTO [12],
POST [13] and Local (in which all tasks are computed by
TNs themselves). The working of SMETO, FEMTO, and
POST is described already in Section II. Both SMETO and
FEMTO aim to achieve energy efficiency, whereas, POST
aims to achieve time efficiency. For simulation purposes,
we have considered parallel computation of tasks in POST.
Resource allocation for POST and FEMTO is replicated
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FIGURE 5. Average Task Latency - Varying HN Objective Function.

through Polyandrous Polygamy (many-to-many) and DAA
(many-to-one) matching techniques, respectively.

The evaluation parameters used is this paper to evaluate the
proposed scheme and other baseline schemes are task latency
and number of non-beneficial tasks. Task latency measures
the time taken to complete each task, offering insights into
the system’s efficiency and how well the objective functions
are met by the preference profile parameters. Non-beneficial
tasks are those that fail to find a match and must be
performed by the device generating the task. This evaluation
criterion also provides valuable insights into the fairness of
the schemes, based on their ability to minimize the number
of unserved tasks.

In Fig. 3, the plot of average latency or delay of tasks is
presented. It can be seen that the proposed EMA performs
better in terms of efficiency as compared to the other
schemes. The results of the proposed EMA are better
than other baseline schemes due to: (1) We have defined

the HN objective function to achieve network-level time
efficiency. As a result, HNs prefer tasks that contribute
more towards network time efficiency. This objective func-
tion generates the best time efficiency results, with or,
without solving externalities problems, (2) In the EMA
algorithm, HNs re-calculate time efficiency before mak-
ing every proposal and thus always make an informed
matching decision and improve overall time efficiency
results.

In comparison, POST tries to improve task delay reduction
for both TNs and HNs and, SMETO aims to reduce energy
consumption in the network. The difference in results of
the proposed EMA and these baseline schemes is primarily
attributed due to the difference in the objective function of
HNs. Otherwise, all these schemes re-adjust sub-task sizes,
such that they all complete at the same time. FRETO aims for
energy efficiency and also ensures equal time completion of
all sub-tasks. The advantage of FRETO over other techniques
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FIGURE 6. Number of TNs which are non-beneficial as a result of offloading.

is the partial offloading technique in which the task is
offloaded to one HN only. Thus, FRETO has comparatively
lower results than other baseline schemes.

Fig. 4 plots the TNs for which the offloading technique did
not reduce the task delay as compared to local computation.
As discussed earlier, HNs in preference profiling for network
time efficiency favor lonely tasks. With the results, it is
confirmed that by using preferences based on network time
efficiency, most TNs get served.

C. RESULTS RELATED TO PERFORMANCE OF EMA IN THE
PRESENCE OF EXTERNALITIES
To analyze the performance of EMA in the pres-
ence of externalities, a comparison is done with: (1)
Non-externality-based many-to-many matching technique
(NEMA), (2) Externalities-based many-to-many matching
technique, where HNs preference profile is based on
greedy approach (Gr-EMA), (3) Non-externality based

many-to-many matching technique, where HNs preference
profile is based on greedy approach (Gr-NEMA),

1) HNS PREFERENCE PROFILING AND TASK LATENCY
The externalities problem exists in many-to-many based
POMHoffloading as it is necessary to ensure that subtasks are
computed together time-wise. Therefore, when the amount
of allocated resources changes with the allocation and
cancellation of matches during the matching process, the
sub-task sizing requires adaptation to achieve the same finish
time. As a result, time delay and power calculations of HNs
for TN tasks change resulting in a change in HNs preference
profile. This dynamically changing preference profile of
HNs creates the externalities problem. It is important to
highlight here, that the reason for solving the externalities
problem is to achieve stability in matching decisions by
satisfying objective functions of all players. The solution
of the externalities problem will enhance time or energy
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FIGURE 7. Task Efficiency with Different Number of Task Splits.

efficiency, only, when the objective functions of players are
in sync with the overall objective of the resource allocation
problem. To highlight this point, we have considered two HN
preference profiling techniques that produce opposite results
when the externalities problem is solved. These techniques
are discussed below:

Firstly, we consider the preference method in which HN
preference is set in ascending order concerning the time
delay required for task computation. This technique can be
termed a greedy preference profiling technique because HNs
are looking to optimize their time only. When we solve this
externalities problem, a matching scenario is generated in
which HNs favor either tasks with small size or tasks that
win higher matches. With this matching trend, HNs end up
contributing less towards TN tasks. Therefore, this objective
function generates poor time efficiency results against the
non-externalities-based matching technique, as evident from
results in Fig. 5.

Whereas in this paper, we have set HN’s objective function
to achieve network-level time efficiency. By doing so, the
objective function of all players aligns with the overall
objective function of the resource allocation problem.

In this preference profiling technique, HNs favor lonely
tasks and those tasks, serving which contribute more towards
network time efficiency. Now the externalities-based solution
gives the best time efficiency results. It is important to
highlight here, that solving externalities problems generally
improves task efficiency. However, Ma [26] proposed that
solving for externalities problem gives a variety of stable
matching in each iteration. Because of this variety, there is
a remote possibility that task efficiency may not improve in
a few odd cases when compared with non-externality-based
matching results.

The effect of preference profiling techniques on non-stable
matching is also plotted in Fig. 5. The results show that the
preference profiling for network time efficiency outperforms
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the greedy preference profiling technique. We can safely
conclude that the greedy preference profiling technique ben-
efits some HNs but increases overall task completion time.
Whereas, preference profiling for network time efficiency
improves the time efficiency of all TNs and HNs.

2) HN PREFERENCE PROFILING AND NUMBER OF
NON-BENEFICIAL TNs
The results in Fig. 6, reflect the matching trends generated
by the preference techniques. As discussed earlier, HNs in
preference profiling for network time efficiency favor lonely
tasks. It can be seen that using network time efficiency-based
preference causes the most number of TNs to get served
in both externalities and non-externalities-based techniques.
Whereas in greedy preference profiling, HNs favor tasks
with more number matches and shy away from lonely tasks.
The results confer the matching trend and, we find that the
greedy preference profiling technique comparatively serves
less number of TNs.

3) NUMBER OF TASK SPLITS
The purpose of Fig. 7 is to understand the limits of the POMH
task offloading process and to show how different numbers
of subtasks impact the average delay. The results show that
when the number of task splits is increased to exploit the
advantage of parallel task computation, the time efficiency
does not improve proportionately. Rather, there is a limit to
which a task can be beneficially decomposed into sub-tasks
to achieve time efficiency. The primary underlying reason for
this deterioration in time efficiency is the fact, that when a
task is split into more sub-tasks (let’s say 5), a TN needs to
transmit 4 sub-tasks on 4 different wireless channels to their
respective HNs. These HNs will have different distances and
different channel rates with the offloading TN. Therefore, the
offloaded sub-tasks will have different transmission times.
The resources provided by multiple HNs will be able to
overcome this increase in transmission time to a certain limit,
after which, POMH starts giving negative results, i.e., takes
more time to complete the tasks. Thus, there is a need to
develop an algorithm, that can adaptively manage the number
of task splits to provide the best time efficiency results.

VI. CONCLUSION
This paper presents a novel technique for partial offloading of
tasks to multiple helper nodes in fog-enabled IoT networks.
The helper node computational resource allocation problem
is solved using a many-to-many matching technique. The
preference profiles of both task-generating nodes and helper
nodes are based on improving the task computational
delay. Furthermore, the proposed technique suffers from
externalities problems due to the dynamic preference profile
of helper nodes. The proposed technique solves this issue
by developing an adaptive matching scheme that removes
blocking pairs within the matching process. Results show up
to 70% improvement in terms of task latency by the proposed
scheme. In the future, we will focus on further extension of

this technique in scenarios where helper nodes can suffer
from faults
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