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ABSTRACT This work presents a deep neural network (DNN)-based approach for identifying the modal
field distributions of closed non-radiating waveguides. Specifically, physics-informed neural networks
(PINNs) are used to solve the Helmholtz partial differential equation. The PINN architecture includes
incorporation of boundary conditions and selection of initial conditions to obtain required modes inside
the waveguides. In this paper, furthermore, the use of this method is illustrated for waveguides consisting
of inhomogeneous and anisotropic media, where we apply a domain decomposition-based deep learning
method. Our approach successfully identifies all eigenmode distributions with an error of less than −12 dB
as compared to analytical and full-wave simulation results. Notably, we further enhance the efficiency of
our approach by utilizing transfer learning, achieving a 23 times reduction in solution time. Our results
demonstrate PINNs as an alternative to traditional methods in accurately calculating waveguide modal field
distributions and its applicability to other partial differential equation based EM problems.

INDEX TERMS Physics-informed neural network, deep learning, domain decomposition, transfer learning,
eigenanalysis, waveguides.

I. INTRODUCTION
Deep neural networks have demonstrated their use towards
approximating arbitrary functions for modeling and predic-
tion in different fields [1], [2]. However, in practice, they
are often used as black-box techniques which can disregard
the underlying physics. Despite their success in solving chal-
lenging problems in image processing [3], [4], healthcare [5],
[6], autonomous driving [7], [8], seismology [9], materials
science [10], etc., they are reliant on pre-existing data.
Various factors can hinder their performance, such as the need
for large amounts of high-quality training data, observational
bias, inadequate feature selection, incorrect data labeling, and
extrapolation issues [11], [12].
To address the limitations of data-based solutions

for physics problems, physics-informed neural networks

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

(PINNs) have emerged in [13] and further expanded in [14]
and [15]. PINNs offer a direct solution to the physics
problem by combining a neural network with underlying
partial differential equations (PDEs). Therefore, in contrast
with data-driven techniques, PINNs directly solve the PDEs
under the constraints of boundary conditions with limited
or no prior data. This allows the solution to be trustworthy,
interpretable, physics accurate, and generalizable to the
class of PDEs considered. Due to these distinct features,
PINN-based problem-solving approaches are being studied in
physical sciences, including fluid mechanics [16], [17], [18],
[19], [20], solid mechanics [21], [22], [23], chemistry [24],
[25], and geoscience [26], [27].

In the fields of antennas and microwave engineering, data-
driven deep learning, although applied extensively, presents
computational challenges due to the need for thorough
numerical analysis to generate sufficient training data. How-
ever, since the governing physical laws for electromagnetic
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FIGURE 1. A brief overview of the PINN architecture for eigenanalysis of waveguides in 2D: A neural network with input, (xn, yn) and output,
(ez , hz ) is trained by minimizing a loss function formulated using the governing wave PDE, boundary, and initial conditions. The neural
network loss, L, is a weighted sum of the PDE loss, Lpde, initial and/or boundary condition loss, LB , and data point loss, Ldata, wpde, wb, and
wdata are the respective weights.

(EM) problems are well-known, PINNs are a promising
candidate for analyzing EM structures. Recent research has
shown significant attention from EM researchers in utilizing
PINNs for various EM problems, such as time-domain
EM analysis [28], [29], electrostatic problems [30], inverse
design [31], [32], forward scattering [33], and inverse
scattering [34], [35].

In this work, we aim to expand and augment the use of
PINNs in the field of electromagnetics by introducing a novel
data-free PINN-based approach that determines the modal
field distributions in the cross-section of closed waveguides
by solving the Helmholtz wave equation. Waveguides are
essential components in optical and radio frequency (RF)
systems [36], [37], [38] and particle acceleration [39],
[40], and determining their eigenmodes and eigenfunctions
is crucial for their design and analysis. Our approach
involves minimizing a loss function that integrates the wave
equation and necessary electromagnetic boundary and initial
conditions (BCs, ICs) while training a deep neural network.
In addition, we develop domain decomposition-based deep
learning methods to accurately model highly inhomoge-
neous and anisotropic waveguides. Notably, we investigate
computational aspects, including the selection of sampling
frequency and its impact on computation time. We also
address challenges encountered, such as identifying multiple
waveguide modes and understanding the impact of neural
network architecture on the method’s effectiveness. Also,
we focus on how to further enhance the computational
efficiency of our approach by utilizing transfer learning.
To validate our approach, we examine various waveguide
designs, and compare our results with both analytical
solutions and numerical simulations. Our comparisons
demonstrate the approach’s effectiveness, with average errors
as low as −18 dB, or 1.6%, or less.
The manuscript is organized as follows. Section II intro-

duces the proposed PINN method. Section III demonstrates
the ability of PINN to accurately performwaveguide analysis,
and Section IV addresses the challenges PINN encounters
when solving such problems. Section V presents transfer

learning, and demonstrates its efficiency in several waveguide
scenarios. Finally, Section VI presents our conclusions.

II. PINN-BASED WAVEGUIDE EIGENANALYSIS
This section briefly reviews the core concepts of physics-
informed deep learning, and introduces the proposed method
for using PINNs to find the modal field distributions of
waveguides.

A. PINN OVERVIEW FOR PDE SOLUTION
The concept of PINN was initially proposed as an alternative
method for solving PDEs, specifically boundary value prob-
lems, by leveraging the capabilities of neural networks [15].
In a general form, a one-dimensional boundary value problem
involving PDEs defined in the domain, � ⊂ Rn can be
expressed as follows:

F[u(x)] = f (x) x in �,

B[u(x)] = g(x) x in ∂�, (1)

where, x, F , f (x), and u(x) are input variable (x={x1, . . .,
xn}), differential operator, source function and the unknown
solution, respectively. Operator B represents initial (IC) or
the boundary conditions (BC), and g(x) is the boundary
function.

The conditions of (1) are implemented in a surrogate PINN
framework, with its trainable parameters, θ . To elaborate,
PINN generates an output, û(x), to approximate the target
function, u(x), i.e., û(x) ≈ u(x). This can be achieved by
reducing composite loss term by neural network optimization
process. A loss term can be formulated by using the weighted
sum of the PDE loss, Lpde, initial and/or boundary condition
loss, LB, and data point loss, Ldata during the neural network
training. The neural network architecture used in this paper
for a two-dimensional case (with variables x, y ) is shown in
Fig. 1.
A distinct advantage here is that unlike traditional

numerical techniques used for solving PDEs, such as finite
element analysis (FE), finite difference analysis (FD), and
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FIGURE 2. Magnetic field distribution (hz ) of the first eight TEmn modes (ordered in the increasing order of the wavenumber) of a WR90 rectangular
waveguide.

boundary element analysis (BE), PINNs do not require mesh
elements, which can be computationally expensive for high-
dimensional problems. More details on PINNs can be found
in [41].

B. WAVEGUIDE PDE, BOUNDARY CONDITIONS AND
INITIAL CONDITION SELECTION
In this study, 2-D waveguide structures with varying cross-
section shapes, material properties, and material distributions
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are investigated via the proposed PINN architecture. In a
waveguide filled with a homogeneous, isotropic medium,
the field distributions are described by the well-known
Helmholtz wave equation [42],

(
∂2

∂x2
+

∂2

∂y2
+ k2)u(x, y) = 0 u in �, (2)

where, u(x, y) is the z-component of the electric field (i.e., ez),
or the magnetic field (i.e., hz), for the case of TM and TE
modes, respectively, and k is the wavenumber. For each case,
appropriate Dirichlet and Neumann boundary conditions
should be considered as well. For example, the tangential
electric field, E⃗tan, needs to be zero at perfectly conductive
surfaces ∂�.
Since the current problem is a source-free PDE, an initial

value of u at an arbitrary point should be selected for a
non-trivial PINN convergence. This condition applied on the
unknown function provides an additional initial condition.
Here, û(xa, ya) = ua is introduced at a chosen point (xa, ya).
Selection of û(xa, ya) = ua and (xa, ya) can be further
used to converge the solution to a specific mode for a given
wavenumber, k . Here, ua=1 is an arbitrarily chosen, and it
normalizes the output field distribution in the cross-section
around the selected value of u(xa, ya) = ua.

C. PINN NETWORK ARCHITECTURE
The PINN network architecture chosen for the solution
of the problems discussed in this paper is derived from
the general architecture shown in Fig.1. The inputs to the
neural network is a series of spatial coordinates in the
waveguide cross-section and the output is the corresponding
value of the field variables, e.g., electric and/or magnetic
field, at the corresponding spatial points. We select the
neural network with two inputs, each corresponding to one
of the dimensions in the 2-D domain, one output, and
3 hidden layers with 50 neurons in each layer. In some
cases, the number of input and the output nodes are varied as
explained wherever required in the paper. Moreover, we use
the Xavier initialization method [43] to initialize the neural
network weights, and the hyperbolic tangent function as an
activation function. During training, a stochastic gradient
descent method, namely Adam [44], is used to optimize the
weights and the biases of the neural network. The selection
of hidden layers and the number of neurons in the layers
is chosen based on the complexity of the expected field
as inspired by previous architectures [41]. The selection of
hyper-parameters is based on our own investigation in this
area, and many sets of hyper-parameters can provide similar
performance. Mean squared error (MSE) is chosen as the
method of averaging the error and loss across the domain.
Equal weights are chosen for different loss components L (see
Fig. 1) in the surrogate network.

Due to the use of a PINN-inspired architecture, the
algorithm does not require any preliminary data on mode
distribution. Therefore, with the knowledge of the wave

TABLE 1. Number of sample points considered while solving the
waveguide problems discussed in Section III using PINN.

number, k , and the domain, the field distribution function is
predicted.

FIGURE 3. (a)-(b) Neural network training convergence curves (total MSE
loss vs. epochs) for the eight TEmn modes shown in Fig. 2.

III. PINN APPLICATION SCENARIOS
To rigorously demonstrate the solution of waveguide eigen-
mode problems and to assess the performance of the PINN
architecture in different scenarios, four scenarios are selected
to show the versatility of the proposed method of solution:
(a) conventional hollow waveguides (e.g., waveguides with
a rectangular cross-section) in Section III-A, (b) waveg-
uides of an arbitrary cross-section homogeneously filled
with isotropic media in Section III-B, (c) conventional
waveguides homogeneously filled with anisotropic media in
Section III-C, and (d) conventional waveguides inhomoge-
neously filled with isotropic media in Section III-D. The field
distributions obtained using PINN are compared to analytical
(when available) and numerical simulations.

A. CONVENTIONAL HOLLOW WAVEGUIDES
We first study a WR90 rectangular waveguide with
cross-section of 22.86 mm × 10.16 mm, where the PINN
architecture is employed to find the magnetic field hz(x, y),
of the first N (N = 10) TEmn modes. For this discussion,
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TABLE 2. Summary of error values reported in literature for machine
learning algorithms applied to electromagnetic problems.

wavenumber, k , is set equal to the cut-off wavenumber [42].
Notably, uniformly spaced points, with sample numbers
as outlined in Table 1, are used for the PINN training.
For metallic boundaries, Neumann boundary conditions are
applied. We also set an initial single point field value as
an initial condition to avoid a non-trivial convergence. This
value can be chosen arbitrarily and was chosen to be hz = 1
at (x, y) = (0, 0). Fig. 2 compares the first eight TE
field distributions obtained using the analytical expression
provided in [42], and the distribution predicted by the PINN.
As we can see, our PINN achieves very good prediction
accuracy when compared to similar works (see Table 2), with
a residual error that is smaller than −12 dB1 in most cases
(the minimum error is −35 dB). Notably, the solution time
for evaluating each mode of operation is approximately 70 to
80 seconds. Fig. 3 shows the training loss for all the TEmn
modes; these results indicate very rapid convergence within
a few thousand epochs.

B. ARBITRARY CROSS-SECTION WAVEGUIDES FILLED
HOMOGENEOUSLY WITH ISOTROPIC MEDIA
In our second example, we consider eigenmodes of
waveguides with arbitrary cross-sections, as shown in
Figs. 4(a)-4(b). In this case, (2) is solved for TM mode
distributions (i.e., u = ez), and the wavenumber, k , is found

by the expression,
√
k20 − β2, where k0 is the free-space

wavenumber and β is the phase constant. For this example,
Dirichlet BCs are applied. To train the PINN, randomly
sampled points, with sample numbers as shown in Table 1,
are chosen for the geometries in Figs. 4(a)-4(b). In addition,
we apply the initial condition of ez = 1 at (x, y) = (9, 6)
for the geometry shown in Fig. 4(a), and ez = 1 at (x, y) =

(12, 8) for the geometry shown in Fig. 4(b). Figs. 4(a)-4(b)
compare the field distributions of the TM modes at 28 GHz
calculated by eigenanalysis in ANSYS HFSS, and PINN.

1The residual error (in dB) is calculated using the following expression:
10 · log10(|û− u|). Both û and u are normalized.

As we can see, our PINN, similar to the previous examples,
achieves very good prediction accuracy, with a residual
error that is smaller than −12 dB. Notably, we train our
PINN using both the Adam and L-BFGS optimizer [45],
requiring approximately 79 seconds, and 101 seconds for the
waveguides in Fig. 4(a), and 4(b), respectively, using the same
workstation as before.

FIGURE 4. Modal field distributions for two arbitrarily shaped
cross-section waveguides found by the PINN method are compared with
the numerical simulation results. PINN training loss curves for the two
cases are also shown. (a) Results for the first waveguide shape.
(b) Results for the second waveguide shape.

C. CONVENTIONAL WAVEGUIDES FILLED
HOMOGENEOUSLY WITH ANISOTROPIC MEDIA
In our next example, we use PINN to find both the TE
and TM modes of a rectangular waveguide homogeneously
filled with an anisotropic medium. Specifically, we assume a
WR90 waveguide filled with a biaxially anisotropic medium

(e.g., ϵr =
[ ϵx 0 0
0 ϵy 0
0 0 ϵz

]
). Notably, in this case, in contrast to

the previous examples, we reformulate the PDEs [46] as
in (3), and (4). Notably, ktx = ω2µϵx − k2z , and kty =

ω2µϵy − k2z . The electric field, ez, and magnetic field, hz,
are coupled as long as ktx ̸= kty. To model our waveguide,
we use a hypothetical medium of electric permittivity, ϵr =[ 2 0 0
0 4 0
0 0 6

]
. For this case, the scalar wave equation takes the
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FIGURE 5. Eigenmode electric field (TM mode) and magnetic field (TE
mode) distributions for a WR90 waveguide filled with a hypothetical
biaxially anisotropic medium, found by the PINN method, are compared
with traditional numerical simulation results. Also, the PINN training loss
is shown.

following forms:

−
∂

∂x

(
ϵx

k2tx

∂ez
∂x

)
−

∂

∂y

(
ϵy

k2ty

∂ez
∂y

)

−
kz
ω

[
∂

∂x

(
1

k2tx

∂hz
∂y

)
−

∂

∂y

(
1

k2ty

∂hz
∂x

)]
− ϵzez = 0, (3)

−
∂

∂x

(
µ

k2ty

∂hz
∂x

)
−

∂

∂y

(
µ

k2tx

∂hz
∂y

)

+
kz
ω

[
∂

∂x

(
1

k2ty

∂ez
∂y

)
−

∂

∂y

(
1

k2tx

∂ez
∂x

)]
− µhz = 0. (4)

We use uniformly spaced sample points to train the PINN,
and the number of sample points considered is shown in
Table 1. Notably, to simultaneously predict the two ez and
hz quantities, in contrast to the previous examples, we add
an additional output neuron to the neural network defined
previously. Also, both Dirichlet and Neumann BCs are
applied, since we are solving for both TM and TE modes,
respectively. Moreover, an initial condition of ez = −1 and
hz = −1 are applied at (x, y) = (a/2, b/2), and
(x, y) = (0, 0), respectively.
Fig. 5 compares the electric and magnetic field distribu-

tions obtained from the traditional numerical simulation and
those predicted by PINN. Similar to the previous examples,

our PINN shows impressive prediction accuracy with a
residual error of less than −12 dB. Notably, the PINN in
this study was trained on our workstation for approximately
200 seconds.

FIGURE 6. (a) Cross-section of an inhomogeneously filled rectangular
waveguide. (b) Electric field (TM mode) distribution for an
inhomogeneously filled WR90 waveguide, as found by ANSYS HFSS, and
by our proposed domain decomposition-based PINN method. Residual
error (in dB) and training loss are also shown.

D. CONVENTIONAL WAVEGUIDES FILLED
INHOMOGENEOUSLY WITH ISOTROPIC MEDIA
In this example, we seek the TM mode distributions of
an inhomogeneously filled WR90 waveguide. Specifically,
as shown in Fig. 6(a), the waveguide is primarily filled
with a medium of relative permittivity, ϵr1 = 4. Then,
inhomogeneity is imposed by introducing a rectangular
and a circular perturbation of ϵr2 = 8, and ϵr3 = 1,
respectively. Notably, for a specific eigenmode solution
(i.e., a specific phase constant, β), the wavenumber, k ,
is different in each region, which can be computed by
the expression,

√
ω2µϵ − β2. Therefore, the wave equation

in (1) needs to be solved considering this spatial variation
of k . To efficiently solve this problem, we adopt the domain
decomposition-based PINN approach [47], known as XPINN.
Notably, this specific case of inhomogeneous solution
domain can be more effectively addressed using a domain
decomposition-based PINN or XPINN, as demonstrated by
the authors in [47]. This approach uses parallel neural
networks to solve PDEs in the non-overlapping sub-domains.
Specifically, separate loss functions are utilized for training
the sub-neural networks (sub-NNs). Also, each loss function
contains additional interface conditions (e.g., in addition to
the boundary and initial conditions) to combine the learning
from the sub-NNs. In our case, we consider the residual
continuity condition, and the average solution condition at the
interfaces (i.e., shared boundaries) while formulating the loss
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functions. Detailed instructions on how to formulate these
interface conditions in the loss function can be found in [47].

The total number of sample points used in solving this
waveguide problem is specified in Table 1. Notably, among
the 2764 sample points that are inside the domain, 2464 points
(uniform spacing) belong to the larger sub-domain, which
is shown using yellow color in Fig. 6(a), and 106 point
(uniform spacing), and 194 points (random spacing) belong
to the rectangular, and the circular sub-domains, respectively.
Notably, for the boundary points, Dirichlet BCs are applied,
and the initial condition is set as ez = 1 at (x, y) = (−7.62, 0).
Moreover, three sub-NNs are used for these three sub-
domains. At each sub-NN, we consider four hidden layers
consisting of 50 neurons in each layer. Notably, the training
of our PINNs took approximately 900 seconds. Fig. 6(b)
shows the TM mode field distribution, as found by ANSYS
HFSS and the PINN method, and the residual error, which is
approximately −9 dB. Clearly, our results indicate that the
XPINN implementation was able to approximate the field
distribution in the inhomogeneous waveguide.

IV. PINN CHALLENGES IN WAVEGUIDE EIGENANALYSIS
The preceding examples clearly demonstrate the viability
of using PINN for conducting waveguide eigenanalysis.
This section focuses on the challenges encountered when
employing PINNs for such studies and proposes potential
practical solutions. Specifically, we discuss the impact of the
number of spatial points considered per wavelength on the
solution accuracy and computational time, and show cases
where the solution does not converge to the expected result.

A. SOLUTION ACCURACY WITH INCREASING SAMPLE
POINTS
In classical numerical methods, fine or coarse mesh can
be chosen to obtain the desired level of solution accuracy
and computational cost. Here we investigate the impact
of increasing sampling points on the solution accuracy.
We conduct this study with the understanding that in this
mesh-free operation, the sampling time itself remains nearly
constant for different cases (unlike meshing time). Cases
with parametric variation in sampling points are considered
to determine (a) TE11 mode H-field distribution for a
homogeneous WR90 waveguide, shown in Fig. 2, and (b)
TM mode E-field distribution for an inhomogeneous media-
filled WR90 waveguide, shown in Fig. 6. Notably, uniformly
spaced points along the horizontal and vertical directions are
considered.

Fig. 7 shows the average total errors (in dB) and
computational times (in seconds) of the PINN computations
for different numbers of points per wavelength. As shown in
this study, at least 25 points per wavelength (i.e., spacing<
λ/25) are needed to achieve an average error of −12 dB
or lower. On the other hand, computational time increases
linearly, as expected. This study indicates that, with a specific
PINN architecture, increasing the sampling frequency does
not improve solution accuracy significantly.

FIGURE 7. Average error (dB) and solution time (seconds) vs. the number
of sample points considered per wavelength for: (a) a homogeneous
WR90 waveguide in TE11 mode (as shown in Fig. 2), and (b) a WR90
waveguide filled with inhomogeneous media in TM mode (as shown in
Fig. 6).

B. UNIVERSALITY OF NN-MODELS
Similar to prior NN-algorithms developed in various fields
which are based on NN, an architecture is found to
most successful only for a specific problem. For exam-
ple, various problem-specific neural network architectures
have been introduced, including XPINN [47] (for domain
decomposition-based solution), DeepOnet [48] (for nonlinear
operator learning), PhyCRNet [49] (for solving spatiotempo-
ral PDEs), etc.

In this work, we accurately evaluated the eigenmodes for
many different cases discussed in Sections III(a)-(c)) using
the basic PINNmodel defined at the beginning of Section III.
Here, we present a specific case where the basic model does
not solve the eigenmode accurately, and, hence, a different
model is needed. Specifically, we aim to evaluate one of the
TM modes of a WR90 waveguide filled with a material of
electric permittivity ϵr1 = 4, and the presence of a thin sliver
(of width 0.75 mm or λ20GHz/20) of a different material with
electric permittivity ϵr2 = 2, as shown in Fig. 8(a).

While trying to solve this waveguide problem with the
basic PINN model discussed in Section II, the PINN
solution, as shown in Fig. 8(c)-left varies significantly (e.g,
approximately 45% of the total number of sample points have
an error of −9 dB or higher) from the traditional full-wave
simulated solution shown in 8(b). Both models are trained
using an equal number of points (with 25 points per wave-
length). The XPINN solution, as illustrated in Fig. 8(c)-right,
exhibits high accuracy, with an average error of −16.53 dB.
However, XPINN’s improved accuracy comes at the expense
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FIGURE 8. (a) A WR90 waveguide geometry filled with a medium of
electric permittivity of ϵr = 4, including a specific material inhomogeneity
(i.e., the thin region marked in orange color, having an electric
permittivity, ϵr = 2). (b) TM mode field distribution, as obtained using a
full-wave solver. (c) Solutions with standard PINN, and domain
decomposition-based PINN (or XPINN), and their respective errors.

FIGURE 9. Solving a hollow WR90 waveguide using PINN with different
initial conditions can yield different modal field distributions.
(a) Representative field distribution obtained by using the following
initial conditions in separate instances: u(0, 0) = 1, u(0, b) = 1, and both
u(0, 0) = 1 and u(0, b) = 1. (b) field distribution obtained by using both
u(0, 0) = 1 and u(0, b) = −1 in the same instance. Notably, both (a) and
(b) are obtained while setting k at 0.6335.

of increased computation time; specifically, XPINN needed
345 seconds, whereas PINN needed 38 seconds.

C. FORMAL METHOD FOR DETERMINATION OF MULTIPLE
MODES
We note that in theory, several modes can be supported by
the the same waveguide structure [42]. Notably, the results
presented so far demonstrate the ability of PINN to find
a specific modal field distribution. However, for a fixed
wavenumber, finding different modal field distributions that
are supported by the waveguide is indeed possible with
a PINN. We achieve this by tuning the initial condition,
u(xa, ya). For instance, as shown in Fig. 9, different
field distributions are obtained for a specific wavenumber
(k = 0.6335 in this case) using PINN. Here, the mode
shown in Fig. 9(a) can be obtained by setting u(0, 0) = 1,
u(0, b) = 1, and both u(0, 0) = 1 and u(0, b) = 1 in separate

applications of PINN. Also, with the same wavenumber, the
mode shown in Fig. 9(b) can be obtained by setting both
u(0, 0) = 1 and u(0, b) = −1.

While we show that, higher or lower order modes can
be found using PINNs for a specific waveguide geometry,
and a specific wavenumber, the initial condition needs to
be adjusted carefully to explore a different mode. Notably,
this is a non-standard process, and we leave the discovery of
a standardized solution process to find multiple waveguide
modes for future research.

V. TRANSFER LEARNING BASED ACCELERATION
Transfer learning is a well-established concept in machine
learning, where knowledge gained by a neural network during
training for a specific task is leveraged to perform a related
task more efficiently [50]. This approach involves the use of
optimized weights and biases of a trained neural network as
a starting point for another neural network, which leads to
faster training and reduced computational effort. Notably, it is
analogous to the practice of mesh reuse in popular numerical
methods, which accelerates solutions within a frequency
band.

In our study, where we employ PINNs to conduct
waveguide eigenanalysis, we explore how transfer learn-
ing (TL) can expedite the solution of similar waveguide
eigenmode problems. To achieve this objective, we utilize
PINNs pre-trained with the WR90 waveguide modeled at
the beginning of Section III, to model two different example
cases; a ridged waveguide and a hexagonal waveguide.

We first consider a PINN that is trained to solve the
TM11 mode of a vacuum-filled WR90 waveguide, as shown
in Fig. 10(a). We also use ANSYS HFSS to calculate the
TM modes of the ridged waveguide shown in Fig. 10(b),
which has the same overall dimensions along the horizontal
and vertical axis. Fig. 10(b) shows the full-wave simulation
results. Then, we use the PINN approach to find the same
field distribution. We conduct two studies. In the first study,
we use the PINN model presented in Section II with a neural
network that has not been trained before. This will be called
from now on the direct approach. In the second study, we use
the PINN model that has already been trained to solve the
problem of Fig. 10(a) to calculate the solution of the problem
in Fig. 9(b). This will be called from now on the TL approach.
Both approaches achieve good accuracy (i.e., low residual
error) when compared to the full-wave solution. However,
as shown in Fig. 10(d), a significantly faster convergence
to a specified MSE loss (i.e., fewer epochs needed to
reach a certain MSE) is observed with our second study.
This convergence translates to a considerable reduction in
computational time. Specifically, the TL approach solves the
ridged waveguide for the TM mode approximately 23 times
faster than the traditional PINN approach and achieves an
MSE loss of 10−3.
For our second example case, we want to evaluate a TE

mode of a hexagonal-shaped waveguide. First, we train a
PINN to obtain the TE10 mode of a WR90 waveguide,
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FIGURE 10. Transfer learning-based accelerated PINN solution is presented for two cases. (a) TM11 mode field distribution of a
WR90 waveguide is shown, obtained by training a PINN. (b) TM mode solution of a ridged waveguide is shown, obtained by
using ANSYS HFSS. (c) A comparison between direct solution (i.e., solution using a randomly initialized PINN) and transfer
learning solution by using a PINN initialized using the weights of a PINN in Fig. 10(a). (d) By applying transfer learning, a 10−3

total MSE loss was achieved approximately 23 times faster compared to solving the problem directly. (e) TE10 mode field
distribution of a WR90 waveguide is shown, obtained by training a PINN. (f) TE mode solution of a hexagonal waveguide is
shown, obtained by using ANSYS HFSS. (g) A comparison between the direct solution and the transfer learning solution is
shown for the hexagonal waveguide. (h) By applying transfer learning, a 10−4 total MSE loss was achieved approximately
3 times faster compared to the direct PINN solution.

as depicted in Fig. 10(e). We also, conduct full-wave
eigenanalysis on the hexagonal-shaped waveguide to use for
reasons of validation [see Fig. 10(f)]. As before, two different
PINN studies are conducted; the direct and the TL. Fig. 10(g),
presents both solutions, along with their respective residual

errors compared to the full-wave solution in Fig. 10(f).
Both techniques yield highly accurate solutions. However,
as depicted in Fig. 10(h), the TL approach demonstrates faster
convergence to a specified MSE loss, resulting in reduced
computing time. Notably, when aiming for an MSE loss of
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10−4, the TL approach is approximately three times faster
than the direct approach.

VI. CONCLUSION
This work presented a neural network-based approach for
identifying modal field distributions in closed waveguides,
showing promising results across various geometries and
material distributions. Utilizing physics-informed neural
networks, we solved the Helmholtz partial differential
equation while imposing proper boundary and initial con-
ditions to model various waveguide scenarios. Addition-
ally, we addressed computational complexities through
domain decomposition-based deep learning methods and
discussed the need for tuning the PINN architecture and
hyper-parameters for optimal results. Our approach suc-
cessfully identified several eigenmode distributions under
different scenarios, with an error of less than −12 dB,
compared to analytical and full-wave simulation results.
To further enhance the efficiency of our approach, we utilized
transfer learning, resulting in a 23 times reduction in solution
time, which is very significant.

Results suggest that the application of PDEs towards elec-
tromagnetic problems is possible even under inhomogeneity,
non-symmetric boundaries, or anisotropy in the media.While
challenges within NNs, such as hyper-parameter selection,
and generality continue to be a subject of investigation,
PINNs exhibit potential as a compelling alternative to
classical solvers for efficiently obtaining waveguide modal
field distributions and solving EM problems.
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