IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 August 2024, accepted 26 August 2024, date of publication 30 August 2024, date of current version 10 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3452476

== RESEARCH ARTICLE

Adversarially Robust Fault Zone Prediction in
Smart Grids With Bayesian Neural Networks

EMAD EFATINASAB'“1, ALBERTO SINIGAGLIA"“2, NAHAL AZADI"1,
GIAN ANTONIO SUSTO“''2, (Senior Member, IEEE),
AND MIRCO RAMPAZZO"'!, (Member, IEEE)

! Department of Information Engineering, University of Padua, 35131 Padua, Italy
2Human Inspired Technology Research Center, University of Padua, 35121 Padua, Italy

Corresponding author: Emad Efatinasab (emad.efatinasab@phd.unipd.it)

ABSTRACT The rapid growth of the global population, economy, and urbanization is significantly
increasing energy consumption, necessitating the integration of renewable energy sources. This integration
presents challenges that demand innovative solutions to maintain grid stability and efficiency. Smart
grids offer enhanced reliability, efficiency, sustainability, and bi-directional communication. However,
the reliance on advanced technologies in smart grids introduces vulnerabilities, particularly concerning
adversarial attacks. This paper addresses two critical issues in smart grid fault prediction: the vulnerability
of machine learning models to adversarial attacks and the operational challenges posed by false alarms.
We propose a Bayesian Neural Network (BNN) framework for fault zone prediction that quantifies
uncertainty in predictions, enhancing robustness and reducing false alarms. Our BNN model achieves up
to 0.958 accuracy and 0.960 precision in fault zone prediction. To counter adversarial attacks, we developed
an uncertainty-based detection scheme that leverages prediction uncertainty. This framework distinguishes
between normal and adversarial data using predictive entropy and mutual information as metrics. It detects
complex white-box adversarial attacks, which are challenging due to attackers’ detailed knowledge of the
model, with a mean accuracy of 0.891 using predictive entropy and 0.981 using mutual information. The
model’s performance, combined with minimal computational overhead, underscores its practicality and
robustness for enhancing smart grid security.

INDEX TERMS Adversarial attacks, Bayesian neural networks, fault prediction, smart grids, uncertainty
quantification.

I. INTRODUCTION ing shift in the realm of energy distribution [1], [2].

The swift growth of the global population and economy,
coupled with increasing urbanization, is anticipated to
elevate energy consumption substantially. This escalating
demand coincides with the integration of renewable energy
sources, introducing distinctive challenges. The balancing
act between managing the heightened energy needs and
ensuring the stable incorporation of renewable energy
systems necessitates innovative solutions to maintain grid
stability, enhance efficiency, and promote sustainability in
energy distribution. Smart grids represent a groundbreak-

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Raza

This technology exemplifies a modern electric power grid
marked by improved reliability, efficiency, sustainability, and
bi-directional communication capabilities [2]. In contrast to
conventional power distribution systems, smart grids utilize
real-time data, communication networks, and intelligent
control mechanisms to enhance the efficiency of electricity
generation, distribution, and consumption. This enables a
two-way exchange of information between utilities and
customers, fostering a dynamic and responsive energy
ecosystem [2]. Given their pivotal role as the cornerstone
of a nation’s energy infrastructure, smart grids are classified
among critical infrastructures necessitating protection [3].
With smart grids relying more on data-driven technologies,
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ensuring robust security measures becomes paramount to
safeguard the confidentiality, integrity, and availability within
the energy infrastructure [4]. The broad interconnection
among devices and remote access points amplifies the
attack surface, thereby creating potential vulnerabilities
for malicious actors to exploit [5], [6]. While the effec-
tive integration of Artificial Intelligence (AI) technologies
highlights the transformative impact of smart grids on
modernizing the electricity sector, they also pose significant
vulnerabilities, making them a critical aspect to address
within these systems [7]. Machine Learning (ML) and Al
have demonstrated remarkable efficiency in various tasks
within smart grids. Despite numerous papers in the literature
presenting new models and methodologies for different
aspects of smart grids [8], [9], [10], [11], [12], [13], [14],
[15], [16], a significant gap persists in addressing the
inherent vulnerabilities associated with these methodologies,
particularly concerning adversarial attacks. In the context of
machine learning, “‘adversarial” refers to instances in which
harmful inputs or data are purposefully designed to fool
or influence a model’s predictions or behavior. Adversarial
attacks exploit vulnerabilities in models by introducing subtle
perturbations to input data.

One critical application of Al in smart grids is fault
zone prediction, which involves anticipating areas where
faults have accrued or are likely to occur. This capability
is essential for maintaining grid stability and preventing
outages. While Al and ML techniques have been widely
employed to provide advanced predictive capabilities and
enhance the efficiency of grid management, it is imperative
to address the inherent vulnerabilities of these methodologies.
One significant yet often overlooked issue in the literature is
their susceptibility to adversarial attacks. They also introduce
potential challenges beyond the susceptibility of these models
to adversarial attacks. Misclassifications are inevitable, and
issuing notifications to grid operators for every detected fault
could result in numerous false alarms, creating operational
difficulties. High rates of false alarms can undermine the
credibility of fault prediction systems, leading to unneces-
sary maintenance actions, increased operational costs, and
potential disruptions in grid operations. The issue of false
alarms and the need for robust fault detection methods
have not been adequately addressed in the literature on
the practical implementation of these systems. Therefore,
enhancing the security and robustness of Al-based fault
prediction methods is crucial for the reliable operation of
smart grids. By addressing these goals, researchers can
significantly enhance the practical applicability of smart grid
fault prediction models, ensuring that they are not only
theoretically sound but also robust, reliable, and secure in
real-world environments.

In this paper we introduce a framework based on Bayesian
neural network (BNN) for the task of fault zone prediction in
smart grids. As fault prediction is an exceedingly sensitive
scenario, possible false alarms or misclassifications can
lead to significant problems. In such a critical context,
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the ability to quantify uncertainty becomes paramount.
By understanding the uncertainty associated with each pre-
diction, operators can make more informed decisions, thereby
reducing the likelihood of false alarms and improving the
overall robustness of the fault prediction system. Leveraging
BNN we can tackle this issue by offering a quantifiable
measure of uncertainty in the model’s predictions while also
enhancing robustness through Bayesian regularization. This
approach not only enhances the reliability of the predictions
but also helps in identifying potential misclassifications.
We illustrate that our model achieves an accuracy of up
to 0.958 in the fault zone prediction task. To address
the vulnerabilities posed by adversarial attacks, we will
develop an adversarial detection scheme that leverages the
uncertainty of the predictions to detect potent white-box
adversarial attacks. We show that using this uncertainty-based
detection mechanism, we are able to reach up to
0.981 accuracy in detecting potent white-box adversarial
attacks.

Our contributions can be summarized as follows.

o« We introduce a novel realistic system and threat
model that mirrors real-world scenarios encountered
during the training of a fault zone prediction sys-
tem and potential scenarios of attacks against these
systems.

o We propose an LSTM-based BNN, a resilient frame-
work for predicting fault zones in smart grids,
which helps quantify the uncertainty of predic-
tions. We assess the performance of our fault zone
prediction model against existing models in the
literature. Our evaluation provides a reference for
future studies on fault prediction models and their
security.

« We propose a lightweight uncertainty-based adversarial
attack detection system capable of detecting complex
adversarial attacks generated with different amounts of
adversarial noise.

o We evaluate our models, attacks, and defenses on a
publicly available dataset, showing the efficacy of the
attacks and the capabilities of our adversarial attack
detection scheme. We show an accuracy of up to
0.958 for our fault zone prediction model and an
accuracy of up to 0.981 for our uncertainty-based
adversarial attack detection system.

The rest of the paper is organized as follows: We mentioned
the challenges and limitations of related works in Section II.
We propose the system and threat models in Section III.
In Section IV, we discuss the attacks employed against
fault zone prediction systems. We describe our methodology
of Bayesian fault prediction system and Uncertainty-based
adversarial attack detection scheme in Section V. Then,
we evaluate our attacks, Bayesian fault prediction sys-
tem, and Uncertainty-based adversarial attack detection
scheme in Section VI. Finally, we conclude our work
in Section VII.
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Il. RELATED WORKS

A. BAYESIAN NEURAL NETWORKS

A BNN is typically understood as a stochastic artificial
neural network trained using Bayesian reasoning, although
its definition can vary slightly in different sources [17]. The
fundamental principle of the Bayesian approach is to build
posterior probability distributions for all unknown variables
in a model based on the given data samples [18]. In the
Bayesian approach, the parameter space w is represented by
a distribution p(w), treating each parameter of the model
as a random variable. The likelihood function p(Y | X, o)
describes the likelihood of observing the data under the
model. The final aim of the Bayesian approach is to estimate
the posterior distribution p(w|X, Y). However, such a task
can be extremely computationally expensive [19], and thus,
it requires to rely on approximations. One such approxima-
tion widely used tries to find a good posterior approximation
via optimization, matching g(w) =~ p(w|X, Y), g(w) being the
prior, by minimizing KL[p(w|X, Y)||g(w)]. To do so, it uses
a mean-field assumption on the parameters, thus assuming
them independent from each other and minimizing such
distance using ELBO [20]. By doing so, we get a feasible
optimization objective shown in equation 1.

argmax, L(w) = Epw)[pOlx, )] — KL[p(w|X, Y)||g(w)]
ey

where the Kullback—Leibler divergence is defined as

KL[p(x)|lgx)] = fxexp(x) log % and p(w) usually is
chosen from a family of parametrized distributions. In such
cases, the task is to find w = {u,o} such that the
posterior Ey)[p(y|x, @)] is maximized, thus obtaining good
performances in the task we are interested while minimizing
KL[g(w|X, Y)||p(w)], thus not moving too far from the prior
p(w). Initially, such methods used the REINFORCE [21]

estimator to estimate the gradient [22]:

dL(w) X,Y,w)
— % Eomgo) [vw log ¢(w) log pq(—w)”]
= Ew'vq(w)[vw log g(w)(log p(Y, |X, w)
— KL[g(w|X, Y)||p(w)]) (2)

This method allows us to have a black box estimator for
the parameters. However, such an estimator suffers from
high variance. Instead, thanks to the properties of Gaussian
distributions, we can efficiently find such parameters via
Bayes By Backprop (BBB) [23] using the reparametrization
trick [20]. This technique allows us to sample elements from
any Gaussian distribution while still being differentiable with
its parameters, thanks to the equation shown in equation 3.

O0=u+o0e e~N@O,1) 3)

Once such posterior has been successfully approximated,
it can be used to calculate the posterior predictive distribution,
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shown in equation 4:
pY*IX*, X, Y) = Epuix,np(Y* | X*, w)]

=/P(Y*|X*,w)P(w|X, Y)dw, (4)

where X* is the test input and Y* is the prediction [24]. Such
integral can be approximated via Monte Carlo Sampling.
Stochastically sampling network parameters during training
is known as weight perturbation. However, in [23], they
debate how such approximation may lead to an underestima-
tion of the uncertainty.

For this reason, in the last years, new approaches have
been proposed to tackle both the uncertainty underestimation
and the variance of the gradient, one of which is called
Flipout [25], decorrelates gradients within each data batch,
enhancing the inference process of BNNs. It exploits the
fact that, usually, a mean-field assumption is made for the
posterior approximation, thus considering the parameters
being independent, and that the distribution for the weight
perturbation is symmetric around zero. Thanks to this
assumption, Flipout uses a shared weight perturbation matrix
N for all the samples in the minibatch sampled from a
distribution symmetric around zero ¢(0), and a different
rank-1 matrix sns;T for each sample, where sn,s;, are
vectors whose entries are sampled uniformly from {+1, —1}.
Concretely, the final perturbation is computed as follows:

1 T
n 9

P=N+s,5,", N~q@®),s,and s, ~ U(—1,+1). (5)

By employing this approach, Flipout decorrelates the gradi-
ents between minimatch samples, thus efficiently reducing
the variance of the produced gradient and allowing the
optimization to be faster and more effective. In the original
paper [25], it has been shown to be particularly effective
in training LSTM-based models, which is why it will be
employed for this work.

B. FAULT PREDICTION

Numerous studies have explored fault detection and classi-
fication techniques in smart grids [8], [9], [10], [11], [12],
[13], [14], [15], [16]. As delineated by Saha et al. [26],
the classification of fault location methodologies in power
systems encompasses traditional, observant, and intelligent
approaches. One example of a traditional approach could
be a customer informing the operator about issues like
downed wires or a burning smell from a cable. In contrast,
the observant approach employs intelligent meters or local
detectors that automatically alert the system operator via
communication feedback. Finally, the intelligent approach
utilizes smart sensors or expert systems like Al to detect faults
autonomously [10]. This study concentrates explicitly on
intelligent methodologies for fault detection, including expert
systems, Machine learning, and Deep learning, all directed
toward detecting faults within the system. Artificial Neural
Networks (ANNs) have been widely investigated in the liter-
ature for fault identification and prediction [27], [28], [29],
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[301, [31], [32], [33], [34], [35]. For instance, Thukaram
et al. [35] suggested a hybrid method that merges Support
Vector Machine (SVM) with ANN architectures. Also, the
use of a Recurrent neural network has been reported in the
literature for the fault classification task [36], [37], [38]. For
instance, Zhang et al. [38] presented a methodology utilizing
the attention mechanism, Bidirectional Gated Recurrent Unit
(GRU), and a dual-structured network to analyze data from
multiple viewpoints.

Many studies have employed classical ML algorithms,
such as Random Forest, for the task of fault prediction in the
literature [39], [40], [41], [42]. Ghaemi et al. [42] presented
an ensemble technique to improve the accuracy of fault
node localization. Their approach combines the strengths
of SVMs, K-Nearest Neighbors (KNN), and Random
Forests. Furthermore, some works have utilized Bayesian
networks for fault diagnosis. For instance, Yongli et al. [43]
proposed three element-oriented models utilizing simplified
Bayesian networks with Noisy-Or and Noisy-And nodes
to estimate the faulty section of a transmission power
system. Majidi et al. [44] proposed a fuzzy-c clustering
method to identify potential fault points. Wilches-Bernal et
al. [41] introduced a novel fault location and classification
algorithm that combines mathematical morphology with
random forests. Sapountzoglou et al. [45] proposed using a
gradient-boosting tree model to detect, identify, and localize
faults in low-voltage smart distribution grids.

Although fault prediction models for smart grids have
been widely discussed and implemented in the literature,
their security and robustness have not been thoroughly exam-
ined. These models are, in fact, susceptible to adversarial
attacks [4], [46]. For instance, Ardito et al. [46] explored the
robustness of fault type and zone classification systems in
the face of such attacks. Their study involved evaluating
the resilience of smart grid failure prediction systems by
releasing datasets, conducting benchmarks, and assessing
performance under adversarial conditions. The literature
reveals a gap between the theoretical models and their
industrial applications. While many studies have proposed
innovative algorithms for fault detection and prediction,
few have thoroughly examined issues such as adversarial
attacks, false alarms, and the reliability of Al models under
varying conditions. This disconnect highlights the need for
a more integrated approach that combines theoretical rigor
with practical considerations guiding future research efforts
toward developing more secure and reliable fault prediction
systems.

Ill. SYSTEM AND THREAT MODEL

We will now explore the system and threat model pertinent
to our study. First, we will outline the standard functionality
of the system when it operates in environments free from
adversarial interference. Following this, we will examine
the potential capabilities of attackers and the assumptions
regarding their knowledge of the system.
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A. SYSTEM MODEL

In a secure and unthreatened environment, without malicious
attempts to disrupt the system, the model processes data
from the smart grid infrastructure to perform fault zone
predictions. The fault zone prediction model aims to identify
the geographical location of faults within the smart grid. This
involves analyzing data from various sources such as sensors,
meters, and other monitoring devices distributed across
the grid. The system gathers real-time data on electrical
parameters like voltage, current, and frequency. This further
involves analyzing the data to determine the specific area
where a fault has occurred, which is essential for prompt
and effective maintenance and repair operations. We assume
that our model has been trained on clean, uncorrupted data,
allowing them to accurately learn patterns and correlations
from historical data. Once trained, these models are deployed
within the smart grid system, where they continuously
monitor and analyze incoming data to predict faults with high
accuracy.

B. THREAT MODEL

As we strive to implement efficient defenses against adver-
saries targeting ML models in the smart grid, we define our
threat model to encompass the most advantageous scenarios
for the attacker. We assume the adversary can infiltrate the
system and inject malicious data into the grid. This can be
achieved through various methods, as exploiting both known
and novel vulnerabilities has proven effective for gaining
remote access [47], [48]. Such vulnerabilities may exist in
various components of the smart grid, including sensors,
communication channels, and control systems, making the
grid susceptible to sophisticated cyberattacks. Once inside
the infrastructure, the adversary aims to compromise the fault
prediction models using adversarial examples. In the case of
fault zone prediction, the adversary manipulates the models
to misidentify the geographical location of faults within the
smart grid. By altering the input data, the attacker can cause
the model to predict that a fault has occurred in a different
area than where it actually is. This would lead recovery
teams to be dispatched to incorrect locations, causing delays
in addressing the real issue and exacerbating the impact on
operational efficiency. Such disruptions can lead to increased
downtime, higher operational costs, and a loss of trust in
the grid’s reliability. In our threat model, we consider a
white-box scenario where the attacker has access to both the
data used for testing the model and the model’s architecture
and parameters. This scenario is highly advantageous for
the attacker, enabling them to leverage this information to
craft highly effective adversarial samples. Additionally, with
access to the model weights, the adversary can fine-tune
attack parameters offline, further enhancing the precision
and impact of their attacks [4]. It is worth noting that while
the white-box scenario may not be a common occurrence in
the real world, it represents the most favorable conditions
from the attacker’s perspective. By considering a situation
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where the attacker has the upper hand, we can thoroughly
evaluate the robustness of our defenses and ensure they are
resilient even against highly knowledgeable and resourceful
adversaries.

IV. ATTACKS

We now discuss the attacks that we employ against fault zone
prediction systems in smart grids. In our white-box threat
model, the adversary possesses full knowledge of the data
and the trained model. For this reason, a potential attacker
can exploit first-order information in order to carry out the
attack:

max Lf(x+e€),y)
s.t.llell, < y. (6)

We analyze prominent adversarial attacks to reveal vulner-
abilities in neural networks. We focus on specific attacks
highlighted in the literature for their significance and capacity
to uncover weaknesses.

o Fast Gradient Sign Method (FGSM): This attack quickly
creates adversarial examples by utilizing the sign of
the gradient of the loss function. Known for its com-
putational efficiency, FGSM serves as a foundational
benchmark for evaluating model robustness [49].

o Carlini & Wagner (CW): This sophisticated attack treats
the creation of adversarial examples as an optimization
problem, aiming to find minimal perturbations that lead
to misclassification with minimal perceptibility. The
CW attack challenges models with nearly imperceptible
adversarial examples, testing their resistance to subtle
perturbations [50].

o Projected Gradient Descent (PGD): PGD employs an
iterative optimization approach but includes a projection
step to keep perturbations within a specified constraint
set. Known for creating potent adversarial examples,
PGD allows for a rigorous examination of model
robustness under stringent conditions [51].

o Expectation Over Transformation Projected Gradient
Descent (EOTPGD): EOTPGD enhances PGD by
incorporating randomness in the transformations applied
to the input before calculating the gradient. This method
aims to create adversarial examples that are robust
to a range of transformations, further challenging the
model’s robustness under diverse conditions. This attack
is specifically designed to target BNNs by leveraging
their probabilistic nature [52].

V. METHODOLOGY

In this section, we introduce our proposed fault zone predic-
tion system framework, illustrated graphically in Figure 1.
We utilize two primary data sources for prediction: the
legitimate sensor data collected from the smart grid and the
potentially malicious data injected by adversaries. Initially,
we employ the BNN model to make predictions. Subse-
quently, we assess the predictive uncertainty using measures
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such as predictive entropy and mutual information. Following
prediction, we implement an uncertainty-based adversarial
attack detection mechanism to identify adversarial samples.
If a prediction is flagged as an adversarial attack, it is
discarded, and an alarm is raised for grid operators. Con-
versely, if the prediction is deemed legitimate, we transmit it
along with its associated uncertainty to the grid operators for
further decision-making. This approach enables us to provide
grid operators with predictive insights while accounting
for the uncertainty inherent in the model’s predictions.
By incorporating uncertainty-aware detection mechanisms,
we enhance the system’s resilience to adversarial attacks,
thereby fostering more robust and reliable decision-making
in smart grid operations. While we list the components of our
pipeline in order or appearance, it is worth noting that, in real-
world scenarios, the first step would be training the fault
prediction system. Indeed, our uncertainty-based adversarial
attack detection mechanism uses the trained prediction model
in its implementation. After training both the model and the
uncertainty-based adversarial attack detection, components
can be organized as detailed in Figure 1.

We present our fault zone prediction system in Section V-A
and our uncertainty-based adversarial attack detection in
Section V-B.

A. BAYESIAN FAULT PREDICTION SYSTEM

In our Fault zone prediction system implementation,
a Bayesian Long Short-Term Memory network (LSTM) is
trained using the Bayesian Torch library [53], which exploits
Variational layers with Flipout Monte Carlo estimators [25]
offering a probabilistic framework to handle uncertainty in
model parameters. The model architecture consists of two
LSTM layers followed by a fully connected layer, each
incorporating the Flipout estimator used to learn the posterior.
During training, the model is optimized using the Adam
optimizer, and the loss function comprises two components:
the standard cross-entropy loss and the Kullback-Leibler
(KL) divergence. The addition of the KL divergence term
comes from the definition of the Evidence Lower BOund
(ELBO), and requires the model to not only minimize
classification errors but also to minimize the discrepancy
between the learned posterior distribution and a predefined
prior distribution over the model parameters. We apply a
scaling factor of 0.1 to the KL divergence term to control its
regularizing effect, which prevents excessive deviation from
the prior. For the posterior approximation, we choose to use
the family of Gaussian distributions. The training process
spans 120 epochs. At each epoch, the model’s parameters are
updated using backpropagation, with the optimizer adjusting
the weights based on the gradients computed from the
augmented loss function. The Bayesian LSTM is trained
using Variational layers with Flipout Monte Carlo estimators,
allowing it to capture uncertainty in its predictions and
provide probabilistic outputs. This approach is particularly
advantageous in scenarios where uncertainty estimation is
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FIGURE 1. The proposed fault zone prediction system framework.

crucial, such as fault prediction in smart grids. To enhance
the efficiency of Monte Carlo sampling and ensure stable
training, we employ the Flipout technique in each layer.
The specific details of our Bayesian LSTM architecture
can be seen in Table 1. We employed the Golden Search
Optimization algorithm (GSO) [54] to optimize our model’s
hyperparameters.

TABLE 1. Architecture of the Bayesian LSTM fault zone prediction system.

Layer Type Details
LSTM Layer 1 LSTMFlipout (51,220)
LSTM Layer 2 LSTMFlipout (220,440)
Fully Connected Layer (FC) LinearFlipout (440,4)
FC Output Softmax Activation | Applied to Output

B. UNCERTAINTY-BASED ADVERSARIAL ATTACK
DETECTION

In this section, we propose an uncertainty-based adversar-
ial attack detection mechanism for adversarial attacks in
smart grid systems. The approach leverages the predictive
uncertainties computed by our Bayesian LSTM model to
distinguish between legitimate and adversarial data. This
section describes the various components of the detection
mechanism and the experimental setup.

The Bayesian LSTM model is used to predict the fault
zones in the smart grid system. Alongside the predictions, the
model computes predictive uncertainties, which are crucial
for detecting adversarial attacks.

In order to carry out the detection, we are interested in
metrics that correlate with the severity of the adversarial
attack. To do so, we will exploit the findings of [55] regarding
properties of the Gaussian posterior approximation.

It is known that given the exact posterior distribution
p(Y*|X*,X,Y), we can get an estimate of the total uncer-
tainty (TU) summing the aleatoric uncertainty (AU) and the
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epistemic uncertainty (EU), as shown in equation 7.
H[Y*|IX*, X, Y] =I[Y"; 0|X*, X, Y]

TU EU
+ ]Ep(w\X,Y)[H[Y*|X*, wl]] @)

AU

The H stands for entropy, defined as

H(X) = — [ .yp(x)logp(x) and I stands for mutual
information, defined as I(X,Y) = KL[p(x,y)|lpx(x) ®
py()]. Specifically, the left-hand side term in 7 is the
total uncertainty, also known as predictive entropy, and
the right-hand side terms are, respectively, the epistemic
uncertainty, which we will call mutual information for the
subsequent sections, and the aleatoric uncertainty.

Predictive entropy is indeed a good metric, as it incorpo-
rates information about the uncertainty of the sample for the
model and the problem itself. However, due to approxima-
tions done to make the problem tractable, it fluctuates a lot,
and thus, its measure might not be accurate. For this reason,
we will also consider epistemic uncertainty, the term for
mutual information, as it only considers uncertainty for the
trained model. Such a definition of total uncertainty, however,
is true for the exact posterior. Indeed, assuming a perfect
model, p(w|X, Y) would converge to a lambda distribution
with all probability mass in the optimal w, thus minimizing
the epistemic uncertainty, leaving the aleatoric uncertainty as
the only candidate for the total uncertainty.

Yet, in order to make the posterior estimation tractable,
we aim to find a distribution g(w) that approximates the
true posterior p(w|X, Y) from a specific class of family of
distribution, which usually is the Gaussian family, as in
our case. Due to such a choice, the posterior is forced to
be unimodal. This unimodality is not that restrictive for
simpler models, to the extreme for linear models, whose exact
posterior is a Gaussian distribution, but does not hold at all for
Neural Networks. In [19], the authors try to understand the
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topology of such a posterior, showing how complex it might
look. For this reason, it’s reasonable to assume that a Gaussian
approximation is highly restrictive.

Furthermore, an adversarial attack tries to maximize
the Negative Log Likelihood (NLL), which for this work
corresponds to the Categorical Crossentropy:

L) == D> yijlogpulx)), ®)
i

where n is the number of samples in the minibatch, ¢ the
number of available classes, and y; is a one-hot encoded
vector.

It can be seen how an attacker, to maximize it, only needs
to minimize the output of the model for the correct class.
Indeed, since y; is a one-hot encoded vector, the only term
contributing to the loss is the one for the correct answer.
Suppose such correct class is at index ¢ and that a minibatch
is composed by only 1 sample, then we aim at maximizing
the following loss:

max L(w) = —y; log p(y|x);. ©))

It can be seen in equation 10 that, by taking the limit,
we only need to minimize that single term of the model’s
output, shown in equation:

lim —y;logp(ylx); = +o0. (10)

pOIx)—0

Furthermore, it can be seen that once fixed p(y|x),
Zl#t p(y|x); = 1 —p(y|x),;, and that any allocation of that 1 —
p(y|x); probability mass will lead to the same loss. Therefore,
an attacker not only needs to minimize the probability of
the correct answer but also is free to allocate the remaining
probability mass in whichever criterion it prefers.

On top of this, [55] showed how Bayesian models, due
to the Gaussian assumption of the posterior probability,
are heavily outperformed by ensembles due to the lack of
diversity in the sampled parameters. This is due to the fact
that ensembles’ models are free to learn different modes of
the posterior, where a single BNN with Gaussian posterior
approximation is limited to a single mode.

Finally, since (1) the posterior is badly approximated, (2)
an attacker is free to allocate probability mass across the
wrong labels with any criterion it wants, (3) parameters
sampled by the learned posterior lack diversity, it’s hard to
assume that the current setting for BNN training is close
enough to the initial assumptions for the total uncertainty to
make it hold.

Indeed, already other works [56] have shown how the
behavior of BNN’s properties, especially for the predictive
entropy and the epistemic uncertainty, is almost opposite to
what the theory suggests, and they impute such mismatch to
the coarse approximations done along the way to make the
problem tractable too.

However, if such opposite behavior is detrimental to the
promises that BNNs make about uncertainty estimation,
we can still use such peculiarity for the current task. Indeed,
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we are not interested in the uncertainty of the model but in
metrics that correlate with the probability that a sample is
adversarial.

Indeed, also in [56] they observe that the predictive entropy
increases at some point when out of distribution, which is
enough in order to make an adversarial attack detection,
as an adversarial sample can be seen as a cherrypicked out
of distribution sample.

We indeed have observed this trend in our experiments,
as shown in Figure 2 and Figure 3. Indeed, the posterior
p(Y*|X*, X, Y) in our formulation is a categorical distribu-
tion. The entropy H for a discrete distribution is defined as
follows:

Hlp(x)] = — D" p(x)log p(x) (11)

xeX

where X is the support of p(x). Thanks to the fact that p(Y)
is discrete with finite support, we can calculate the maximum
entropy in closed form of the unconditional distribution p(Y),
which in our case is 2. The mean predictive entropy for
various attacks, with increasing epsilon values and for the
original data, is depicted in Figure 2. Similarly, the mean
mutual information for different attacks, with increasing
epsilon values and for the original data, is illustrated in
Figure 3. It is evident that the mean predictive entropy and
mean mutual information decreases with increasing epsilon
values for all attack methods. The predictive entropy and
mutual information for the original data remain significantly
higher compared to the adversarial examples, indicating
that the model is more uncertain when predicting original
samples compared to adversarial ones. This gap is more
evident in the mutual information case, where we have a
sharp decrease in mutual information after the attack with
the lowest epsilon. This result indicates that the model
demonstrates greater certainty when making predictions on
adversarial data compared to original data.

We will generate adversarial attacks, as described in
Section IV, against our pre-trained fault zone prediction
model. The perturbation magnitudes (¢) for these attacks will
range from 0.05 to 0.5, incrementing by 0.05. For each input
in the test set, the Bayesian LSTM model will be used to
obtain predictions and compute the mean predictive entropy
and mean mutual information for both the original and
adversarial inputs. Our detection mechanism classifies inputs
based on their uncertainties to identify adversarial attacks.
We will explore various threshold values for classifying
these uncertainties to determine if an input is adversarial.
The goal is to find the optimal threshold that maximizes
overall detection accuracy while maintaining a high accuracy
for legitimate data. Specifically, we will classify inputs
based on predictive entropy and mutual information. Inputs
with predictive entropy or mean mutual information above
a certain threshold will be classified as legitimate, while
those with predictive entropy and mutual information below
the threshold will be classified as adversarial. In our
process of identifying the optimal threshold for adversarial
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FIGURE 2. Mean predictive entropy for attacks and original data with different epsilons.
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FIGURE 3. Mean mutual information for attacks and original data with different epsilons.

attack detection, we will leverage the predictive entropy
and mutual information of the main model on legitimate
data. We will employ a grid search method to explore
various threshold values, aiming to maximize the overall
detection accuracy of adversarial attacks. We will do the
same for mutual information. Importantly, while optimizing
for adversarial detection, we will ensure that the detection
accuracy for legitimate data consistently exceeds a predefined
threshold, in this case the threshold is 0.85. This constraint
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is crucial as we aim to avoid misclassifying legitimate data
as adversarial attacks. In summary, we will evaluate the
detection mechanism by calculating the mean predictive
entropy and mean mutual information for both original and
adversarial data. The classification results will be analyzed
for each type of attack and for the original data. The optimal
threshold will be determined by balancing the trade-off
between detecting adversarial samples and maintaining high
accuracy for legitimate data.
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VI. EVALUATION

We now explore the evaluation of our fault zone prediction
system, including various attacks and the uncertainty-based
adversarial attack detection mechanism. Our evaluation cov-
ers all scenarios detailed in the previous sections. As metrics,
we use accuracy, F1 score, precision and recall to evaluate our
model, defined as:

TP+ TN

Accuracy = , (12)
TP+ FP+ TN + FN
. TP
Precision = ———, (13)
TP + FP
TP
Recall = ——, (14)
TP + FN
2TP

l=———. (15)
2TP + FP+ FN

First, we provide details about the dataset used for our
evaluation in Section VI-A. To establish a baseline for
evaluating the success of our attacks and defenses, we assess
our model’s performance on the fault zone prediction task
in Section VI-B. Next, we evaluate the effectiveness of our
attacks in Section VI-C. Finally, in Section VI-D, we examine
the capabilities of the uncertainty-based adversarial attack
detection mechanism.

A. DATASET

Despite the widespread use of simulation tools such as
PSCAD [57], [58], MATLAB Simulink [59], RSCAD [60],
and MATPOWER [61] in smart grid failure prediction
systems, there is a notable absence of publicly accessible
datasets generated by these tools. Therefore, we utilize the
dataset introduced by Ardito et al. [46], which is the only
publicly available dataset that includes extensive simulated
fault data based on the IEEE-13 test node feeder. The IEEE-
13 node test feeder features a 4.16 kV voltage generator,
13 buses designed for fault simulation, and facilities for
three-phase signal measurement. The distribution system is
segmented into four zones to pinpoint fault locations. The
dataset was completed by injecting 11 distinct fault types with
22 different resistances for each fault type into four critical
zones near the load flow buses 671, 633, 675, and 680. The
total duration for fault simulation was ¢+ = [0.0 — 0.02]
seconds, with each fault and resistance combination applied
att = 0.01 seconds and cleared at# = 0.02 seconds, resulting
in a fault duration of ## = [0.01 — 0.02] seconds, and a
healthy (non-faulty) period of 7, = [0 — 0.01] seconds [46].
This dataset encompasses 51 features, integrating data from
both conventional and renewable energy sources. It has been
meticulously compiled to provide a benchmark for evaluating
the robustness of fault prediction systems in smart electrical
grids against adversarial attacks. We split our dataset into
three parts: 85% for training, 5% for validation, and 10% for
testing. Normalization will be applied as a preprocessing step
to scale our data to a consistent range. After normalization,
since we are using an LSTM model, we will partition the
dataset into windows of a predefined size. These windows
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are created by sliding through the data iteratively, with a step
size equal to half of the window size. For our dataset, we have
chosen a window size of 16 seconds.

B. BASELINE EVALUATION

In this section, our focus shifts to evaluating the performance
of our fault zone prediction system. Initially, we assess
the baseline performance of our system in its pristine
state, devoid of any exposure to adversarial attacks. Our
training procedure entails harnessing the training data to
optimize our Bayesian LSTM-based fault prediction system.
Subsequently, we gauge the efficacy of our model on the test
set, scrutinizing its ability to predict fault zones accurately.
In this evaluation process, we assess the performance of
our model using multiple forward passes to estimate the
model’s uncertainty and robustness. In order to estimate
the predictive entropy for the test set samples, for each
of them, ten different sets of parameters will be sampled
from the learned posterior and used as a Monte Carlo
approximation of p(Y*|X*, X, Y). This method leverages the
Bayesian approach to capture the uncertainty inherent in
the model’s predictions. We then calculate the test accuracy
by comparing these averaged predictions against the true
labels. This approach ensures that the model’s uncertainty
and variability in predictions are adequately captured. Our
evaluation results are noteworthy, we observe that our
model can reach the mean accuracy of 0.958 in fault zone
prediction task. Our approach demonstrates a substantial
improvement, with a mean 24.80% increase in performance
compared to the main paper introducing the dataset [46].
We have also achieved the same accuracy as the state-of-
the-art model [4]. However, the BNN approach provides
significant advantages that justify their use. These networks
offer robust uncertainty quantification, which is crucial for
making more informed decisions and enhancing the detection
of adversarial attacks with our uncertainty-based detection.
The benefits of our BNN, including reliable uncertainty
estimates and improved adversarial robustness through our
uncertainty-based detection mechanism, demonstrate their
superiority over the state-of-the-art model. The detailed
results are presented comprehensively in Table 2.

TABLE 2. Comparison of the model’s accuracy, F1 score, precision, and
recall.

Model Accuracy | F1Score | Precision | Recall
MLP [46] 0.710 NA NA NA
Decision Tree [4] 0.818 NA NA NA
Random Forest [4] 0.831 NA NA NA
XGBoost [4] 0.841 NA NA NA
GRU [4] 0.958 NA NA NA

Bayesian LSTM 0.958 0.958 0.960 0.958

C. ATTACK EVALUATION

In this evaluation, we comprehensively assess the efficacy
of white-box attacks on our model. Using the TorchAttacks
library [62], we implement attacks mentioned in section IV
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FIGURE 4. Model’s accuracy at varying epsilon values on the white-box attacks.

to evaluate the model’s susceptibility without incorporating
any countermeasures or defenses. However, since the Tor-
chAttacks library is not inherently suited for BNNs, we make
necessary modifications. These changes allow the attacks to
accept the dual outputs of BNNs, where the second output is
the KL divergence, thus enabling effective adversarial testing
against our Bayesian model. The attacks are executed with
varying epsilon values, representing the strength and degree
of perturbation for each attack. Specifically, we explore
epsilon values ranging from 0.05 to 0.50. This range helps us
understand the model’s robustness under different levels of
adversarial perturbations. The results of these attacks across
various tasks are visually presented in Figure 4, illustrating
the impact of each epsilon value on the model’s performance.
Itis evident from the results that even with a low epsilon value
of 0.05, the attacks are successful in decreasing the accuracy
of the model.

D. UNCERTAINTY-BASED ADVERSARIAL ATTACK
DETECTION EVALUATION

In this section, we evaluate the performance of our
uncertainty-based adversarial attack detection system by
calculating the mean predictive entropy and mean mutual
information for both the main model and the adversarial
attacks using the test set. To achieve this, we define a
range of epsilon values representing different strengths of
the adversarial attacks. For each epsilon value, we gen-
erate adversarial examples using various attack methods
mentioned in section IV. For each set of inputs (original
and adversarial), we perform multiple forward passes with
different sets of parameters sampled from the learned
posterior through the Bayesian LSTM model to obtain
samples of the model’s outputs. By averaging these outputs,
we estimate the predictive distribution. We then compute the
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predictive entropy and mutual information for each set of
outputs to quantify the model’s uncertainty.

Finally, we aggregate these uncertainty measures to
calculate the mean predictive entropy and mutual information
for both the original and adversarial data at each epsilon level.
The results can be seen in the figure 2 and 3 already discussed
in Section VI-D.

We then implement a classification function f that labels
uncertainties below the threshold A as normal and those above
as adversarial.

if g(X*) < A
otherwise,

adversarial
JX*) = { ..

original
where g(X™) can be either the predictive entropy, shown in
equation 16.

H [Eopopx. 1) [P *1X*, )] (16)
or the epistemic uncertainty, shown in equation 17.
IY*; w|X*, X, Y] (17)

We explored a range of threshold values to identify the
optimal threshold for classifying uncertainties in original and
adversarial data across different epsilon values. For each
epsilon, we collected uncertainties from the original data
and adversarial data generated using various attack methods.
By iterating through the defined threshold values, we clas-
sified the uncertainties and combined these classifications
with the true labels to calculate overall accuracy. We ensured
that the accuracy of the original data met a constraint of at
least 0.85 before considering the overall accuracy. Finally,
using the optimal threshold, which in our case is 0.647 in
the case of predictive entropy and 0.499 in the case of
mutual information, we perform the final classifications for
both original and adversarial data and calculate the accuracy
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FIGURE 5. ROC curves for different uncertainty metrics.

for each type of attack, as well as for the original data.
The results are noteworthy: our detection system achieves a
mean accuracy of 0.891 when using predictive entropy as the
uncertainty metric and 0.981 when using mutual information
for detecting both adversarial and original data. When
focusing solely on adversarial attacks while keeping the
constraint of 0.85 accuracy on the original data, the detection
accuracy improves to 0.897 with predictive entropy and
0.998 with mutual information. For detecting original data,
the accuracy is 0.869 with predictive entropy and 0.913 with
mutual information. The results highlight that using mutual
information as an uncertainty metric provides superior
accuracy compared to predictive entropy. Specifically, results
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for each attack can be seen in Table 3. To provide a more
comprehensive evaluation of our detection scheme, we will
utilize ROC (Receiver Operating Characteristic) curve plots.
These plots, displayed in Figures 5b, 5a, 6a and 6b, will
offer a detailed visualization of the scheme’s performance.
Considering the low complexity of our detection schemes,
the accuracy of the adversarial detection scheme is acceptable
across all scenarios. The ability to maintain high accuracy
without adding significant computational overhead makes
our approach highly practical for real-world applications.
This balance of efficiency and effectiveness is crucial for
deploying robust security measures in resource-constrained
environments like smart grids.
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FIGURE 6. ROC curves considering all attacks individually using different uncertainty metrics.

TABLE 3. Mean accuracy of uncertainty-based adversarial detection
scheme under different considerations.

sustainability. Within smart grids, fault prediction systems

play a crucial role in ensuring uninterrupted energy delivery

and system reliability. Despite the growing attention to fault

Source Accuracy (using PE) | Accuracy (using MI)
Attacks + Original data 0.891 0.981
All Attacks 0.897 0.998
Original Data 0.869 0913
FGSM Attack 0.938 1.0
C&W Attack 0.752 0.994
PGD Attack 0.95 1.0
EOTPGD Attack 0.947 1.0

prediction systems in the literature, their security aspects are
frequently overlooked. This oversight can potentially lead
to safety concerns and operational delays, undermining the
effectiveness of these systems. Also, neglecting to address
misclassification events in these systems could diminish their

VII. CONCLUSION

reliability in real-world scenarios. These misclassifications
have the potential to undermine the trustworthiness and
effectiveness of these systems, thereby limiting their practical
applications in critical tasks like fault zone prediction.

Smart grids emerge as pivotal in modernizing energy
infrastructure, promising improved reliability, efficiency, and
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To address these challenges, we propose a BNN framework
for fault zone prediction in smart grids, offering quantifiable
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uncertainty measures to improve decision-making and system
robustness. Leveraging Bayesian regularization, our model
enhances reliability and quantifies the uncertainty of the
predictions, which can help the grid operators in the
identification of potential misclassifications, achieving an
accuracy of up to 0.958 in fault zone prediction. Further-
more, we introduce an uncertainty-based adversarial attack
detection system capable of detecting complex attacks with
up to 0.981 accuracy when classifying malicious and original
data. Through the evaluation of a publicly available dataset,
our study demonstrates the efficacy of our proposed models,
attacks, and defenses. By providing a comprehensive frame-
work for fault prediction and adversarial attack detection in
smart grids, our work contributes to enhancing the security
and reliability of modern energy distribution systems.

A. LIMITATION

Despite the promising results demonstrated in our study,
there are several limitations that need to be addressed in
future work. One primary limitation is the dataset used
for evaluation. Our study relies on a publicly available
dataset, which may not fully capture the complexities and
variances of real-world smart grid environments. The scarcity
of comprehensive, real-world data from actual grid operations
limits the ability to generalize our findings across diverse and
dynamic grid conditions. The proposed model’s reliance on
Bayesian regularization to enhance reliability and quantify
uncertainty is another aspect that requires further exploration.
While Bayesian methods offer theoretical advantages, their
computational complexity and scalability to large-scale smart
grid systems remain a challenge. Finally, while we achieved
high accuracy in both fault zone prediction and adversarial
attack detection, the integration of our framework into
existing smart grid infrastructure poses practical challenges.
Ensuring seamless integration, compatibility with current
systems, and minimal disruption during deployment are
critical factors that need to be addressed to transition from
research to real-world application effectively.

B. FUTURE WORK

Utilizing richer posteriors and ensembles, we aim to enhance
the predictive capabilities of our BNN. This involves
exploring more complex posterior distributions and ensemble
techniques to improve accuracy and reliability in fault
zone prediction. Additionally, investigating the relationship
between BNNs and adversarial attacks is crucial. Under-
standing how adversarial perturbations affect uncertainty
estimates provided by BNNs can reveal vulnerabilities and
guide the development of robustness strategies. Exploring
alternatives for zero-order attacks, which rely solely on model
output queries without gradient information, presents another
different set of challenges and opportunities. Furthermore,
leveraging the success of BNNs in fault zone prediction,
we propose extending this framework to enhance stability
prediction in smart grids. By modeling uncertainty in grid
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dynamics, BNNs can provide reliable predictions of system
stability under varying conditions and disturbances.

APPENDIX

NOMENCLATURE o
~+00 Positive infinity.

—y:logp(y | x); Negative log likelihood term for the
target variable y;.

arg max Argument of the maximum.

€ Perturbation or noise vector.

y Constraint threshold for the p-norm
of €.

Ik Integral sign.

A Threshold value used for classifying
X* as adversarial or original.

Limpyjx), -0 Limit as the probability p(y | x);
approaches 0.

log £ ();Ei’);w) Logarithm of the ratio of joint prob-
ability p(X, Y, w) and distribution
q(w).

log g(w) Logarithm of the probability distri-

bution g(w).
log Natural logarithm.

Eo~g() Expectation with respect to the dis-
tribution g(w).

Epw) Expectation with respect to the dis-
tribution p(w).

max,, Maximization over the parameter .

maxe Optimization operation to maximize

the objective with respect to €.
Vo Gradient with respect to model
parameters .

w Model parameters.

> Summation index over ?.

> Summation over i from 1 to n, where
n is the number of samples.

> Summation over j from 1 to ¢, where

‘J
Zx eX

Accuracy

c is the number of classes.

Summation over all possible values

of x in the set X.

The ratio of correctly predicted

instances to the total instances.

F1 The harmonic mean of precision and
recall, providing a single score to
evaluate the performance.

FN False Negatives: The number of
incorrectly  predicted  negative
instances.

FP False Positives: The number of
incorrectly  predicted  positive
instances.

KL Kullback-Leibler divergence.

Precision The ratio of correctly predicted pos-

itive instances to the total predicted
positives.
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Recall

TN
TP

dw
fx+e)

JX*)

g(X™)

HIEy~polX,Y)-
[p(Y* | X*, 0)]]

H[p(x)]

IY* 0 | X*, X, Y]
L(w)

L(w)

L(w)
L(f(x+¢€),y)

N

P

px)

POy | x);
Po(Yi | Xi)j
q(w)

6]/(9)

Sn

Sn

T

Yt
Yij

Adversarial Attacks
Adversarial Data

Al
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The ratio of correctly predicted
positive instances to the total actual
positives.

True Negatives: The number of cor-
rectly predicted negative instances.
True Positives: The number of cor-
rectly predicted positive instances.
Differential of w in the integral.
Function evaluated at the perturbed
input x + €.

Function that classifies X* as either
adversarial or original based on a
threshold A.

Function used to determine the clas-
sification of X*; it can be either pre-
dictive entropy or epistemic uncer-
tainty.

Predictive entropy of Y* given X*
and w, with expectation over the
distribution p(w | X, Y).

Entropy of the probability distribu-
tion p(x).

Epistemic uncertainty or mutual
information between Y* and w given
X* X,and Y.

Likelihood function.

Loss function with parameter w.
Loss function with respect to model
parameters w.

Loss function evaluated with per-
turbed input x + € and target y.
Random variable sampled from dis-
tribution g(6).

Value of the function or quantity of
interest.

Probability of the event x.
Probability of y given x for index .
Probability of y; being in the j-th
class given input x; and parameter .
Approximate distribution of w.
Probability distribution for N.
Random variable sampled from uni-
form distribution U(—1, +1).
Random variable sampled from uni-
form distribution U(—1, +1).
Another term or variable in the
equation.

Target variable for index .
Indicator variable for the j-th class
of the i-th sample.

Attempts to fool a model by provid-
ing deceptive input.

Data that has been manipulated to
deceive a model.

Artificial Intelligence.

ANN Artificial Neural Network.

AU Aleatoric Uncertainty.

AUC Area Under the Curve: The area
under the ROC curve, representing
the model’s ability to distinguish
between classes.

BNN Bayesian Neural Network.

CNN Convolutional Neural Network.

Ccw Carlini & Wagner.

DL Deep Learning.

ELBO Evidence Lower Bound.

EOTPGD Expectation Over Transformation
Projected
Gradient Descent.

EU Epistemic Uncertainty.

FGSM Fast Gradient Sign Method.

GB Gradient Boosting.

GRU Bidirectional Gated Recurrent Unit.

KNN K-nearest Neighbor.

LSTM Long Short-Term Memory.

ML Machine Learning.

MLP Multilayer Perceptron.

PGD Projected Gradient Descent.

RF Random Forest.

ROC Receiver Operating Characteristic

SVM Support Vector Machine

TU Total Uncertainty

XGBoost  Extreme Gradient Boost
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