
Received 15 August 2024, accepted 27 August 2024, date of publication 30 August 2024, date of current version 10 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3452277

Accelerated Path Planning for Large-Scale
Grid Maps
DUOHANG SUN , ZHE SUN, AND PEINAN SHAO
The 32nd Research Institute of China Electronics Technology Group Corporation, Shanghai 200000, China

Corresponding author: Duohang Sun (duohangsun99@outlook.com)

ABSTRACT Path planning is a critical task in automated navigation and seeks to identify optimal
collision-free routes for autonomous systems such as unmanned vehicles, aircrafts, and surface ships
within a specified environment. The rapid computation of optimal paths in large-scale grid maps remains
a major challenge. This paper presents an enhanced HPA∗ pathfinding algorithm that utilizes an abstract
representation of grid maps to facilitate fast navigation. The enhancements to the HPA∗ algorithm include
a detailed examination of neighborhood branch extensions, the incorporation of a high-quality heuristic
function, and the implementation of repulsive force fields. The effectiveness of this improved HPA∗

algorithm in large-scale grid environments is demonstrated by extensive experiments in real-world settings.
In terms of computational efficiency, for path planning in real scenarios, the computation time of the HPA∗

Improved algorithm can be reduced by more than 95% relative to the A∗ algorithm, and the computation time
can still be reduced by more than 80% relative to the HPATheta∗ algorithm, even though the computation
time can be reduced by more than 80%. Even compared to HPATheta∗ algorithm, the computation time can
still be reduced by more than 80%. Specifically, the improved HPA∗ algorithm significantly reduces the time
required to generate path results while also enhancing path safety. This study provides valuable insights into
advanced pathfinding techniques that could advance automated navigation systems.

INDEX TERMS Abstract map, improved HPA∗ algorithm, large-scale maps, path planning.

I. INTRODUCTION
Path planning, which involves the computation of a sequence
of waypoints that describe the desired trajectory for an agent’s
movement, is pivotal in the field of automated navigation.
This process is critical for autonomous navigation systems,
such as unmanned vehicles [1], unmanned aircraft [2], and
unmanned surface ships [3], which must find an optimal,
collision-free path from an initial position to a target location
within a specified environment. The optimal path is typically
defined by multiple criteria (i.e., minimization of travel dis-
tance, travel time, and energy consumption, etc.). Therefore,
path planning is considered an optimization problem [4]
where the primary challenge is to solve for an objective
function under a set of relevant parameters. This objective
function encapsulates several key questions: (1) What is the
current location of the agent? (2) What is the destination?

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.

(3) What is the most efficient route from the current location
to the destination that satisfies the given objective function?

Strategies to address these challenges associated with the
interdependencies inherent to the path planning process are
categorized based on the operational context and underly-
ing principles. These classifications include static versus
dynamic path planning, global versus local path planning,
and offline versus online path planning [5], [6], [7]. Global
path planning usually assumes that the environment is static
and involves the identification of an optimal path from
the start point to the end point within the whole environ-
ment.Meanwhile, local path planning presupposes a dynamic
environment and zeroes in the most feasible trajectory of
moving from the current position to the target position. Path
planning for large-scale scenarios typically involves global
path planning. In large-scale maps, path planning can fur-
ther be divided into two categories:’’ preprocessing — path
planning’’ and ‘‘direct path panning.’’ The former is advan-
tageous for large-scale environments where the initial map

121792

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0006-8739-6432

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

processing step can significantly streamline the subsequent
path finding process. In this method, techniques such as the
artificial potential field method [8], [9] and abstract hierar-
chical method [10] are employed to simplify environmental
complexity, which facilitates more efficient planning. This
abstract hierarchical method is appropriate for scenarios that
require immediate responses and adaptability. The core algo-
rithms used in path planning include traditional search-based
methods such as Depth-first search, Breadth-first search,
Best-first search, Dijkstra’s algorithm, and the A∗ algorithm,
along with its variants (Hybrid A∗, D∗, Theta∗, and Life-
long Planning A∗). Additionally, the Rapidly-explore random
tree (RRT) algorithm and its derivatives, such as RRT∗ and
Informed RRT∗, are extremely useful for navigating complex
and dynamic environments. Notably, path planning also bene-
fits from swarm intelligence algorithms, including ant colony
and particle swarm optimization, as well as evolutionary
algorithms [11], [12], which simulate natural processes to
evolve and adapt solutions.

Recent studies have explored various methods to improve
computational efficiency and performance. For example,
Gu et al. developed a fast linearized virtual element method
(VEM) for nonlinear time-fractional diffusion equations [13].
Liu et al. investigated large-scale video processing using
double-buffer optimization, ant colony algorithms, and dis-
tributed online concurrent editing [14].Wang et al. introduced
a dimensionality reduction technique combined with fuzzy
clustering to reduce computational overhead and enhance
model generalization [15]. Liu et al. proposed a low-cost link
aggregation method for concurrent video streaming transmis-
sion, significantly improving performance metrics [16].
The transition from these general methods to more spe-

cific path-planning algorithms that operate on grid maps
also requires effective search strategies. These algorithms
are essentially search-based, and the path is continuously
constructed by moving from the current position to a sub-
sequent position, with incremental queries being generated
until the target position is reached. While simple search
algorithms such as Depth-first search, Breadth-first search,
and Best-first search are not specifically tailored for path
planning and may incur higher computational costs, they lay
the groundwork for more optimized solutions. For instance,
Dijkstra’s algorithm — which aims to find the shortest path
from the start position to the target position [17]—uses a data
structure to store the shortest distance from the start node to
the current node and traverses all the nodes within a loop to
obtain the shortest path.

The A∗ algorithm employs heuristics derived from
Dijkstra’s algorithm [18]. The evaluation function of the A∗

algorithm and its variants typically consist of two parts:

f (n) = g (n)+ h (n) (1)

Here, g(n) represents the actual distance from the current
node n to the start position, and h(n) represents the heuristic
value, which is typically the estimated distance from node n

to the target. Unlike Dijkstra’s algorithm, the A∗ algorithm
and its variants use heuristics to reduce the number of node
extensions, thereby accelerating the search process. However,
although its heuristic values reduce the number of expanding
nodes to some extent, the A∗ algorithm remains inadequate
in large-scale environments because it does not scale well
when grid sizes expand. Therefore, Ammar et al. introduced
two new temporally linearly relaxed versions of Dijkstra’s
algorithm (RD) and the A∗ algorithm for global path plan-
ning in large-scale grid environments (RA∗), accurately
approximating the optimal path without revesting any of the
cells [19]. Harabor et al. proposed the Jump Point Search
(JPS) algorithm as an optimization of the A∗ algorithm.
Notably, the JPS algorithm could accelerate pathfinding
on grid maps by reducing access to open and closed lists
and limiting symmetric path exploration through inflection
points. However, JPS was found to underperform in unstruc-
tured environments and those with multiple pathways and
high randomness [20]. To address this problem, Chen et al.
developed a hybrid optimization algorithm that combines an
improved ant colony algorithm with JPS to enhance path
accuracy and minimize turns [21]. Furthermore, Sang et al.
proposed a hybrid strategy that combines the improved A∗

algorithm with the artificial potential field method, trans-
forming the global path into a series of subgoal points to
improve pathfinding effectiveness and reduce the risk of
local minima entrapments [22]. Alajlan et al. experimentally
demonstrated that a genetic algorithm could find optimal
paths in large-scale grid environments as effectively as the A∗

algorithm [23]. Zhong et al. developed a hybrid path planning
method that combines the A∗ algorithmwith an adaptive win-
dowing approach for global path planning, real-time tracking,
and obstacle avoidance [24]. Finally, Holte et al. explored
the application of graph abstraction for accelerating the
pathfinding process between two nodes, leading tomore rapid
solutions [25]. Subsequently, hierarchical A∗ algorithmswere
adapted to accelerate path planning under various scenar-
ios [26]. Zheng et al. proposed to use the PRM algorithm for
two-stage path planning for long-distance off-road scenarios,
which is similar in nature to the hierarchical idea, combined
with the improvement of the PRM algorithm, which improves
the computational efficiency of the algorithm, and carries
out the enhancement of the applicability of long-distance
path planning in large-scale scenarios [27]. For long-range,
large-scale, high-resolution path planning for grid maps,
computational efficiency remains the primary challenge,
along with the need to ensure that the suboptimality of paths
is within reasonable limits.

This paper explores three fundamental and effective
approaches—abstract graph construction, neighborhood
expansion, and heuristic functions—to decrease the number
of visited nodes, enhance path security and ensure paths
closely approximate the true shortest paths. Extensive exper-
iments and analysis confirm the effectiveness and superiority
of our proposed method in large-scale environments.

VOLUME 12, 2024 121793

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

II. RELATED LITERATURE
The idea of larger-scale hierarchical maps has a long history.
Holte et al. first proposed the hierarchical A∗ algorithm in
1996 [26]. This algorithm transforms the original graph into
an abstract graph and hierarchizes it, thus reducing node
accesses and speeding up path planning. Subsequently, Hara-
bor et al. proposed a hierarchical path planning algorithm
(HPA∗) for grid maps that could be applied to a wide range of
agents of different sizes [28]. The HPA∗ algorithm achieves
hierarchy by dividing the grid map into n square clusters and
determining the paths of different agents by studying the con-
nectivity between the square clusters and labeling them on a
hierarchical abstraction map. Similarly, the CH algorithm for
grid maps — first showcased in a Grid-Based Path Planning
Competition — constructs a directed acyclic graph (DAG)
and reduces map complexity by hierarchizing it to accelerate
the grid map path planning [29]. Pelechano and Fuente pro-
posed the development of a hierarchical representation based
on a multilevel k-way partitioning algorithm (MLkP) that has
labeled sub-paths, which can then be accessed online by the
Hierarchical NavMesh Path-finding algorithm (HNA∗) that
is employed for navigation meshes [30]. Ting et al. proposed
a path planning method for a grid map that combines the
hierarchical approach with an ant colony algorithm, where
the grid map is a simulation of the unstructured lunar sur-
face [31]. Chagas et al. proposed a hierarchical path planning
algorithm for HPATheta∗ because path planning was too
time-consuming when dealing with large-scale real virtual
terrains, and this algorithm could compute smooth paths that
took terrain features into account [32]. Overall, for large-scale
grid maps, the hierarchical abstraction approach has emerged
as an effective way to reduce computing time, allowing
path-planning activities to be completed within a reasonable
timeframe. Moreover, since a grid map can also be consid-
ered an image, researchers like Moghadam et al. have used
the Sobel operator to perform a convolution operation and
explore the effect of weight differences between neighboring
nodes on the current node as a measure of weighted grid map
complexity [33]. Meanwhile, Kim and Sull have proposed
the application of convolution to reduce the search space
of the grid map and decrease the time required for path
planning [34].

Although all of the above scholars have made many
contributions to the efficiency of path planning, further algo-
rithmic improvements are still needed for large-scale high-
resolution scenarios that include both on-road and off-road
environments.

III. ENVIRONMENTAL MODELING
Path planning involves a variety of map types, including
occupancy grid maps, Voronoi graphs, visibility graphs, and
probabilistic roadmaps [12]. Each type of map possesses
unique characteristics that influence the strategies and out-
comes of path planning. Occupancy grid maps, for instance,
are particularly effective for modeling large-scale environ-
ments because they discretize the space into smaller grid

cells. These maps depict the occupancy status of spatial
locations and can store diverse information. However, the
accuracy of this method in the context of path planning
is limited by the resolution it offers. Furthermore, while
higher resolutions yield more complex data, they also require
increased memory and computational resources.

In real-world scenarios, large-scale grid maps must be
considered from two perspectives: the large number of grids
(exceeding ten million) and the broad geographic area. For
instance, a 5000 × 5000 grid map encompasses 25,000,000
cells, and it covers an area of 10 × 10 km if each cell
represents a 2 × 2 m region. These grid maps are typi-
cally constructed based on remote sensing images or LiDAR
data, and elevation details are derived from geological terrain
analyses to produce corresponding accessibility maps. This
dual consideration of both scale and detail is crucial for
effectively deploying large-scale grid maps in path-planning
applications [35].

Assuming that the grid map has a total height of h and a
width of w, the grid map can be mathematically expressed as:

Grid =
{
cell(i,j) | 0 ≤ i < h, 0 ≤ j < w, i, j ∈ z

}
(2)

The value of each cell(i,j) term indicates the state of the grid
(i, j):

cell(i,j) =

{
0, if grid (i, j) is a non – obstacle grid
1, if grid (i, j) is free

(3)

Under these conditions, a path can be represented as a collec-
tion of non-obstacle grids in partial order:

Path =
{
cell(i1,j1),cell(i2,j2), . . . , cell(in,jn), cell(ik,jk) ∈
Grid ∩ cell(ik,jk) = 0

}
(4)

Here, cell(i1,j1) denotes the starting position of the agent, and
cell(in,jn) denotes the target position.

The path cost is denoted as:

Cost (Path) =
n−1∑
k=1

d (k), (5)

Here, d(k) is the Euclidean distance between the kth grid
cell(ik,jk) and the k+1 grid cell(ik+1,jk+1) in the constituent
path, as follows:

d (k) =
√

(xk+1 − xk)2 + (yk+1 − yk)2 (6)

We present an abstract simulation of real environments using
three map patterns, as illustrated in Figure 1. The maps
are named according to the format ‘‘MapType_Size_X,’’
where ‘‘MapType’’ includes corridor, room, and random
arrangement, and ‘‘Size‘‘ denotes the dimensions in the for-
mat Size×Size. The variable ‘‘X’’ holds different meanings
depending on the map type.

Map patterns represent the obstacle distribution within
a particular region. In structured environments, there are

121794 VOLUME 12, 2024

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

FIGURE 1. Schematic diagrams of the three different map types. (a) Map
type ‘‘Corridor-32-4’’ corresponds to a corridor-style map with a width of
4 units and dimensions of 32 × 32. Here, ‘‘X’’ represents the corridor
width. (b) Map type ‘‘Room-32-3’’ describes a room-style map featuring a
single room that is 3 × 3 units in size, within a total area of 32 × 32. Here,
‘‘X’’ indicates the room size. Map type (c) ‘‘Random-32-3’’ is a random
map, which is also sized 32 × 32 units, where obstacles occupy 30% of
the grid area. Here, ‘‘X’’ specifies the obstacle coverage percentage.

well-defined connections between obstacles. However, ran-
dom environments feature randomized and unstructured
obstacles without clear connections. The transition from
structured to unstructured environments in the different maps
mirrors real-world scenarios wherein regular streets and
buildings co-exist with randomly placed obstacles. When
using higher resolution for high-precision modeling of larger
geographic areas, the number of grids in the grid maps
obtained from the modeling grows dramatically due to the
increased resolution of the maps. Path planning in such
high-resolution environments is significantly more demand-
ing in terms of memory, computation, and time. This paper
aims to develop a method that accelerates path planning in
large-scale grid maps while optimizing path costs.

Assuming that the actual geographic area represented by
each cell is relatively small, if a grid cell is found to contain
an obstacle, the accessible area around this cell is considered
extremely limited. The geographic range represented by each
cell in the original map is quite small, corresponding to a
geographic region sized 2 × 2 m. In cases where a cell acts
as an obstacle, the available space for access in that area
is severely limited. Consequently, this study assumes that
traversal between diagonal obstacles is not feasible, as illus-
trated in Figure 2. Here, with the start position corresponding
to (B, 3), the target position corresponding to (C, 2), and the
obstacles located at (B, 2) and (C, 3), the red dashed path is
prohibited.Meanwhile, the green route represents the shortest
permissible path from the start to the target location.

IV. METHODOLOGY AND NUMERICAL ANALYSIS
In this section, we describe our proposed algorithm, which
explores how large-scale grid map path planning can be
accelerated through three perspectives: abstract graph con-
struction, neighborhood extension, and the use of heuristic
functions.

A. ABSTRACT GRAPH CONSTRUCTION
We employ an abstract map construction scheme, as depicted
in Figure 3. Specifically, this approach involves the process-
ing of an original grid map with blocks (top-left, Figure 3),
the calculation of the external and internal connectivity of

FIGURE 2. Prohibition of diagonal obstacle crossing. The red dashed path
is not traversable due to diagonal barriers, while the solid green arrows
show the feasible route.

each block (upper-middle and lower-middle, Figure 3), and
the subsequent transformation of the grid map into an abstract
map (bottom-right, Figure 3). The calculation process for
each step is as follows.

FIGURE 3. Schematic diagram of the proposed grid map abstraction
process. (a) Top-left, original grid map; (b) Bottom-left, map
segmentation; (c) Upper-middle, inter-connectivity; (d) Lower-middle,
intra-connectivity; (e) Top-right, block connectivity; (f) Bottom-right,
abstract map.

Grid Initialization: In our setting, the original gridmap size
is defined as X×X, and the block size is Y×Y. Following
abstraction, the grid map is reduced to a size of (X/Y) in each
dimension, resulting in a total of (X/Y)2 blocks. This forms
the basis for the hierarchical grid map.
Inter-Connectivity Calculation:After segmenting the orig-

inal map into blocks, it is crucial to establish the connectivity
between the blocks to assess their external connectivity. This
step ensures the presence of valid connections between the
blocks. For instance, as shown in Figure 4, blocks B1, B4,
and B2 lack interconnections; hence, if the start or end point
of a path lies in B2, path planning would fail due to the lack
of connections.
Intra-Connectivity Calculation: While inter-connectivity

determines how well-connected a block is externally, it is not
sufficient to determine whether a block is suitable for path
formation. Intra-connectivity, on the other hand, assesses the
traversability within a particular block. Consider the scenario

VOLUME 12, 2024 121795

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

FIGURE 4. Schematic diagrams of the original grid map and block map
for the process of Inter-connectivity calculation. (a) Original grid map.
(b) Block map. After dividing (a) into 6 × 6 units, B2 becomes completely
isolated from the other blocks (B1, B3, and B4). Note that B2 is not
entirely enclosed.

depicted in Figure 5. Although there exists a nominal connec-
tion between B1 and B2, and between B2 and B3, B2 does
not provide actual access to the other areas within B1 or B3
through these external links. This highlights the importance
of intra-connectivity in functional path planning within a grid
map.

FIGURE 5. Schematic diagrams of the original grid map and block map
for the process of intra-connectivity calculation. (a) Original grid map.
(b) Block map. In the block map (b), certain blocks are non-traversable
internally, which impedes movement between connected blocks.

After calculating the internal and external connectivity, the
original large-scale grid can be transformed into an abstract
map. The abstract path from the start location to the target
location can be calculated using this abstract map, as shown
in Figure 6:

AbsPath =
{
abscell(i1,j1), abscell(i2,j2),. . . , abscell(in,jn),
abscell(in,jn) ∈ Grid

}
(7)

where abscell(i1,j1) is the starting position of the agent,
and abscell(in,jn) denotes the target position. Meanwhile,
abscell(ik,jk)1 < k < n denotes the abstract points on the
abstract map after hierarchical abstraction that correspond to
the boundary grids after dividing the original grid map into
blocks. The final path is obtained through replanning based
on the abstract path.

Path =
n−1⋃
k=1

plan (k) (8)

Here, plan(k) represents the set of the partial orders of
Path(k,k+1), and Path(k,k+1) is the path with abscell(ik+1,jk+1)
as the start position and abscell(ik+1,jk+1) as the target
position.

FIGURE 6. Schematic diagram of abstract graph path planning, with S
(top-left, yellow) representing the start point and T (bottom-right, blue)
denoting the target point.

The abstract graph path planning algorithm (Algorithm 1)
initializes the open and closed lists for single-path planning.
It identifies the block containing the target position (Target-
Point) and adds the starting position (StartPoint) to the open
list, along with the associated data. The algorithm continues
as long as the open list is not empty, selecting the node
with the lowest f(n) value from the open list and exploring
its neighbors in the AbstractGraph. When the current node
and TargetPoint are encountered in the same block and a
path between them exists, the algorithm delineates this as
AbstractPath. This path is then generated using Algorithm 2
(ConstructPath) and outputted. To reduce any unnecessary
detours caused by block entrances, the waypoints in Abstract-
Path are minimized using the dis_she technique, thereby
streamlining the path and enhancing the planning speed.
Finally, Algorithm 3 (RefinedPath) transforms AbstractPath
into a detailed path that aligns with the original grid map.

B. NEIGHBORHOOD EXPANSION
Previous studies have often failed to focus sufficiently on
the impact of neighborhood expansion on path planning.
For example, Daniel et al. limited their testing to a random
500 × 500 grid map with an obstacle grid scale of 0.2 [36].
Rivera et al. explored path planning within 2k neighborhoods
and introduced a heuristic function suitable for these set-
tings [37], [38]. Their finding demonstrated that planning for
2k neighborhoods is as competitive as that using arbitrary
angles. Meanwhile, Kramm et al. developed a suboptimality
bound function for 2k neighborhoods [39].

In this section, we describe path planning across four-
neighborhood, eight-neighborhood, sixteen-neighborhood,
and thirty-two-neighborhood branching extension scenarios
(Figure 7), mainly focusing on (1) time cost, (2) path cost,

121796 VOLUME 12, 2024

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

Algorithm 1 Implementation of AbstractPathPlanning
Input: AbstractGraph, GridMap, StartPoint, TargetPoint
Output: An abstract path from the start point to the target point
Initialize openlist, closelist;
targetClusterID = Clobalpos2ClusterID(TargetPoint, AbstractGraph);
h_value = weighted_Octi_heuristic(StartPoint, TargetPoint);
openlist.push_back(StartPoint, 0.0, h_value, StartPoint, 0);
while openlist not empty do

Current_node = openlist.top;
closelist.push_back(current_node);
currentClusterID = Globalpos2ClusterID(currentPos, AbstractGraph);
if currentClusterID == targetClusterID then
cost_target = ComputeCostBetween(GridMap, current_node, Target-

Point, AbstractGraph);
if cost_target > 0.0 then
dis_she = 75.0
return ConstructPath(closelist, dis_she);

ExploreNeighbors(current_node, clusterID, TargetPoint, AbstractGraph,
GridMap);
return failure;

Algorithm 2 Implementation of ConstructPath
Input: closelist, dis_she;
Output: An Abstract Path
item = closelist.back;
current_node = item.cor;
parent_index = 0;
path.push_back(current_node);
While current_node != item.parent_cor do

node_last = path.index;
Parent_index = item.parent_index;
if distance(node_last, current_node) > dis_she then
path.push_back(item.cor);
Item = closelist[parent_index];
path.push_back(closelist[0].cor);

return path;

Algorithm 3 Implementation of RefinedPath
Input: GridMap, AbstractPath
Output: A Refined Path
path = null;
for i← 1 to (n-1) do

start = AbstractPath[i-1];
target = AbstractPath[i];
path.append(Astar(GridMap, start, target));

return path;

and (3) path smoothing. First, we briefly introduce the gener-
ation process of the neighborhood direction vector.

The 2k neighborhood direction vector is generated via
a 2(k−1) neighborhood computation, where the minimum
number of neighborhood branches is 4. Moreover, the
four-neighborhood scenario has the minimum number of
directions. The four-neighborhood direction vector can be
denoted by D4, as follows:

D4 = {(1, 0) , (0, 1) , (−1, 0) , (0,−1)} (9)

Meanwhile, the eight-neighborhood direction vector D8 can
be deduced from D4 by assuming that D4(1) denotes the

FIGURE 7. Number of neighborhood branches. (a) Four-neighborhood,
(b) Eight-neighborhood, (c) Sixteen-neighborhood,
(d) Thirty-two-neighborhood.

vector (1,0), D4(2) denotes the vector (0,1), and so on,
as follows:

D8 =

{
D4 (1) ,D4 (1)+ D4 (2) ,D4 (2) ,D4 (2)+ D4 (3)
D4 (3) ,D4 (3)+ D4 (4) ,D4 (4) ,D4 (4)+ D4 (1)

}
(10)

Similarly, the sixteen-neighborhood D16 can be computed
from D8 and the thirty-two-neighborhood D32 can be com-
puted from D16.
We further discuss the time cost in these modes. The

interactions between map patterns and neighborhood expan-
sion strategies significantly influence the time efficiency
of path planning. As indicated in Table 1, the number
of neighborhood branches varies based on the design of
the grid maps. Performance improvement is observed with
multi-neighborhood branching as the grid map size increases
because the strategy allows longer steps in a single search
iteration. This approach decreases the total number of
search nodes required, thereby accelerating the path-planning
process. For instance, the sixteen-neighborhood expansion
strategy integrates an inner eight-neighborhood search with
a step size of 1 and an outer eight-neighborhood search with
a step size of 2. This configuration prioritizes exploration
from points in the outer eight-neighborhood area that display
the lowest expected heuristic cost, effectively minimizing
the number of external iterations. However, it must be noted
that the benefits of increased neighborhood branching depend
on both the map pattern and the target location. Specifi-
cally, since the outer branches in configurations of sixteen
neighborhoods or higher are not immediately adjacent to the
current centroid, additional computations become necessary
to verify the feasibility of connections. Thus, the anticipated
time benefits are only realized if the valid connections at these
outer extension points account for a significant portion of the
overall path.

In terms of distance cost, the implementation of a
multi-neighborhood branching structure enhances the diver-
sity of path segments and facilitates more direct connections.
In Figure 8, the starting point is located at (A, 1), and
the target point is at (C, 5). The cost of the path, denoted
as CostDx , demonstrates a relationship wherein CostD4 ≥

CostD8 ≥ CostD16 ≥ CostD32 . This trend is consistent across
various environments, as illustrated in Table 2. Path planning
can be conceptualized as fitting the shortest possible route

VOLUME 12, 2024 121797

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

TABLE 1. Comparison of the conventional A∗ Algorithm and improved A∗

Algorithm.

between the start and target locations, and it typically involves
connecting a few pivotal points along straight lines. These
connections leverage the full angular range allowed by the
neighborhood branches, thus approximating the actual short-
est path. However, it is worth noting that while increasing
the number of neighborhood branches may decrease distance
costs, it concurrently raises the time costs. Therefore, the
balance between these benefits must be carefully managed.

FIGURE 8. Schematic diagram of neighborhood branching effects on
potential paths.

In path planning for a four-neighborhood branching sys-
tem, the angle between two adjacent directions is 90◦. This
is also the minimum turn angle in this system. For an eight-
neighborhood system, this angle reduces to 45◦. Meanwhile,
in a sixteen-neighborhood configuration, the angles between
adjacent directions decrease to 26.565◦ and 18.435◦. Fur-
thermore, in a thirty-two-neighborhood system, the angles
between adjacent directions can be as small as 18.435◦, 8.13◦,
7.125◦, and 11.31◦. Thus, as the number of neighborhood
branches increases, the variety of steering angles available
also increases, resulting in progressively smoother routes.

Neighborhood branching also impacts the time efficiency
of the A∗ algorithm due to the repetitive expansion of nodes,
which necessitates frequent access to both the open and
closed lists. As the map scale enlarges, the number of nodes
in these lists increases, thereby prolonging access times.
As demonstrated by the JPS algorithm, under practical appli-
cation conditions, many grid cells do not require expansion.

TABLE 2. Comparison of the PATH LENGTHof exploring different
neighborhoods on different maps.

FIGURE 9. Schematic diagram of neighborhood extension, where red
stars denote the current node n and orange stars denote the parent node
of n, i.e., p(n).

For example, when node n’s parent node is p(n), and the
expansion direction of p(n) and node n is similar to that
depicted in Figure 9(a), some common neighbors between
p(n) and node n do not require a path through node n due to the
availability of shorter alternate routes. Consequently, node n
only requires expansion in five specific directions. Similarly,
under the conditions shown in Figure 9(b), node n may only
need expansion in three directions. This approach signifi-
cantly prevents redundant expansions. Theoretical analysis
suggests that the parent of node n has a 50% probability of
diagonal extension and a 50% probability of linear extension,
necessitating expansions in five and three directions, respec-
tively. This also greatly reduces redundant computations.

C. HEURISTIC FUNCTIONS
The h(n) heuristic function in the A∗ algorithm (refer to
Equation significantly influences the algorithm’s efficiency,
with its informativeness being directly correlated with the
speed of path planning. If h(n) ≤ H (n), where H (n) is
the actual cost from node n to the goal, the algorithm will

121798 VOLUME 12, 2024

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

generally succeed at finding the optimal path, assuming that
one exists. Furthermore, if h1(n) ≤ h2(n) ≤ H (n), where
h1(n) and h2(n) are different heuristic functions, the path
planning algorithm that uses h1(n) and h2(n) can surely find
the optimal path. In terms of time efficiency, however, t2 <

t1, illustrating the principle of heuristic consistency in the
A∗ algorithm. When h(n) = 0, this algorithm transforms
into Dijkstra’s algorithm. When h(n) = H (n), the algorithm
will ideally be both cost-optimal and time-efficient. However,
if h(n) > H(n), the algorithm may not find a cost-optimal
path, even if one exists. Common path planning heuristics —
such as the Manhattan, Euclidean, Chebyshev, and Octile
distances — are depicted in Figure 10 for two grid map points
S(xS , yS) and T(xT , yT).
The Manhattan function is of the form:

Manhattan (S,T) = |xT − xS | + |yT − yS | (11)

The Euclidean function is of the form:

Euclid (S,T) =

√
(xT − xS)2 + (yT − yS)2 (12)

The Chebyshev function is of the form:

Chebyshev (S,T) = max (|xT − xS | , |yT − yS |) (13)

The Octile function is of the form:

Octile (S,T) =
√
2×min (|xT − xS | , |yT − yS |)

+ ||xT − xS | − |yT − yS || (14)

FIGURE 10. Schematic of the distance formulae. The green line segments
indicate Manhattan distances; the yellow line segments represent
Euclidean distances; the blue line segments represent Octile distances;
and the red dashed lines represent Chebyshev distances. Although the
schematic for the Chebyshev distance appears very similar to that of the
Octile distance, they are not identical. The Chebyshev heuristic calculates
the minimum number of moves required to transition from the current
position to the target position in an eight-neighborhood branch on an
obstacle-free map.

In path planning problems, the Manhattan distance often
exceeds the actual distance (i.e., Manhattan(n) ≥ H (n));
however, for maze-like terrains or serpentine corridors, it is
possible that Manhattan(n) ≤ H (n), yielding impres-
sive results due to the computational simplicity. Typi-
cally, the relationship among the heuristics is as follows:
Chebyshev(n) ≤ Euclid(n) ≤ Octile(n) ≤ Mahattan(n).
Both Figure 11 and Table 3 corroborate this hierarchy,

demonstrating that path planning based on the Manhattan
function does not yield the least costly path. Conversely, since
the Octile function more closely approximates H (n), it offers
fewer visited points than the Euclidean and Chebyshev dis-
tances, as detailed in Table 4. Figure 12 further validates the
superiority of theOctile function; for themapRandom-100-3,
the Octile function visits 32.15% fewer points than the
Euclidean function.

FIGURE 11. An eight-neighborhood search is performed for a random
grid map sized 32 × 32, with blue points stored in the close list and gray
points stored in the open list, all of which constitute the set of access
points. (a) Search performed using the Chebyshev function heuristic term.
(b) Search performed using the Euclidean heuristic term. (c) Search
performed using the Octile function heuristic term. (d) Search performed
using the Manhattan function heuristic term.

TABLE 3. Heuristic Functions and associated planning time and path cost
relationships.

TABLE 4. Heuristic functions and the associated number of access points.

Unlike in corridor systems, where the obstacles are struc-
tured, the obstacles in high-resolution grid maps of real
outdoor environments are typically unstructured. The explo-
ration process of the A∗ algorithm can be likened to flooding.

VOLUME 12, 2024 121799

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

FIGURE 12. For the map Random-100-3, based on the
eight-neighborhood expansion approach, (a) the Octile function is used
as a heuristic, and (b) the Euclid function is used as a heuristic. The
points stored in the close list are shown in bright blue, and the points
stored in the open list are shown in gray. The planned route is indicated
in red. The Octile-based function ensures both the shortest route and
reduced access. (Cost of the route: 152.3086; number of points accessed
in the open list in [a]: 247; number of points accessed in the close list:
1895; number of points accessed in the open list in [b]: 256; number of
points accessed in the close list: 2901).

Assuming that the start position is S and the target is T , the
vector from S to T is denoted as

−→
ST , and

−→
MO is orthogonal to

this vector. The expansion behavior of A∗ demonstrates that
nodes closer to T are more likely to expand toward

−→
MO. How-

ever, as shown in Figure 13(a), the optimal shortest path on
the grid map is a straight line following

−→
ST . In environments

with highly randomized obstacles, the paths closer to
−→
ST

are shorter. Thus, during exploration, suppressing expansion
toward

−→
MO and encouraging movement along

−→
ST reduces the

number of expansions and accelerates path planning.
In this paper, we propose a weighted heuristic function

based on the Octile distance, which includes several compo-
nents: dSi represents the Euclidean distance from the starting
position S to node i; diT denotes the Euclidean distance from
node i to the target T ; dST indicates the total Euclidean
distance from S to T ; and Octile (i, T) denotes the Octile
distance from node i to the target T .

Weighted Octile (i) =
dSi + diT
dST

× Octile (i) (15)

As demonstrated in Figure 13(b), given that dSi+diTdST
≤

dSj+djT
DST

and Octile(i) < Octile(j), weightedOctile (i) < Octile (i) <

Octile (j) < weighedOctile(j). This condition enhances the
efficiency of the A∗ algorithm by reducing the expansion
of nodes, thereby increasing the likelihood of identifying an
optimal path more quickly.

We evaluate the weighted Octile function with an
eight-way neighborhood branching approach. The experi-
mental results (Tables 5 and 6) demonstrated that under
identical conditions, compared with the conventional Octile
function, the weighted Octile function not only reduces time
consumption by approximately 20% in randomized environ-
ments but also decreases the number of access points by
roughly 10%. This decrease in access points would lead to a
consequent decrease in memory usage, without significantly
increasing the path length.

FIGURE 13. (a) Trend of A∗ algorithm extension. (b) Schematic of the
weighted heuristics.

D. CONVOLUTION-BASED REPULSIVE FORCE FIELD
CONSTRUCTION
In high-resolution, large-scale grid field maps wherein the
obstacles are randomized instead of structured, it is essential
to minimize routes through densely obstructed spaces for
safety and to navigate more reliably in less crowded areas
(Figure 14). This approach aids in managing the unpre-
dictability of the environment and provides agents with
greater maneuverability. An optimal balance is required
among factors such as the shortest path, safety, and planning
speed. The artificial potential field method is a crucial tech-
nique for path planning in this context, guiding agents from
the start position to the target position by mimicking elec-
tromagnetic or gravitational fields. This method includes two
main components: a repulsive field generated by obstacles,
which intensifies as the proximity to the obstacle increases,
and an attractive field produced by the target, which grows
stronger as the agent nears the goal. These fields not only
inform agents about nearby obstacles and targets but also
significantly improve route planning and safety. Through
the application of this concept, we focus on constructing a
repulsive field that robustly captures the negative impact of
obstacles, effectively broadening the agents’ awareness of
their surroundings and adding avoidance measures. Using a
similar approach, Chen et al. combined the A∗ algorithmwith
the artificial potential fieldmethod to speed up and refine path
planning [40].

FIGURE 14. Schematic diagram of symmetric paths. Both the red and
green paths represent the shortest routes from the start position to the
goal position; however, fewer obstacles are encountered in the red path,
and it is consequently safer.

121800 VOLUME 12, 2024

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

TABLE 5. Comparison of weighted_Octile and Octile functions.

TABLE 6. Comparison of weighted Octile and Octile functions (scaled
version).

The conventional repulsive field approach for grid maps
is quite inefficient owing to its time-consuming nature. In the
traditional potential field construction method, each grid con-
taining an obstacle is treated as a distinct obstacle, which
significantly increases the number of perceived obstacles
in comparison to methods that use polygons to represent
obstacles in continuous spaces. This increases computa-
tional demands and prolongs the planning time. Conversely,
convolution-based repulsive field construction, which does
not focus on individual obstacles, not only ensures that each
grid has an adequate field of view but also expedites the
construction of potential fields. Accordingly, it accelerates
the path-planning process. Therefore, in this paper, we pro-
pose a convolution-based, non-obstacle-oriented modeling
approach, designed to collect information about surrounding
obstacles at the current location and thereby enrich the heuris-
tic data used in the analysis.

0.6 0.6 0.6 0.6 0.6
0.6 1 1 1 0.6
0.6 1 0 1 0.6
0.6 1 1 1 0.6
0.6 0.6 0.6 0.6 0.6

 (16)

The convolution kernel is designed as illustrated in (16). The
kernel’s size determines the field of view available for the
current grid. The values decrease radially from the cen-
ter, reflecting the diminishing influence of distant obstacles.
By employing different convolution kernels, more sophisti-
cated functionalities can be achieved. For instance, a 32 ×
32 grid map based on the convolution method yields a
more balanced and stable repulsion field than one based on
the traditional method, instead of being heavily polarized,
as depicted in Figure 15. Furthermore, the potential field cre-
ated with the convolution method more accurately represents
the influence of surrounding obstacles, providing a contour
trend that peaks at obstacles. However, this trend is less

pronounced in the conventional potential field. Additionally,
the potential field map based on the convolution method dis-
plays more uniformly distributed repulsive values, while the
one based on the conventional method exhibits distinct bifur-
cations. These characteristics make the convolution-based
repulsive field more effective at enhancing heuristic func-
tions, providing a superior representation of the current grid
and facilitating a more nuanced differentiation of repulsive
values. It is noteworthy that the primary function of the kernel
is to generate a repulsive force.

FIGURE 15. Results of the repulsive field construction under both
convolution and conventional conditions, with the red X symbols marking
the obstacle grid corresponding to the original map.

Table 7 presents a time-based comparison of the con-
struction of the repulsive field based on the convolution
method and the conventionalmethod. The results indicate that
the convolution method offers a significant time advantage
over the conventional approach. Furthermore, as the size
of the grid map and the number of obstacles increase, the
conventional method becomes even more time-consuming.
However, the convolution approach retains its efficiency even
under these conditions. Notably, it is less sensitive to the
number of obstacles because it does not attempt to assess the
impact of each obstacle individually. In contrast, the conven-
tional method, which considers the effects of each obstacle
on the current grid, incurs redundant computations when the
distance of the obstacle exceeds a certain threshold, leading
to inefficiency.

Thus, this paper derives a heuristic function based on the
Octile function mixed with a convolutional repulsive field
function.

h (i) = weighted Octile (i)+ conv (i) (17)

Here, Octile(i) denotes the node i to the target position T ,

and conv(i) denotes the convolutional repulsive field value of
node i.

The routes derived using this method were compared
with those generated by the A∗ algorithm, which lacks

VOLUME 12, 2024 121801

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

TABLE 7. Comparison of time costs during the construction of
conventional and convolutional repulsive fields.

FIGURE 16. Schematic diagram of path comparison. In the
Random_32 × 32_2 map, blue indicates the route surroundings based on
the standard A∗ algorithm, while yellow depicts those based on the
convolutional repulsive field A∗. Routes (a) and (b) are derived based on
eight-directional movement.

potential field function integration. This comparison partic-
ularly emphasized the number of obstacles within proximity
ranges of 1 and 2 units (Figure 16). It was noted, how-
ever, that the paths derived from the sixteen-neighborhood
approach using this method may occasionally overlap with

those obtained through the eight-neighborhood branching
computation. Table 8 compares the performance of the A∗

algorithm that uses the weighted Octile function and the A∗

algorithm that employs the convolutional kernel described
in (17). The results show that although the inclusion of the
convolutional repulsive field slightly increases path and time
costs, it notably diminishes the number of obstacles surround-
ing the path.

V. EXPERIMENTAL VALIDATION
All the experiments reported in this paper were conducted on
an Ubuntu 22.04 system with an AMD®Ryzen 9 5900hx
CPU and 32 GB of RAM. The code was implemented in
C++.

A. EXPERIMENTS BASED ON THE IMPROVED ALGORITHM
To ensure algorithmic robustness, the experimental setup
mandated that the straight-line distance between the start
and target positions on any given map contain at least one
edge. Specifically, on a Size × Size grid map, the target was
positioned at (0,0), and the starting position at [x, Size - 1].
To assess the comprehensive route planning capacity of the
algorithm across the entire map, the set of initial positions
included the coordinates [0, Size-1] and [Size-1, Size-1],
along with an additional 10 to 30 randomly selected points
within the range [1, 2, . . . , Size-2].

Figure 17 shows the environments in which the experi-
ments were conducted, namely, Shanghai-1-1024, Shanghai-
2-1024, Random-1000-2, and Simulation-200.

Figure 17(a) and Figure 17(b) were derived from
the Benchmarks for Grid-Based Pathfinding standards
(http://movingai.com/benchmarks/). Two maps, 1024 ×
1024 in size and containing 65 start–target location pairs,
were selected and tested. Meanwhile, Figure 17(c) was ran-
domly generated based on an obstacle rate of 0.2 and a size
of 1000× 1000. Figure 17(d), which shows the results of the
simulation (size, 2000 × 2000), was generated via manual
illustration.

We compared the effectiveness of two types of algorithms:
unimproved A∗ algorithms (A∗ 8d and A∗ 16d) and improved
methods (Theta∗, HPTheta∗, HPA∗ 8d improved, HPA∗ 16d
improved). Theta∗ is an any-angle path planning algorithm,
while HPA∗ 8d improved and HPA∗ 16d improved represent
the enhancements proposed in this paper.

In our experiments, the grid was segmented into 10 ×
10 blocks of 50 × 50 for every map. The convolutional
kernel from (16) and the heuristic function from (17) were
utilized, and a method for preventing the duplicate extensions
of neighboring nodes was also incorporated. Meanwhile, the
standard A∗ algorithm employed the Octile heuristic and a
similar method for avoiding repeated neighbor expansions.
The improved HPA∗ algorithm segmented path calculations,
using a counting method to determine the number of access
points for the entire path. Notably, the maximum number of
access points across one segment represented the count for
that entire path planning session.

121802 VOLUME 12, 2024

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

TABLE 8. Comparison of the conventional A∗ algorithm and convolutional A∗ algorithm.

FIGURE 17. Schematic diagram of experimental environments.
(a) Shanghai-1-1024; (b) Shanghai-2-1024; (c) Random-1000-2;
(d) Simulation-2000.

TABLE 9. Comparison of the conventional A∗ Algorithm and improved A∗

Algorithm.

TABLE 10. Percentage of improvement with the improved A∗ algorithm
versus the conventional A∗ Algorithm.

Tables 9 and 10 illustrate that the improved HPA∗

algorithm significantly enhances path planning performance

TABLE 11. Quantitative results and comparison of the impact of cluster
size.

TABLE 12. Quantitative results and comparison of time cost and path
length on a Random-1000-2 map following the application of
conventional and improved A Algorithms.

by reducing time costs and the number of access points
while minimally increasing the path cost. Specifically, when
applied using an eight-neighborhood exploration approach,
the algorithm reduces the time spent by 94.53% and lowers
the number of access points by 96.27%, thus substantially
decreasing the memory footprint. Under these conditions,
the path cost increases by a mere 0.31%, and the imple-
mentation of a convolutional repulsive field decreases the
obstacles around the path by 4.63%. In contrast, the
sixteen-neighborhood exploration approach incurs a path cost
increase of 1.12% due to chunking behavior, which has a
lower effect on sixteen-neighborhood exploration than on
eight-neighborhood exploration, reducing the path cost by
1.2% in comparison to the conventional eight-neighborhood
A∗ algorithm. Notably, the sixteen-neighborhood regular
A∗ method demonstrates considerable improvement over its
eight-neighborhood counterpart, demonstrating its suitability
for path planning in large-scale randomized grid maps.

Table 11 demonstrates that cluster size significantly
impacts pathfinding efficiency. When the cluster size
increases from 50 to 100, a much longer time is required for
path planning. However, the increase in cluster size yields a
path that is closer to the optimal one achievable by the A∗

algorithm, though a more nuanced balance is necessitated
given the diminishing returns in path cost reduction at a
cluster size of 100.

Table 12 shows the performance of the improved HPA∗

algorithm on maps configured with the Random-1000-2

VOLUME 12, 2024 121803

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

TABLE 13. Comparison of the results of different algorithms based on the Shanghai-1-1024 MAP.

TABLE 14. Comparison of the results of different algorithms based on the Shanghai-2-1024 MAP.

TABLE 15. Comparison of the results of different algorithms based on the Random-1000-2 MAP.

parameter and a cluster size of 50, using the convolution ker-
nel outlined in (17) as a heuristic. This comparison confirms
the effectiveness of the improved algorithm.

Tables 13 and 14 show the results obtained from tests based
on Figure 17 (a) and (b). Sixty-five start–target tasks were
randomly selected from the dataset for testing. The time,
length, and nodes were calculated based on the average values
across 65 tasks. The length parameter represented the average
length of the shortest path of the task in a given dataset.
In the experiments, A∗ 8d and A∗ 16d both used the Octile
heuristic function, Theta∗ and HPTheta∗ [32] both used the
Euclid heuristic function, and HPA∗ improved used 16d
neighborhood exploration, the weighted Octile function, and
the repulsive field constructed via the convolutional method
for obstacle avoidance.

For the Shanghai-1-1024 map, the Improved HPA∗

algorithm achieves a 98.71% reduction in path planning time
when compared to the standard A∗ 8d algorithm. Addition-
ally, it maintains a consistent path length with a minimal
decrease of 2.55%. Despite the considerable increase in path
length relative to the standard A∗ 16d and Theta∗ algo-
rithms due to hierarchical structuring, the Improved HPA∗

algorithm outperforms HPATheta∗ with respect to both time
and path length reductions. Additionally, the Improved HPA∗

algorithm increases the obstacle rate along the path, improv-
ing the distance maintained from obstacles. In terms of
memory usage, this algorithm reduces the average number of
nodes accessed by 98.10%, significantly reducing memory
consumption when compared to the A∗ 8d algorithm.

For the Shanghai-2-1024 map, the Improved A algorithm
significantly reduces path planning time by 98.55% when
compared to the standard A∗ 8d algorithm, while increasing
the path length by only 2.65%. Additionally, it achieves a
30.78% time reduction relative to the HPATheta∗ algorithm.
The obstacle rate of the improved HPA∗ algorithm around
the path is as low as 0.0021, representing a 93.63% reduc-
tion in comparison to the standard A∗ 8d algorithm, thus
ensuring that the paths avoid close proximity to obstacles.
In terms of memory usage, the improved HPA∗ algorithm
accesses an average of 98.18% fewer nodes than the standard
A∗ 8d algorithm, thereby reducing memory consumption
significantly.

In the Random-1000-2 map, the Improved A∗ algorithm
achieves a significant time reduction of 97.89% versus the

121804 VOLUME 12, 2024

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

TABLE 16. Comparison of the results of different algorithms based on the Simulation-2000 MAP.

standard A∗ 8d algorithm. Despite the challenges posed by
the random obstacle generation and chaotic environments in
suchmaps, the ImprovedA∗ algorithm also reduces the obsta-
cle rate around the path by 18.42%. This algorithm prioritizes
the identification of open, symmetric paths. Additionally,
while the path length it yields is lower than that provided by
the HPATheta∗ algorithm, it also minimizes traversal through
obstacle clusters.

In the Simulation-2000 map, which contains a 2000 ×
2000 region, the Improved A∗ algorithm demonstrates sig-
nificant efficiency enhancements. First, it reduces the path
planning time by 99.15% and the path length by 3.09% when
compared to the standard A∗ 8d algorithm. Additionally,
it decreases the number of accessed nodes by 98.65% and
lowers the path obstacle rate by 71.27% in comparison to
A∗ 8d. When compared to the HPATheta∗ algorithm, the
Improved A∗ algorithm yields a planning time and obstacle
rate reduction of 15.34% and 73.55%, respectively. Specifi-
cally, the obstacle rate reduces significantly from 95.22% to
18.42%. Thus, this algorithm offers a slight optimization over
HPATheta∗, which also employs hierarchical theory.

B. PRACTICAL SCENARIOS
In this paper, the area spanning from 25◦6′ 34.72′′ to 24◦58′

3.68′′ N and 121◦10′ 11.46′′ to 121◦24′ 2.06′′ E was selected
as the experimental area, including both the urban road net-
work and off-road environments, as shown in FIGURE18 (a).
In path planning for large-scale scenarios, a vehicle can be
abstracted as a mass point. Hence, the data of the selected
area should be matched to motorized vehicle information to
obtain more practical path planning results. To align with the
characteristics of motorized vehicles, we leveraged remote
sensing satellite imagery with a 2.5-meter resolution in con-
junction with Digital Elevation Model (DEM) data, thereby
enhancing the practical applicability of our path planning
outcomes. Ground accessibility information was extracted
through semantic segmentation of remote sensing images in
tandemwith slope analysis derived fromDEMdata, as shown
in FIGURE18 (b). This integrated approach yielded slope
data, enabling the generation of an accessibility map for the
designated area, comprising approximately 63 million grid
cells.

Furthermore, we proceeded with tests on three distinct
paths of varying lengths, originating from a common starting

point and terminating at different target locations, as outlined
in Table 17. We juxtaposed the performance of fundamental
pathfinding algorithms, namely A∗ and Theta, against a hier-
archical planning methodology, encompassing

HPATheta and the enhanced HPA∗ Improved algorithm
introduced in this study. In the context of real-world, large-
scale path planning, computational efficiency emerges as
a pivotal challenge. The outcomes, presented in Table 18,
underscore the remarkable capability of the HPA∗ Improved
algorithm in reducing computation time by a staggering
99.51% in comparison to A, while maintaining paths that
are merely 1.6% less optimal. In a specific instance, when
benchmarked against HPATheta for the path traversing from
[8144, 1157] to [100, 4000], HPA∗ Improved demonstrated
an impressive 84.49% reduction in computation time. The
efficacy of our path planning approach is vividly demon-
strated in Figure 19, where the paths generated by HPA∗

Improved exhibit a close resemblance to those produced
by A∗ and Theta∗, as evident in Figures 19(b) and 19(c),
respectively.

FIGURE 18. (a) Remote sensing imagery for selected areas (b) Finalized
pass/fail grid maps.

TABLE 17. Detailed information on the real-life experimental scenarios.

Table 18 shows the calculation of the three paths. The data
clearly demonstrate that the algorithm designed in this paper
showcases a substantial improvement in the efficiency of path

VOLUME 12, 2024 121805

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

TABLE 18. The results of different algorithms based on the real scenarios.

FIGURE 19. (a) Path planning results. Where AStar results are shown using cyan colored dashed lines, theta is shown using green dashed lines,
HPA∗ Improved is shown using red dashed lines, and HPATheta∗ is shown using purple dashed lines. (a) Starting at [8144, 1157] and ending at [100,
4000], (b) Starting at [8144, 1157] and ending at [3850, 4583], (c) Starting at [8144,1157] and ending at [7438, 2816].

planning in complex environments. A maximum improve-
ment of about 141-fold can be achieved, and the path cost
can be controlled within a reasonable range.

VI. CONCLUSION AND FUTURE OUTLOOK
This paper presents an enhanced HPA∗ algorithm tailored to
improving path planning in the large-scale grid maps of real-
world environments. The enhancements focus on accelerating
planning speed, ensuring safety, and minimizing traversal
through densely obstructed areas. The method proposed in
this paper encompasses several key steps: (1) Transformation
of the Grid Map: The grid map path planning problem is
reformulated as an abstract map search problem by convert-
ing the original grid map into an abstract map. (2) Analysis
of Neighborhood Branches: We examined how the number
of neighborhood branches affects path planning, especially
in terms of time and distance costs. Our analysis indicates
that the sixteen-neighborhood exploration mode is superior
to the eight-neighborhood extension mode for more random-
ized maps. (3) Heuristic Function and Safety Enhancements:
following a comparative analysis of various basic heuristic
functions, we introduce the weighted Octile function, which
effectively reduces the number of access points and acceler-
ates path planning. Additionally, we propose a convolutional
repulsive field-based method to enhance path security. Our
experimental results demonstrate that the enhanced HPA∗

algorithm significantly reduces the number of access points,
decreases path planning time, and enhances the reliability of
movement in environments containing randomized obstacles.

In the future, we aim to develop a more rapid method
for constructing abstraction graphs that adapt to dynamically

changing environments. This effort seeks to enhance the
responsiveness and efficiency of the A∗ algorithm in complex
scenarios and environments.

REFERENCES
[1] C. Hua, R. Niu, B. Yu, X. Zheng, R. Bai, and S. Zhang, ‘‘A global path

planning method for unmanned ground vehicles in off-road environments
based on mobility prediction,’’Machines, vol. 10, no. 5, p. 375, May 2022.
[Online]. Available: https://www.mdpi.com/2075-1702/10/5/375

[2] Y. Zhao, Z. Zheng, and Y. Liu, ‘‘Survey on computational-intelligence-
based UAV path planning,’’ Knowl.-Based Syst., vol. 158, pp. 54–64,
Oct. 2018, doi: 10.1016/j.knosys.2018.05.033.

[3] B. Xing, M. Yu, Z. Liu, Y. Tan, Y. Sun, and B. Li, ‘‘A review of path
planning for unmanned surface vehicles,’’ J. Mar. Sci. Eng., vol. 11,
no. 8, p. 1556, 2023. [Online]. Available: https://www.mdpi.com/2077-
1312/11/8/1556

[4] J. A. Abdulsaheb and D. J. Kadhim, ‘‘Classical and heuristic approaches
for mobile robot path planning: A survey,’’ Robotics, vol. 12, no. 4, p. 93,
Jun. 2023. [Online]. Available: https://www.mdpi.com/2218-6581/12/4/93

[5] K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, ‘‘A survey
of path planning algorithms for mobile robots,’’ Vehicles, vol. 3,
no. 3, pp. 448–468, Aug. 2021. [Online]. Available: https://www.mdpi.
com/2624-8921/3/3/27

[6] B. K. Patle, G. Babu L, A. Pandey, D. R. K. Parhi, and A. Jagadeesh,
‘‘A review: On path planning strategies for navigation of mobile
robot,’’ Defence Technol., vol. 15, no. 4, pp. 582–606, Aug. 2019, doi:
10.1016/j.dt.2019.04.011.

[7] P. Raja and S. Pugazhenthi, ‘‘Optimal path planning of mobile robots: A
review,’’ Int. J. Phys. Sci., vol. 7, pp. 1314–1320, Feb. 2012.

[8] J. Liu, Y. Yan, Y. Yang, and J. Li, ‘‘An improved artificial potential
field UAV path planning algorithm guided by RRT under environment-
aware modeling: Theory and simulation,’’ IEEE Access, vol. 12,
pp. 12080–12097, 2024, doi: 10.1109/ACCESS.2024.3355275.

[9] K. Zheng, ‘‘Autonomous obstacle avoidance and trajectory planning for
mobile robot based on dual-loop trajectory tracking control and improved
artificial potential field method,’’ Actuators, vol. 13, no. 1, p. 37, Jan. 2024.
[Online]. Available: https://www.mdpi.com/2076-0825/13/1/37

[10] J. D. Tenenberg, ‘‘Abstraction in planning,’’ Ph.D. dissertation, Dept.
Comput. Sci., Univ. Rochester, Rochester, NY, USA, 1988.

121806 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.knosys.2018.05.033
http://dx.doi.org/10.1016/j.dt.2019.04.011
http://dx.doi.org/10.1109/ACCESS.2024.3355275

D. Sun et al.: Accelerated Path Planning for Large-Scale Grid Maps

[11] O. Souissi, R. Benatitallah, D. Duvivier, A. Artiba, N. Belanger, and
P. Feyzeau, ‘‘Path planning: A 2013 survey,’’ in Proc. Int. Conf. Ind. Eng.
Syst. Manage. (IESM), Oct. 2013, pp. 1–8.

[12] J. R. Sánchez-Ibáñez, C. J. Pérez-del-Pulgar, and A. García-Cerezo,
‘‘Path planning for autonomous mobile robots: A review,’’
Sensors, vol. 21, no. 23, p. 7898, Nov. 2021. [Online]. Available:
https://www.mdpi.com/1424-8220/21/23/7898

[13] Q. Gu, Y. Chen, J. Zhou, and J. Huang, ‘‘A fast linearized virtual element
method on graded meshes for nonlinear time-fractional diffusion equa-
tions,’’ Numer. Algorithms, pp. 1–37, 2024.

[14] H. Liu, Q. Chen, and P. Liu, ‘‘A novel memory concurrent editing model
for large-scale video streams in edge computing,’’ Mathematics, vol. 11,
no. 14, p. 3175, Jul. 2023.

[15] Z. Wang, E.-H. Kim, S. KwunOh, W. Pedrycz, Z. Fu, and J. H. Yoon,
‘‘Reinforced fuzzy rule-based neural networks realized through stream-
lined feature selection strategy and fuzzy clustering with distance
variation,’’ IEEE Trans. Fuzzy Syst., early access, Jul. 9, 2024, doi:
10.1109/TFUZZ.2024.3422414.

[16] H. Liu, Q. Chen, and P. Liu, ‘‘An optimization method of large-scale
video stream concurrent transmission for edge computing,’’Mathematics,
vol. 11, no. 12, p. 2622, Jun. 2023.

[17] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959, doi:
10.1007/bf01386390.

[18] P. Hart, N. Nilsson, and B. Raphael, ‘‘A formal basis for the
heuristic determination of minimum cost paths,’’ IEEE Trans.
Syst. Sci. Cybern., vol. SSC-4, no. 2, pp. 100–107, Jul. 1968, doi:
10.1109/TSSC.1968.300136.

[19] A. Ammar, H. Bennaceur, I. Chǎari, A. Koubǎa, and M. Alajlan, ‘‘Relaxed
Dijkstra and A∗ with linear complexity for robot path planning prob-
lems in large-scale grid environments,’’ Soft Comput., vol. 20, no. 10,
pp. 4149–4171, Oct. 2016, doi: 10.1007/s00500-015-1750-1.

[20] Q. Lei, L. H. Ling, and L. Jianlong, ‘‘Principle explanation and per-
formance analysis of jump point search algorithm,’’ J. Xinjiang Univ.,
vol. 33, no. 1, pp. 80–87, 2016, doi: 10.13568/j.cnki.651094.2016.
01.013.

[21] T. Chen, S. Chen, K. Zhang, G. Qiu, Q. Li, and X. Chen, ‘‘A jump point
search improved ant colony hybrid optimization algorithm for path plan-
ning of mobile robot,’’ Int. J. Adv. Robotic Syst., vol. 19, no. 5, Sep. 2022,
Art. no. 172988062211279, doi: 10.1177/17298806221127953.

[22] H. Sang, Y. You, X. Sun, Y. Zhou, and F. Liu, ‘‘The hybrid
path planning algorithm based on improved A∗ and artificial poten-
tial field for unmanned surface vehicle formations,’’ Ocean Eng.,
vol. 223, Mar. 2021, Art. no. 108709, doi: 10.1016/j.oceaneng.2021.
108709.

[23] M. Alajlan, A. Koubaa, I. Chaari, H. Bennaceur, and A. Ammar, ‘‘Global
path planning for mobile robots in large-scale grid environments using
genetic algorithms,’’ in Proc. Int. Conf. Individual Collective Behaviors
Robot. (ICBR), Dec. 2013, pp. 1–8.

[24] X. Zhong, J. Tian, H. Hu, and X. Peng, ‘‘Hybrid path planning based
on safe A∗ algorithm and adaptive window approach for mobile robot in
large-scale dynamic environment,’’ J. Intell. Robotic Syst., vol. 99, no. 1,
pp. 65–77, Jul. 2020, doi: 10.1007/s10846-019-01112-z.

[25] R. C. Holte, T. Mkadmi, R. M. Zimmer, and A. J. MacDonald, ‘‘Speeding
up problem solving by abstraction: A graph oriented approach,’’ Artif.
Intell., vol. 85, nos. 1–2, pp. 321–361, Aug. 1996, doi: 10.1016/0004-
3702(95)00111-5.

[26] R. C. Holte, M. B. Perez, R.M. Zimmer, and A. J. MacDonald, ‘‘Hierarchi-
cal A∗: Searching abstraction hierarchies efficiently,’’ in Proc. AAAI/IAAI,
vol. 1, 1996, pp. 530–535.

[27] X. Zheng, M. Ma, Z. Zhong, A. Yang, L. Chen, and N. Jing, ‘‘Two-
stage path planning for long-distance off-road path planning based on
terrain data,’’ ISPRS Int. J. Geo-Inf., vol. 13, no. 6, p. 184, May 2024, doi:
10.3390/ijgi13060184.

[28] D. Harabor andA. Botea, ‘‘Hierarchical path planning for multi-size agents
in heterogeneous environments,’’ in Proc. IEEE Symp. Comput. Intell.
Games, Dec. 2008, pp. 258–265.

[29] N. Sturtevant, J. Traish, J. Tulip, T. Uras, S. Koenig, B. Strasser, A. Botea,
D. Harabor, and S. Rabin, ‘‘The grid-based path planning competi-
tion: 2014 entries and results,’’ in Proc. Symp. Combinat. Search, 2015,
pp. 241–250.

[30] N. Pelechano and C. Fuentes, ‘‘Hierarchical path-finding for navigation
meshes (HNA∗),’’ Comput. Graph., vol. 59, pp. 68–78, Oct. 2016.

[31] S. Ting, S. Yuqi, Y. Jianping, Y. Haiyue, and W. Xiande, ‘‘Path planning
for lunar surface robots based on improved ant colony algorithm,’’ Trans.
Nanjing Univ. Aeronaut. Astronaut., vol. 39, no. 6, pp. 672–683, 2022, doi:
10.16356/j.1005-1120.2022.06.004.

[32] C. Chagas, E. Zacarias, L. A. de Lima Silva, and E. Pignaton de Freitas,
‘‘Hierarchical and smoothed topographic path planning for large-scale
virtual simulation environments,’’ Exp. Syst. Appl., vol. 189, Mar. 2022,
Art. no. 116061, doi: 10.1016/j.eswa.2021.116061.

[33] S. K. Moghadam, M. Ebrahimi, and D. D. Harabor, ‘‘Guards: Benchmarks
for weighted grid-based pathfinding,’’Exp. Syst. Appl., vol. 249, Sep. 2024,
Art. no. 123719, doi: 10.1016/j.eswa.2024.123719.

[34] C.-Y. Kim and S. Sull, ‘‘Grid graph reduction for efficient short-
est pathfinding,’’ IEEE Access, vol. 11, pp. 74263–74276, 2023, doi:
10.1109/ACCESS.2023.3293125.

[35] A. Pershutkin, A. Dukhanov, and P. Gladilin, ‘‘An approach to terrain
trafficability evaluation based on a neural network for emergency decision-
support systems,’’ in Proc. IEEE 13th Int. Conf. Appl. Inf. Commun.
Technol. (AICT), Oct. 2019, pp. 1–6.

[36] K. Daniel, A. Nash, S. Koenig, and A. Felner, ‘‘Theta: Any-angle path
planning on grids,’’ J. Artif. Intell. Res., vol. 39, pp. 533–579, Oct. 2010,
doi: 10.1613/jair.2994.

[37] N. Rivera, C. Hernández, and J. Baier, ‘‘Grid pathfinding on the 2K
neighborhoods,’’ in Proc. AAAI Conf. Artif. Intell., 2017, vol. 31, no. 1,
pp. 891–897, doi: 10.1609/aaai.v31i1.10666.

[38] N. Rivera, C. Hernández, N. Hormazábal, and J. A. Baier, ‘‘The 2K neigh-
borhoods for grid path planning,’’ J. Artif. Intell. Res., vol. 67, pp. 81–113,
Jan. 2020.

[39] B. Kramm, N. Rivera, C. Hernández, and J. A. Baier, ‘‘A suboptimality
bound for 2K grid path planning,’’ in Proc. Symp. Combinat. Search, 2021,
pp. 63–71.

[40] J. Chen, C. Tan, R. Mo, H. Zhang, G. Cai, and H. Li, ‘‘Research on path
planning of three-neighbor search A∗ algorithm combined with artificial
potential field,’’ Int. J. Adv. Robotic Syst., vol. 18, no. 3, May 2021,
Art. no. 172988142110264, doi: 10.1177/17298814211026449.

DUOHANG SUN received the B.S. degree in
software engineering from Nanjing University of
Posts and Telecommunications, Nanjing, China,
in 2022. He is currently pursuing the M.S. degree
with The 32nd Research Institute of China Elec-
tronics Technology Corporation, Shanghai, China.
His main research interests include agent path
planning and software engineering.

ZHE SUN received the B.S. degree in computer
science and technology from the Ocean University
of China (OUC), in 2013, and the M.S. degree
in computer science and technology from the
East China Institute of Computing Technology,
in 2016. His main research interests include com-
puter software and theory, mapping navigation,
and digitization. He was awarded the Society Best
Symposium Paper Award, in 2011.

PEINAN SHAO received the B.S. degree in
computer science from Nanjing University and
the M.S. degree in computer science from the
East China Institute of Computer Research. He is
currently the Chief Expert of China Electronic
Technology Group Corporation (CETC) and the
Vice-Chief Engineer of The 32nd Research Insti-
tute of CETC. His research interests include
software engineering and artificial intelligence.

VOLUME 12, 2024 121807

http://dx.doi.org/10.1109/TFUZZ.2024.3422414
http://dx.doi.org/10.1007/bf01386390
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1007/s00500-015-1750-1
http://dx.doi.org/10.13568/j.cnki.651094.2016.01.013
http://dx.doi.org/10.13568/j.cnki.651094.2016.01.013
http://dx.doi.org/10.1177/17298806221127953
http://dx.doi.org/10.1016/j.oceaneng.2021.108709
http://dx.doi.org/10.1016/j.oceaneng.2021.108709
http://dx.doi.org/10.1007/s10846-019-01112-z
http://dx.doi.org/10.1016/0004-3702(95)00111-5
http://dx.doi.org/10.1016/0004-3702(95)00111-5
http://dx.doi.org/10.3390/ijgi13060184
http://dx.doi.org/10.16356/j.1005-1120.2022.06.004
http://dx.doi.org/10.1016/j.eswa.2021.116061
http://dx.doi.org/10.1016/j.eswa.2024.123719
http://dx.doi.org/10.1109/ACCESS.2023.3293125
http://dx.doi.org/10.1613/jair.2994
http://dx.doi.org/10.1609/aaai.v31i1.10666
http://dx.doi.org/10.1177/17298814211026449

