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ABSTRACT Given the inherent diversity in learning styles and rhythms, the current educational
landscape demands continuous adaptation toward methodologies that enhance individualized learning.
This study addresses the effectiveness of learning personalization using machine learning models to adapt
educational content to individual learning styles. Focusing our attention on a cohort of 450 university
students, we implemented classification algorithms and neural networks to diagnose learning styles and
personalize educational resources accordingly. The results are revealing: the students’ average grades
experienced a significant increase, going from 70 to 75 points on a scale of 100 after the personalized
intervention. Additionally, increased engagement was recorded, evidenced by more substantial interaction
with educational materials tailored to their learning preferences. These findings suggest that personalization
of learning is a powerful and effective tool that can improve both academic performance and students’
educational experience. This work confirms the relevance of educational personalization supported by
artificial intelligence and provides a practical model for its effective implementation. The implications of
this study are particularly pertinent to the evolution of pedagogical practices and curriculum design in the
digital age.

INDEX TERMS Personalization of learning, machine learning in education, improved academic
performance.

I. INTRODUCTION

Personalized learning has emerged as a cornerstone in
the dialogue on educational innovation. In an increasingly
diversified society, the range of learning styles, including
visual, auditory, kinesthetic, and reading/writing, presents a
significant challenge for educators. Traditional instructional
methods often fail to address the unique needs of each
student, leading to suboptimal educational experiences and
outcomes. This study develops the field of personalized learn-
ing to discern its impact on students’ academic performance
and engagement. The relevance of this topic transcends
the academic sphere, projecting towards the design of
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educational policies and inclusive pedagogical practices [1].
Against this backdrop, crucial questions arise: How can
learning be optimized for each student? What is the actual
effect of personalization on educational outcomes?

The diversity of learning styles among students necessi-
tates a flexible approach to education, yet adapting method-
ologies to cater to these styles is fraught with challenges.
These include identifying each student’s predominant learn-
ing style, creating adaptable content, and ensuring that such
content can be delivered effectively in physical and digital
classrooms. Addressing these challenges requires innovative
solutions that process vast amounts of data and provide
insights into individual learning preferences.

The literature review reveals a growing collection of
studies that support personalized learning, highlighting
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its potential to improve educational experiences and out-
comes [2]. However, significant disparities remain in the
evidence on the effectiveness of personalization between
different learning styles. Some previous research has focused
exclusively on a single style or limited contexts, leaving a
gap in the comprehensive understanding of its application
and benefits. This study seeks to fill that gap by analyzing
personalization applied transversally to multiple learning
styles [3].

Our methodology leverages advanced machine learning
models, including classification algorithms and neural net-
works, to adapt educational content to the diverse needs of
a cohort of 450 university students. Machine learning has
been chosen for its ability to handle large volumes of data
and its potential to reveal complex patterns that may not be
immediately evident [4], [5]. These models can dynamically
adjust educational materials, providing personalization and
adaptability previously unattainable with traditional methods.

The novelty of our approach lies in its use of machine
learning to identify learning styles and tailor educational
experiences in real-time. This allows for unprecedented
adaptability and precision in addressing individual learn-
ing styles, significantly influencing academic performance.
Specifically, our results showed improvements in students’
average grades, which increased from 70 to 75 points
following the personalization intervention. Additionally,
increased student participation was observed, reflected in the
increased time spent interacting with educational materials.
These data directly impact the practical implementation of
personalized educational strategies in both classroom and
online learning platforms, suggesting that integrating these
technologies can transform modern education [6].

Comparison of these results with existing literature
indicates consistency with previous studies that report
improvements in student retention and satisfaction through
personalization [7], [8]. However, our study offers a more
granular perspective of the specific impact on various learn-
ing styles, presenting a replicable and scalable methodology
for educational institutions. By demonstrating the practical
application of machine learning in personalizing education,
this research provides a model that can be implemented
widely to enhance academic outcomes across diverse learning
environments.

Furthermore, the integration of machine learning in per-
sonalized learning strategies represents a significant advance-
ment in addressing the educational needs of a diverse student
population. This study confirms the relevance of customized
learning supported by artificial intelligence and provides a
practical framework for its effective implementation. Future
research will expand on these findings, exploring further
applications and refinements of machine learning models to
continue improving educational personalization.

The article is organized as follows: Section II presents
a detailed review of the relevant literature on personalized
learning and machine learning applications in education.
Section III describes the methodology used in our study,
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including the machine learning models and data used.
Section IV discusses the results obtained and analyzes their
impact on academic performance and student engagement.
Section V addresses the limitations of our study and potential
biases, providing a critical overview of the findings. Finally,
in Section VI, we offer our conclusions and suggest directions
for future research.

II. LITERATURE REVIEW
Personalization of learning refers to adapting instruction

and educational content to meet each student’s individual
needs. This involves considering factors such as learning
styles, learning preferences, proficiency level, and personal
interests. Learning styles refer to individual preferences for
how students process and assimilate information [9]. Some of
the most common learning styles include visual, auditory, and
kinesthetic learning, although there are many other possible
categorizations and combinations [10].

Machine learning is a branch of artificial intelligence
that focuses on developing algorithms and models that
allow computers to learn from data and perform specific
tasks without explicit programming [11]. In the educational
context, machine learning analyzes large educational data
sets and provides valuable insights to improve teaching and
learning [12]. Applying machine learning in education can
significantly enhance personalization, providing each student
with a more tailored learning experience.

Various methodologies and tools exist to identify students’
learning styles. Some standard techniques include question-
naires and surveys designed to assess individuals’ learning
preferences, classroom observations to identify specific
learning behaviors, and analysis of interaction data in online
learning environments to detect behavioral patterns [13].
However, these methodologies may have limitations in terms
of validity and reliability. Student responses may bias self-
reported questionnaires, classroom observations may be
subjective and limited in scope, and online data analysis may
not fully capture the diversity of learning styles.

Machine learning models adapt learning materials and
content delivery according to students’ learning styles [14].
These models can employ classification algorithms, cluster-
ing, and neural networks to analyze educational data and
provide personalized recommendations [15]. For example,
a machine learning model could analyze students’ interaction
patterns with online content and use this information to
recommend specific educational resources that align with
their learning preferences. Another approach could be to
adapt the difficulty of activities and assessments based on
the student’s learning style, providing an optimal level of
challenge and support [16].

Numerous studies have explored the use of machine
learning models for personalization of learning in various
educational contexts. For example, Veeramanickam and
colleagues [17] developed a machine learning-based system
that analyzed students’ interaction patterns with online
learning material to identify their learning preferences. Other
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studies, such as Shelehov et al. [18], have investigated the
effectiveness of educational content adaptation based on
machine learning algorithms to improve student engagement
and performance. However, despite the growing interest in
this topic, there are still challenges in implementing machine
learning models for learning personalization, including
accuracy in identifying learning styles and scalability in
large-scale educational environments [19].

A recent study by Saqib et al. [20] presents DenseHillNet,
alightweight Convolutional Neural Network (CNN) designed
to classify natural images accurately. While primarily focused
on image classification, the techniques developed can be
adapted for educational purposes, particularly in creating
visual content that is accurately tailored to the learner’s
style. The lightweight nature of DenseHillNet makes it
particularly suitable for integration in educational tools where
computational resources may be limited.

Another relevant study by Yaqoob et al. [21] explores
federated learning based on hybrid classifiers in health-
care providers for predicting cardiovascular diseases. This
approach to federated learning ensures data privacy and
security while allowing for the personalization of services.
Similar methodologies can be applied in educational settings
to personalize learning experiences while safeguarding
student data. The study highlights the importance of scalable
and privacy-preserving machine learning models, which are
crucial for implementing personalized learning at a larger
scale in educational environments.

IIl. MATERIALS AND METHODS

This work addresses the challenge of personalizing learning
based on students’ learning styles. The diversity of learning
styles presents a significant obstacle to teaching effective-
ness, as traditional instructional methods may not meet each
student’s needs. This problem is exacerbated in diverse and
online educational environments, where students come from
diverse backgrounds and have different ways of learning.

We propose a solution based on machine learning models
to overcome this challenge. These models have the potential
to identify students’ learning styles and adapt educational
content in a personalized way to meet their individual
needs [22]. By leveraging technology and advances in
artificial intelligence, we seek to provide a more effective and
meaningful educational experience for all students, regardless
of their learning styles and preferences.

The methodology used in this work aims to address
the challenge of personalizing learning based on students’
learning styles [23]. To this end, Figure 1. presents the
necessary stages to advance the understanding and practical
application of the personalization of learning in contempo-
rary educational environments.

The method involves implementing a machine learning
system to identify students’ learning styles and adapt
educational content accordingly. To achieve this, data
will be collected from different sources, including student
interactions with online educational material, responses to
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specific questionnaires for identifying learning styles, and
academic performance records. Once the data is collected,
a preprocessing process will be performed to clean and
normalize the data, thus ensuring its quality and consistency.
Subsequently, machine learning models are selected and
trained using specific algorithms suitable for educational
data analysis, such as logistic regression, neural networks,
or classification algorithms [24].

Once the models are trained and validated, they personalize
educational content according to students’ learning styles.
This will include selecting specific learning materials, tailor-
ing content presentations, and creating interactive activities
that align with each student’s learning preferences. In the
end, the effectiveness of learning personalization is evaluated
using metrics such as students’ academic performance,
student satisfaction with the educational experience, and
students’ perception of the usefulness of personalization [25].
This comprehensive approach will ensure a deep understand-
ing of the impact of the proposed solution on improving the
teaching and learning process.

A. DATA COLLECTION

For data collection, a cohort of 450 university students
was chosen to implement a pilot system for personalizing
learning. This selection seeks to capture a wide diversity
within the age range of 18 to 25 years, thus ensuring the
sample’s representativeness regarding academic maturity and
diversity of study disciplines. The composition of the cohort
reflects an equitable distribution in terms of gender. It spans
various levels of educational advancement, from first-year
students to those in their final years of career.

The choice to work with a university population was based
on exploring the personalization of learning in a higher
education context, where students face complex academic
challenges and have well-defined learning styles. Varied
educational materials, including text, images, and videos,
were incorporated to evaluate how different types of content
can be effectively adapted to each learning style and how
this affects student interaction, engagement, and academic
performance.

The data collection strategy focused on three key instru-
ments, enriched with concrete examples and detailed descrip-
tions to illustrate our methodology. The questionnaires to
identify learning styles were based on the VARK model,
including questions such as ‘Do you prefer visual explana-
tions such as graphs and diagrams?’ or ‘Do you remember
information better through reading or audio?’ to classify
students of visual auditory, reading/writing, and kinesthetic
learning [26]. Additionally, recognizing that some students
may be unsure of their learning preferences, we incorporated
exploratory questions designed to engage students in various
learning activities. These activities help students experience
different learning modalities firsthand, thus enabling them
to identify which methods enhance their learning most
effectively. This adaptive approach ensures that every student,
regardless of their initial awareness of their learning style, can
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FIGURE 1. Learning personalization using machine learning.

benefit from a personalized educational experience. This tool
is justified by its ability to break down learning preferences
into manageable components, providing a solid foundation
for adapting educational content effectively.

The knowledge tests, designed to evaluate the effectiveness
of learning personalization, consisted of sets of questions
before and after the implementation of the pilot system,
covering fundamental topics of the subjects under study. For
example, in a mathematics course, tests include calculation
problems to be solved in writing and through applying
specific software, evaluating conceptual understanding, and
practical application. The selection of these tests was
based on their ability to objectively measure the impact of
personalization on academic performance [27].

The records of interaction with the educational materials
were obtained through tracking software that meticulously
recorded the students’ actions on the learning platform,
including the time spent on each type of content, which
resources they selected most frequently, and their progress
through different modules. This information provided valu-
able insights into how students interacted with personalized
content, allowing us to adjust and improve the delivery of
educational materials continually.

The integration of these instruments, complemented by
detailed examples and descriptions, underlines the depth
and rigor of our methodological approach. Not only do
they enable rich and varied data collection, but they also
ensure that our empirical research closely aligns with the
goals of significantly improving the educational experience
for university students, demonstrating a commitment to
academic excellence and pedagogical innovation.

The integration of these instruments, complemented by
detailed examples, reinforces the depth and rigor of our
methodological approach. These facilitate varied data collec-
tion, ensuring precise empirical alignment with the goals of
optimizing the educational experience for university students
and fostering pedagogical innovation.

In the data collection process, structured questionnaires
based on the VARK model were implemented and configured
to identify visual, auditory, reading/writing preferences and
kinesthetic learning styles. Below are examples of the
questions asked:
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Visual:

e Do you prefer to integrate diagrams and graphs to
understand new concepts?

o Do you find it helpful to visualize information using
mental maps or synoptic tables when faced with a
complex problem?

Auditory:

« How much benefit do you get from activities that involve
audio as part of your learning?

o During lectures or presentations, do verbal explanations
help you retain information better?

Reading writing:
« Do you have a habit of synthesizing information through
written summaries?

« When you study, do you prefer to work with printed texts
and detailed notes on the readings?

Kinesthetic:

« Do you consider physical interaction with materials
essential for your learning process?

« Do you learn better when you can use physical models
or engage in hands-on activities that involve movement?

The responses are processed through classification algo-
rithms to assign each student to the corresponding learn-
ing style category. This approach categorizes learning
preferences and guides the subsequent personalization of
educational content, adjusting to the specific needs identified.
To protect personal data, the system implements security
protocols that include anonymizing responses during data
collection and analysis. This procedure ensures compliance
with current privacy regulations and reinforces the integrity
of the investigative process.

B. DATA PREPROCESSING

This process was carried out in three main stages: data
cleaning, normalization, and dimensionality reduction. The
first stage involved eliminating inconsistent, incomplete,
or erroneous records. This included correcting typographical
errors, removing duplicate responses, and imputing missing
values in cases where it was possible to preserve the integrity
of the data set. For example, 15 duplicate records were
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identified and discarded, and 30 entries with apparent errors
in the coding of questionnaire responses were corrected.

Subsequently, the variables were normalized to make them
comparable, applying min-max scaling techniques to adjust
all numerical variables to a standard range from O to 1. This
normalization was crucial for subsequent analyses, especially
for using machine learning algorithms that assume that all
inputs are on a uniform scale [28].

TABLE 1. Summary of the data preprocessing process.

Preprocessing | Description Quantity Before Quantity After
Stage

Data Removal of dupli- | 450 records 435 records
Cleaning cates and correc-

tion of errors
Data Normal- | Min-max scaling | They vary by vari- | 0-1 (all)
ization of numerical | able
variables

Dimensionality PCA Application
Reduction

30 initial features | Top 10 Features

The last stage consisted of selecting the most relevant char-
acteristics for identifying learning styles, using techniques
such as principal component analysis (PCA) to reduce the
dimensionality of the data set without sacrificing critical
information. This allowed us to focus the study on the
variables that most contribute to differentiating learning
styles, thus improving the efficiency and effectiveness of
machine learning models [29].

In this work, we have selected PCA as the primary tool
for dimensionality reduction during the data preprocessing
phase. We opted for PCA because of its significant advan-
tages: it simplifies complexity by reducing the dimensionality
of the data while retaining as much of the original variance
as possible, facilitating more efficient and manageable
analysis. Additionally, PCA allows for better visualization
of underlying patterns and relationships in high-dimensional
data sets and helps minimize the impact of noise, focusing
analysis on the most meaningful aspects of the data.

Table 1 summarizes the significant changes in the data
set through the cleaning, normalization, and dimensionality
reduction stages. Each step is essential to transform raw
data into a format optimized for analysis, allowing for
more accurate and efficient assessment of college students’
learning styles. The table presents the reduction in the number
of records after cleaning, normalization and dimensionality
reduction, which prepared the data set for a deeper and more
meaningful exploration of the underlying patterns.

1) SELECTION AND TRAINING OF MACHINE LEARNING
MODELS

In the machine learning model selection and training phase,
various algorithms are evaluated to determine which offers
the best performance in identifying individual learning styles
and adapting educational content. The models considered
include linear regression, K-Means, and neural networks,
selected for relevance and popularity in classification and
clustering tasks in the education domain.
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2) DESCRIPTION OF THE MACHINE LEARNING MODELS
USED

In this study, we have selected specific machine learning
models, each for its unique capabilities and adaptation
to the data set’s characteristics. Each model’s technical
performance and relevance have guided the choice of
answering specific research questions in the educational
field.

Classification algorithms constitute the core of our
methodology, facilitating categorizing students into different
learning style profiles. Leveraging a variety of classifiers,
including but not limited to Decision Trees, Support Vector
Machines (SVM), and Nearest Neighbors (k-NN), we seek
to discern patterns and relationships within the data that
correlate with unique learning preferences. Decision Trees
offer interpretability and transparency, allowing us to delin-
eate decision boundaries based on characteristics extracted
from student interactions and performance metrics. With
its ability to handle high-dimensional data and nonlinear
relationships, SVM complements our analysis by outlining
complex decision surfaces. Additionally, k-NN, a non-
parametric algorithm, provides flexibility to capture local
structures within the data, thus improving the granularity of
our classification.

Support Vector Machines (SVM) were selected for their
robustness in high-dimensional spaces and their ability to
handle non-linearly separable data. They use different kernels
to adapt to the complexity of educational data. Artificial
Neural Networks are implemented because they can capture
complex nonlinear relationships between variables across
multiple hidden layers, making them ideal for analyzing
patterns in educational performance data.

In addition to traditional classifiers, neural networks
constitute a pivotal component of our methodology, allowing
us to model intricate nonlinear relationships inherent in
learning style data. Specifically, we employ deep neural
networks, characterized by multiple hidden layers, to extract
hierarchical representations of raw input features. By lever-
aging architectures such as Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN), we harness
the power of deep learning to discover latent structures and
patterns within data.

For its part, K-Means Clustering segments the data
set into homogeneous groups, facilitating the identifica-
tion of underlying patterns and trends among students.
K-Means is particularly useful for exploring natural group-
ings within data, which can reveal meaningful information
about common student behaviors.

To ensure the robustness and generalizability of our
machine-learning models in various educational contexts,
we propose adopting improved validation techniques, includ-
ing cross-validation. By conducting cross-validation studies,
we sought to evaluate the effectiveness of personalized
learning strategies in varied educational environments. This
meticulous validation process will validate the effective-
ness of our machine-learning models and provide insights
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TABLE 2. Comparison of characteristics and criteria for the selection of
machine learning models.

Criterion Linear regres- | K-Means | Neural Net- | Other Models
sion works Considered

Modeling Ca- | Linear Clustering | Non-Linear | SVM, Decision

pability Trees

Model Com- | Low Half High It varies

plexity

Data Suitabil- | Structured, Any kind | Structured | Model Depen-

ity Numeric and Un- | dent

structured

Flexibility High Model De- | Performance | Low Moderate

Low Half pendent on  Large | High It varies
Data
Interpretability] High Half Low Registration for

Decision Trees

into their adaptability and scalability in different learning
environments.

3) RATIONALE FOR MODEL SELECTION
The selection of the machine learning models was based
on an analysis of several key characteristics, as summarized
in Table 2. The study reveals that although models such as
SVM and Decision Trees are powerful and versatile, the
models of Specific linear regression, K-Means, and neural
networks offer distinct advantages that closely align with
the objectives and the nature of the data available. Linear
regression, with its simplicity and high interpretability, serves
as an excellent starting point and comparison, allowing a basis
to be established for evaluating the impact of more complex
approaches [30]. K-Means stands out for its effectiveness
in grouping, which can be applied to students based on the
similarity of learning styles; this is a crucial functionality
for our goal of personalizing learning. Subsequently, Neural
Networks are selected for their flexibility and superior ability
to capture and model the complex non-linear relationships
between learning styles and educational outcomes, making
them particularly suitable for our multifaceted analysis [31].
The choice of these models reflects a carefully considered
balance between the need for simple and direct interpretation
of the data (benefit of Linear Regression and, to some
extent, K-Means) and the ability to handle complexities
and patterns not evident in large data sets (a strength of
Neural Networks). The decision was reinforced by a literature
review, confirming these models’ effectiveness in similar
contexts [32]. Together, these models offer a comprehensive
and nuanced approach to understanding and addressing the
personalization of learning in educational settings, ensuring
that we cover the effective grouping of students and the
accurate prediction of their academic outcomes.

4) MODEL CONFIGURATION PARAMETERS

The parameters and hyperparameters are carefully tuned
to configure the learning models to optimize performance.
In linear regression, the learning rate is adjusted, experiment-
ing with values from 0.01 to 0.1, and L2 (Ridge) regular-
ization is applied with a lambda regularization coefficient
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that varies from 0.001 to 1 to prevent overfitting. In the
K-Means model, clusters range from 3 to 10 to identify
the optimal number of groupings, finally selecting k=5
based on the maximum silhouette score obtained through the
elbow method and silhouette analysis [33]. Furthermore, the
‘k-means++ initialization method is used for a more efficient
selection of the initial centroids.

For neural networks, configurations of 1 to 3 hidden
layers are tested, ranging from 32 to 512 neurons per layer,
determining that two hidden layers with 128 neurons each
offer the best balance between complexity and the ability
to capture patterns in the data. ReLU is chosen as the
activation function for the hidden layers for its efficiency.
Softmax is selected in the output layer to facilitate multi-
class classification. The learning rate is started at 0.001,
dynamically adjusting with learning rate reduction in plates,
and Adam is selected as the optimizer because of his ability
to handle adaptive learning rates. Training is performed for
100 epochs with a batch size of 32, seeking a balance between
training time and optimal model convergence.

Cross-validation was implemented in selecting hyperpa-
rameters for all models; this ensures an adequate fit to the
training data and an excellent generalization to new data.
This iterative adjustment and validation process allows us to
identify the optimal parameter configuration for each model,
thus maximizing its efficiency and precision for predict-
ing learning styles and adapting educational content. The
meticulousness in parameter tuning reflects our commitment
to a rigorous, evidence-based approach to model selection,
ensuring the relevance and impact of our study in the field of
educational personalization.

C. CLASSIFICATION ALGORITHMS AND NEURAL
NETWORKS

The K-Means algorithm was selected for its efficiency in
clustering large data sets and its ability to identify student
learning patterns. K-Means’ parameter settings include
several clusters (k) determined using the elbow method,
resulting in k = 4 representing the main learning styles
(visual, auditory, kinesthetic, reading/writing). Initialization
was performed with K-Means++ to improve the quality of
the clusters, and a maximum of 300 iterations were allowed
to ensure convergence. The pseudocode of the K-Means
algorithm is as follows: Initialize k centroids randomly.
Repeat until centroids do not change: assign each data point to
the closest cluster and calculate new centroids as the average
of the data points in each cluster.

Artificial Neural Networks (ANN) were used due to
their ability to model complex nonlinear relationships and
their effectiveness in classifying multidimensional data.
The parameter settings for the ANNs include a three-layer
architecture (input, hidden, output) with 128 neurons in the
hidden layer. The activation function used was ReLU, and
the optimizer was Adam, with a learning rate of 0.001. The
model was trained for 100 epochs with a batch size of 32. The
pseudocode of the ANN algorithm is as follows: Initialize
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the neural network weights randomly. For each epoch: For
each batch of data, forward propagate to compute the output,
compute the loss, and backpropagate to update the weights
using the Adam optimizer.

The selected algorithms are based on their ability to handle
the diversity of educational data and their effectiveness
demonstrated in previous studies. K-Means was chosen
for its simplicity and efficiency in clustering data, while
ANNs were selected for their ability to capture nonlinear
relationships and perform accurate classifications. Regarding
specific roles in diagnosing learning styles, K-Means was
used to group students into different learning styles based
on their interaction with educational materials. On the other
hand, ANNs were used to predict each student’s learning style
and dynamically adapt educational materials to optimize their
learning experience.

D. MODEL TRAINING METHODOLOGY

The preparation and evaluation of machine learning models
follow a structured process designed to maximize their
effectiveness and relevance for educational personalization.
This process begins with dividing the data set into two parts:
one to train the models and another to test their performance.
Specifically, 70% of the data is allocated to training, while
the remaining 30% is reserved for testing. This technique,
known as the train/test partition, is a standard in machine
learning that helps evaluate how the model will behave with
new, previously unseen data [34].

For example, to illustrate how training works, we take the
training of a neural network to identify learning styles as
an example. Initially, the model is fed 70% of the training
data, including examples of different learning styles and
their associated characteristics. During this phase, the model
learns to recognize patterns and relation-ships within the
data, adjusting its internal parameters to predict the most
likely learning style based on the input features. The gradient
descent algorithm, a mathematical method to minimize
errors, is used, thus ensuring that the model fits efficiently
with the data provided.

Once the model has been trained, its performance is
evaluated using 30% of the test set data. This step allows
you to measure the model’s accuracy in predicting learning
styles for examples not part of its training, indicating how
it will perform in real situations. Performance evaluation
metrics, such as accuracy, sensitivity, specificity, and the
area under the Receiver Operating Characteristic (ROC)
curve, are fundamental in this phase. These metrics provide
a quantitative framework for evaluating the effectiveness
of machine learning models. Precision is the proportion of
correct identifications (true positives) among the model’s
predictions. Mathematically, TP is the number of true
positives, and FP is the number of false positives. It is
calculated as:

. TP
Precision = ——— @))
TP + FP

121120

Recall measures the model’s ability to identify positive
cases among all real positive cases correctly. Where FN is the
number of false negatives, it is calculated with the formula:

TP
Recall = ——— )
TP + FN

Specificity measures the model’s ability to identify neg-
ative cases among all real negative cases correctly. It is
calculated as:

Specificity = l 3)

IN + FP

where TN represents the true negatives. The area under the
ROC curve (AUC-ROC) provides a comprehensive measure
of the model’s ability to discriminate between different
classes across a range of threshold [35]. Unlike the previous
metrics and point values, the AUC-ROC considers the
model’s performance at all possible classification thresholds,
offering a comprehensive view of its predictive capacity.

Furthermore, the cross-validation technique is used
to evaluate the robustness and generalization of the
machine-learning models on different data sets. Instead of
a single data split into training and testing, cross-validation
involves repeatedly splitting the data set into training and
testing subsets. One of the most common approaches is k-fold
cross-validation, where the data set is divided into k smaller
subsets or “folds.” The model is then trained k times, using
a different subset as test data and the remaining as training
data. For example, in this case, a 5-fold cross-validation was
used, the data set was divided into five equal parts, and the
model was trained and evaluated five times, using each part
as test data once and the rest as training in each iteration.

This ensures that each data point is used for training and
testing in different iterations, resulting in a more thorough
model evaluation. Additionally, cross-validation allows for a
more precise estimate of model performance by averaging
performance metrics across all iterations, such as accuracy,
sensitivity, and specificity. This provides a more robust
evaluation of the model and its generalization ability to
unseen data.

E. EVALUATION OF THE EFFECTIVENESS OF
PERSONALIZATION OF LEARNING

The evaluation of the learning personalization strategy in
this work involves a multifaceted orientation that considers
both quantitative and qualitative results. To comprehensively
measure the effectiveness of personalization, we use three
main metrics:

« Student Academic Performance: This metric measures
changes in academic performance before and after
the implementation of personalization. It is evaluated
through the scores obtained in standardized tests and
course-specific evaluations, allowing learning progress
to be compared. A positive value in A Performance
indicates an improvement in academic performance
attributable to the personalization of learning. To quan-
tify the impact, the difference in average scores before
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and after personalization is calculated using the formula:

APerformance = Post-Personalization Average

— Pre-Personalization Average (4)

o Student Satisfaction with the Educational Experience:
This qualitative metric is evaluated through satisfaction
surveys, where students rate their educational experi-
ence on a Likert scale (e.g., 1 to 5, with five being
very satisfied). The questions cover aspects such as the
relevance of the content, the interaction with the learning
platform, and the support received during the course.
The average satisfaction score is calculated to provide
an overall measure of the educational experience from
the student’s perspective.

o Student Perception of the Usefulness of Personaliza-
tion: To measure this qualitative metric, questionnaires
designed to evaluate how students perceive the per-
sonalization of their learning in terms of usefulness,
relevance, and motivation are implemented. Questions
may include statements such as “Customizing the
content helped me better understand the topics” or “I
felt that the learning material was tailored to my specific
needs,” with response options on a Likert scale. We ana-
lyzed the responses to obtain a comprehensive measure
of perceived usefulness, calculating the proportion of
positive responses to the total responses.

The evaluation process is carried out in several stages,
beginning with pre-intervention data collection to establish
a baseline of academic performance, satisfaction, and per-
ceived usefulness. After implementing learning personaliza-
tion, similar data is collected to analyze variations in these
metrics [40]. To ensure the validity of the results, statistical
techniques are implemented to determine the significance
of the observed differences. For example, for academic
performance, paired samples t-tests can be used. At the same
time, analysis of variance (ANOVA) or non-parametric tests
are applied for qualitative metrics, depending on the data
distribution.

F. STATISTIC ANALYSIS

Statistical analysis allows the interpretation of the results
obtained, drawing significant conclusions about the effective-
ness of the learning personalization methods implemented.
Two main approaches are used for this: significance testing
and correlation analysis [36].

Statistical significance tests are used to compare students’
academic performance before and after the implementation of
learning personalization and to evaluate differences between
groups of students who experienced different personalization
methods.

The variables used are:

« Dependent Variable: Academic performance, measured
by the grades obtained in tests and evaluations.
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« Independent Variable: Personalization method applied
(e.g., no personalization, K-Means-based personaliza-
tion, personalization using Neural Networks).

The tests used are:

« Independent Sample t-tests: These tests compare per-
formance between two different groups of students
(for example, a group that received personalization and
another that did not).

o Paired Sample t-tests: These tests compare students’
academic performance in the same group before and
after the intervention.

o« ANOVA: When more than two groups are compared
to evaluate the effectiveness of different personalization
methods.

These tests allow us to determine whether the observed dif-
ferences in academic performance are statistically significant,
that is, whether it is likely that these differences are not due
to chance. Additionally, correlation analyses were performed
to identify and quantify the relationship between different
variables, such as students’ satisfaction with the educational
experience and academic performance [37].

The variables analyzed are:

« For example, the correlation between the average satis-
faction score and the change in academic performance
post-personalization [38].

The tests used are:

o Pearson correlation: For quantitative variables that
follow a normal distribution, it provides a correlation
coefficient (r) that varies between -1 and 1, indicating
the strength and direction of the relationship.

o Spearman correlation: This is used for data that do not
meet the assumptions of normality or when working
with ordinal variables.

The correlation analysis allows us to identify how
variables related to the educational experience and the
perception of personalization are associated with academic
results, offering insights into the most impactful aspects of
personalization [39].

IV. RESULTS

This work evaluates the tangible impact of these person-
alized strategies on academic performance and students’
engagement with the learning material. The results obtained
from this methodology reveal significant improvements, not
only in quantitative terms, reflected in the grades but also
the quality of the educational experience. This analysis
provides a deep understanding of the added value that the
personalization of learning, mediated by technology, brings
to the academic field.

A. DATA COLLECTION

The information collection corresponds to a diverse sample of
450 university students. This data set provides a foundation
for learning personalization and its impact on students’
educational experience. The demographics of the sample
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TABLE 3. Demographic summary and learning styles of university

students.
Description Detail
Total Number of Students 450
Age
- Minimum 18 years
- Maximum 25 years
- Average 21.5 years
- Standard deviation 2.36
Sex
- Female 224
- Male 226
Education level
- First year 125
- Second year Varied distribution among students
- Third year Varied distribution among students

- Fourth year
Learning Style

Varied distribution among students

TABLE 4. Impact of personalization of learning on student achievement

and preferences.

- Visual Varied distribution among students
- Auditory Varied distribution among students
- Kinesthetic 121 (most common)

- Reading Writing Varied distribution among students

span a wide age range, from 18 to 25 years old, with
an average age of approximately 21.5 years, reflecting a
representative cross-section of the university student popu-
lation. The results obtained from 3 highlight the implications
and trends that emerge from the sample. The almost equal
distribution between male and female students, at 226 and
224, respectively, gives us a solid platform to examine and
rule out gender biases in the response to personalization of
learning.

The details show a significant representation of the
kinesthetic learning style, with 121 students identifying
with this style. Along with a varied distribution in visual,
auditory, and reading/writing styles, this marks the need
for personalized teaching strategies that can be effectively
adapted to a wide spectrum of learning preferences. This
finding reinforces the idea that there is no one-size-fits-
all approach to education and that personalization should
be considered an essential tool in curriculum design and
delivery of educational content. Furthermore, the inclusion
of various types of educational content in the assessment—
texts, images, videos, and interactive activities—allows us
to analyze not only which formats are most effective for
each learning style but also how the combination of different
media can improve students’ understanding and retention of
information. This aspect is particularly relevant in an increas-
ingly digitalized educational environment, where integrating
technologies and multimedia resources is becoming the norm.

Interpretation of the data considered how individual differ-
ences in age, gender, learning styles, and content preferences
affect the effectiveness of learning personalization. As the
analysis progresses, these variables serve as fundamental
pillars to evaluate the personalization strategies implemented,
allowing the identification of optimal practices that can be
applied to maximize educational benefits for all students.

The collection methodology and results allow us to eval-
uate the effectiveness of learning personalization. Through
questionnaires designed to identify learning styles, we
discovered a varied distribution between visual, auditory,
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Metrics Detail Result

Learning styles Visual, Auditory, Kines-|25%, 25%, 26.9%,
thetic, Reading/Writing 23.1%

Improvement  in | Before vs. After Personal- | 15%

Grades ization

Improvement by | Comparison with Pre- | 18%

Learning Style - | Personalization

Visual

Improvement by | Comparison with Pre- | 12%

Learning Style - | Personalization

Kinesthetic

Interaction  with | Average Time (minutes |45 min

Visual Content daily)

Interaction  with | Average Time (minutes |30 min

Auditory Content | daily)

Preference for In- | Increase in Preference (%) | 20%

teractive Activities

- Kinesthetic

kinesthetic, and reading/writing, highlighting that 26.9% of
students prefer the kinesthetic style, the most prevalent within
the sample. Furthermore, through knowledge tests applied
before and after the personalization intervention, we calcu-
lated an average improvement of 15% in students’ grades,
evidencing the positive impact of adapting educational
content to individual needs. Specifically, students leaning
toward visual learning showed an average improvement
in their grades of 18%. In comparison, those with a
kinesthetic learning style experienced an improvement of
12%, suggesting that the nature of personalized content
may have different degrees of effectiveness according to the
student’s learning style.

On the other hand, the interaction records with educa-
tional materials revealed that students spend an average
of 45 minutes daily interacting with visual content and
30 minutes with auditory content. This difference marks the
preference for visual content and suggests that including
materials rich in images and videos could be particularly
beneficial in maintaining student engagement. Additionally,
those students with a kinesthetic learning style showed a 20%
greater preference for interactive activities than other types of
content, emphasizing the importance of integrating practical
and experiential elements in the learning process for this
group of students.

The results in Table 4 illustrate how the data collected
supports the evaluation of learning personalization and
provides concrete evidence of personalization’s positive
impact on students’ academic performance and learning
preferences. By adapting educational methods to students’
needs, the results highlight the ability to significantly
improve their educational experience and learning outcomes,
underscoring the importance of implementing personalized
teaching strategies in academic settings.

At the beginning of data collection, questionnaires based
on the VARK model were implemented to classify students
into visual, auditory, reading/writing, and kinesthetic learning
styles. For students who did not initially identify a clear
learning style, we introduced an exploratory questioning
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TABLE 5. Data preprocessing techniques and their impact.

Process Applied Affected Data Quantitative
Technique Impact

Data Cleaning Removal of du- |15 duplicates re- | 435 valid
plicates, imputa- | moved; 30 val- | records for
tion of values ues imputed analysis

Data Normalization | Min-Max All  numerical | Uniformity in
Scaling variables set to | data scale

the range 0-1
Dimensionality Re- | Principal From 30 initial | 66.7%
duction Component features to 10 |reduction  in

Analysis (PCA)

main ones

dimensionality

protocol that allowed them to interact with various content
formats. This measure sought to facilitate self-identification
of a predominant learning style through direct exposure.

We performed a statistical analysis to evaluate the
distribution of learning styles before and after introducing
exploratory questions. Preliminary results indicate that 15%
of the students who initially could not identify their learning
style managed to do so after this process. This group
demonstrated a 10% improvement in academic performance
compared to their pre-study grades. Additionally, interaction
time with personalized educational content increased by
20% for this subgroup, suggesting greater engagement and
satisfaction with tailored learning material. Including a mech-
anism for undecided students validates our learning style
identification methodology and reinforces the effectiveness
of our personalization of educational content in improving
student performance and engagement.

B. DATA PREPROCESSING

Data preprocessing ensures the quality and consistency of our
data set, as described in Table 5. Initially, the process focused
on data cleaning, which involved identifying and correcting
errors, eliminating duplicate records, and imputing missing
values. For example, 15 duplicate records were detected
and corrected, and values were imputed in 30 cases where
information was incomplete, using statistical methods to
estimate the most likely values based on the existing data set.
This step ensures the integrity and accuracy of our subsequent
analyses.

Data normalization allows the scales of numerical vari-
ables to be standardized for meaningful comparisons between
them. Min-max scaling techniques were applied to fit all
numerical values to a standard range of O to 1. D dimen-
sionality reduction was addressed using techniques such as
PCA to identify and retain only the most relevant features.
For example, we selected the ten most significant from an
initial set of 30 characteristics that explained the tremendous
variability in students’ learning styles.

Data preprocessing improved the quality of the data set and
optimized our machine-learning models’ efficiency, ensuring
that the conclusions drawn were valid and applicable.

C. EVALUATION OF MACHINE LEARNING MODELS AND
PARAMETER SETTINGS

Table 6 compares the three main models used in our
study: linear regression, K-means, and Neural Networks.
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TABLE 6. Performance comparison and specific configurations of
machine learning models.

Model | Precision| Sensitivity| Specificity] AUC-ROC | Specific Parame-
ters

Linear |0.78 0.75 0.80 0.77 Lambda: 0.01

regres-

sion

K- N/A N/A N/A N/A Clusters: 5

Means

Neural |0.92 0.90 0.93 0.95 Layers: 2, Neu-

Net- rons per layer:

works 128

Accuracy, sensitivity, specificity, and AUC-ROC high-light
the performance of each model in predicting learning styles
and adapting educational content. While linear regression
and Neural Networks were evaluated regarding these perfor-
mance metrics, K-means, a clustering algorithm, does not
directly apply to these metrics. However, it was used to
identify patterns and groupings in students’ learning styles.

Specific parameters adjusted for each model were essential
to optimize its performance. The Lambda regularization
coefficient was set to 0.01 for linear regression to balance
accuracy and avoid overfitting. In K-Means’ case, the optimal
number of clusters was determined to be 5, based on analyses
such as the elbow and silhouette method, to effectively
capture variations in learning styles. The neural networks
were configured with two layers and 128 neurons per layer,
a structure that allowed complexities in the data to be modeled
effectively, as demonstrated by their high precision and
AUC-ROC.

This evaluation shows the best overall performance of the
models, in this case, the neural networks, and highlights how
the configuration and adjustment of parameters contributed
significantly to the optimization of each model.

D. TRAINING AND VALIDATION RESULTS

Figure 2 presents the data partitioning strategy and the
optimization and validation carried out in our models. Data
splitting was performed following the standard train/test split
approach, where 70% of the data set was allocated to training
and the remaining 30% to testing. During the training of the
neural networks, the gradient descent optimization algorithm
was applied to adjust the model parameters so that the loss
function is minimized. This iterative process is visualized
in the figure, showing how accuracy and cost evolve over
training epochs, reflecting the fine-tuning of the model to
achieve the best possible performance.

Furthermore, to ensure the robustness and generalization
of the models, we implemented cross-validation techniques.
This method allows us to evaluate the model’s effectiveness
on different subsets of the training set, providing a more
reliable measure of its performance and ability to adapt to
new data. Figure 3 represents the distribution of accuracy
obtained in cross-validation for the three critical machine-
learning models. This validation is essential to check the
stability and reliability of the models in different samples of
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the data set and ensure that the results are generalizable and
not a product of overfitting.

As shown in the figure, Linear Regression has a median
precision of 0.77, with a relatively narrow distribution of
results, indicating consistent performance across the different
folds. This suggests that, although not the most accurate, the
linear regression model provides stability and can be reliable
for data sets where a linear relationship between variables is
expected. The K-Means model, mainly applied for clustering
and not for direct prediction, shows a median accuracy of
0.71. While this metric is not typically relevant to clustering
algorithms, the value indicates how the model groups data
around cluster centers and could reflect cohesion within the
groups formed. The neural networks exhibit an impressive
median accuracy of 0.93, significantly outperforming the
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other models. In addition, the distribution of precision is
tighter, which implies greater robustness and effectiveness
in modeling the complexity inherent in our data. Consistent
performance across all cross-validation folds highlights the
ability of Neural Networks to generalize well and adapt
efficiently to new data. Regarding practical application, the
high precision of neural networks indicates that this model
is particularly suitable for personalizing learning based on
students’ styles.

E. ANALYSIS OF POST-PERSONALIZATION ACADEMIC
PERFORMANCE

Focusing on differences in academic performance before and
after implementing personalization strategies, we understand
how pedagogical adjustments based on individual learning
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TABLE 7. Model performance and recommendation system.

Statistics Pre-Customization | Post-Personalization
Half 69.71 73.92

Standard deviation 9.81 9.96

Minimum 42.27 44.54

Maximum 93.83 101.96

IQR (Interquartile Range) | 13.44 12.62

T-Statistic -6.42 -6.42

P-Value <0.0001 <0.0001

styles can influence educational effectiveness. This analysis
seeks not only to quantify the degree of improvement in
student grades but also to offer deeper insight into the
contribution of personalization to the educational experience.

Table 7 presents a detailed summary of the descrip-
tive statistics highlighting the differences in pre-and post-
personalization scores. Here, the means and standard
deviations reveal the changes in academic performance.
At the same time, the results of the paired samples t-tests
allow us to evaluate the statistical significance of these
differences. These quantitative results reflect how adapting
teaching methods to individual learning preferences can
improve grades and, therefore, students’ absorption of
knowledge.

Table 7.

The T-statistic and P-value values are identical for the pre-
and post-personalization measurements since they result from
a single statistical test that com-pares both scores. The paired
samples t-test has given us an extremely low p-value (less
than 0.0001), indicating a statistically significant difference
in the average grades before and after personalization of
learning. This suggests that the personalization strategies
applied have had a positive impact on students’ academic
performance.

The improvement in the average score is approximately
4.21 points, representing a significant increase and consistent
with our educational personalization research objectives.
Grade variability, as measured by standard deviation and
interquartile range, remains relatively constant, indicating
that personalization has uniformly affected the sample of
students.

Figure 4 presents a direct, visual comparison of the
score distributions for each learning style, providing a more
intuitive view of personalization’s effect on students. The
box plots show that the median scores, represented by the
horizontal lines within each box, have shifted upward from
“Pre”” to “Post” in all learning styles. This indicates an
overall increase in median scores after the personalization of
learning. For example, the figure reveals notable increases
in the median scores post-personalization compared to pre-
personalization, as seen with the visual learning style, rising
from 68.96 to 74.44. This pattern is repeated in the auditory,
kinesthetic, and reading/writing styles, with increases in the
medians from 70.22 to 73.85, 70.65 to 75.24, and 71.07 to
74.94, respectively. These increases indicate the positive
impact of personalizing educational content on students,
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allowing them to achieve a higher level of understanding and
performance.

Furthermore, the width of the boxes, which represents the
interquartile range (IQR), appears to remain constant across
most learning styles, implying that grade variability across
students has mostly stayed the same with personalization.
This suggests that while personalization has raised average
grades, it has kept the consistency of performance across
students. Notably, while averages provide an overview of
grade growth, medians and IQR capture the reality of
individual students, offering insights into core performance
improvement and grade dispersion. This analysis helps us
confirm the effectiveness of learning personalization, not
only for the average student but also for the educational
experience of the student body as a whole.

Figure 5 represents the relationship between pre-
personalization and post-personalization grades for students
segmented by learning styles. Each point on the graph
represents a student, where the x-axis shows grades
before personalization, and the y-axis shows grades after
personalization. A trend line is also included for each learning
style, showing the general direction of the relationship
between pre-and post-personalization scores.

Analysis of the scatterplots in the figure reveals a
consistent positive trend across all four learning styles: visual,
auditory, kinesthetic, and reading/writing. The trend lines
marked on each graph exhibit a significant upward slope,
indicating an overall improvement in post-personalization
scores compared to pre-scores. This trend clearly shows that
personalization of learning has positively impacted students,
regardless of their predominant information processing style.

A positive trend line in each sub-graph signals an increase
in post-personalization scores, regardless of learning style.
This increase is uniform, as shown by the steep and
consistent slope across styles, suggesting that customization
has been beneficial. By studying each style in isolation,
we can conclude that the personalized intervention has been
influential on average and has provided benefits across a
broad spectrum of learning profiles, which is essential to
creating inclusive educational experiences and adaptive that
attend to the diversity of the classroom.

F. STATISTICAL ANALYSIS OF THE RESULTS

Deepening the statistical analysis of the results is essential
to validate the effectiveness of the learning personalization
strategies implemented in this study. To do this, the
ANOVA allowed us to evaluate the differences between
groups, identifying whether learning styles influence grades
differently. Additionally, correlation analyses quantified the
relationship between grades and demographic characteristics
or learning styles, revealing the strength and direction
of these associations. The results high-light a significant
improvement in grades after personalization of learning, with
a p-value consistently lower than the significance threshold
in t-tests. Furthermore, the correlation coefficients suggest
a positive and statistically significant relationship between
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FIGURE 5. Improvements in academic performance by learning style.

personalization and final grades. The ANOVA indicates that,
although all groups experienced improvements, variations
can be attributed to different learning styles.

These statistical results confirm the effectiveness of
personalization in improving academic performance but also
underline the importance of adapting educational content to
the individual profiles of students. By finding significant
differences and correlations, a basis has been established to
recommend personalization as a valuable educational prac-
tice, highlighting its relevance in addressing the diversity of
styles and needs in the learning process. Table 8 summarizes
the results obtained from the statistical techniques applied.
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Pre-Customization Qualifications

V. DISCUSSION

The interpretation of the results obtained in our research
emphasizes the potential of personalizing learning in the
educational field. By observing a significant improvement in
student grades following the implementation of personalized
learning strategies, our study provides quantitative evidence
that individualized education can be a critical factor in
improving academic performance [41]. The implications of
this finding are profound, suggesting that educators and cur-
riculum designers should consider personalization strategies
as essential tools in promoting effective and retentive learn-
ing [1]. When comparing our results with those of previous
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TABLE 8. Comparison of student participation before and after
implementation of the monitoring system.

Variable Statistical Test | Statistical | P-Valor Interpretation
value
Overall Paired samples | t(449) =|<0.0001 |The score
Improve- |t test 5.35 improvement
ment in is statistically
Grades significant,
suggesting a
positive impact of
personalization.
Correlation | Pearson r=0.62 <0.0001 | A strong positive
with correlation correlation
Visual coefficient between
Style personalization
and grades in
visual learners
indicates the high
effectiveness  of
visual strategies.
Correlation| Pearson r=0.47 <0.0001 | There is a
with correlation moderate positive
Listening | coefficient correlation
Style for auditory
learners, showing
significant
improvement
with auditory
personalization.
Correlation | Pearson r=053 <0.0001 |A moderate to
with correlation strong positive
Kines- coefficient correlation
thetic for kinesthetic
Style learners suggests
that hands-on
activities are
highly beneficial.
Correlation| Pearson r=0.59 <0.0001 | A robust positive
with Read- | correlation correlation
ing/Writing| coefficient supports that
Style personalization
was  particularly
effective for
students with a
reading/writing
preference.

studies, it is possible to observe significant consistency with
the existing literature, which mainly points to the benefits
of the personalization of learning. Earlier research, such as
that of Siemens and Baker, has established that pedagogi-
cal adaptations considering individual differences improve
information retention and academic performance [14], [42].
Our results reinforce these conclusions, evidencing a notable
improvement in post-personalization grades and a positive
correlation between personalized interventions and student
performance.

However, our research distinguishes itself in the detail
level provided by analyzing different learning styles. While
some previous studies focused on personalization as a
global concept, our work disaggregates the effectiveness of
personalization by specific learning styles [24]. This confirms
the overall effectiveness of personalization and suggests
that certain styles may benefit more than others, a finding
that invites further investigation and reflection on current
pedagogical practices.

In some cases, our data present more nuanced results than
previous literature. For example, while the kinesthetic style
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improved, the correlation was weaker than the visual and
reading/writing styles. This could indicate that personalizing
learning for kinesthetic learners requires more specialized
strategies or different methodological approaches. In con-
trast, existing literature tends to treat personalization as
equally effective across all learning styles without discussing
the disparity in effectiveness between them [43]. Other
studies have also noted student satisfaction and engagement
improvements, but our study extends these results by
demonstrating tangible, measurable grade improvements.
Furthermore, the generality of the effectiveness of personal-
ization in all learning styles that we have found contrasts with
certain studies that suggest a differential impact depending
on the style [44], [45]. These discrepancies may be due to
variability in the methodologies applied or differences in the
study populations.

The significant improvement in student grades and partici-
pation following the implementation of personalized learning
strategies can be attributed to several factors. Firstly, person-
alized learning addresses the unique needs of each student,
making the learning experience more relevant and engaging.
Students can process and retain information more effectively
by aligning educational content with students’ preferred
learning styles, such as visual, auditory, or kinesthetic. This
alignment enhances comprehension and boosts motivation
and engagement as students find the material more accessible
and exciting.

Furthermore, machine learning models allow for dynamic
and continuous adjustments to the educational content
based on real-time data. These models can identify patterns
in student interactions with the material, enabling timely
interventions and adjustments that keep students challenged
and supported at optimal levels. This adaptability is crucial in
maintaining student interest and preventing disengagement,
which are critical factors in improving academic performance
and participation.

We recognize that our study is not without limitations.
Although innovative, using machine learning models to
personalize learning remains an emerging methodology
and requires further exploration. Additionally, although the
sample of 450 students is significant, studies with larger and
more diverse samples could provide a more comprehensive
view of the impact of learning personalization. Future
research could extend this work by incorporating more
varied and longitudinal educational contexts to examine the
sustainability of improvements in academic performance.

Moreover, our study is primarily based on data collected
from a specific educational setting, which may limit the
generalizability of the findings to other contexts. The
self-reported nature of some of the data, such as student
preferences and participation levels, introduces potential
biases that could affect the results. Future studies should aim
to use more objective measures of student engagement and
performance to mitigate these biases.

Among possible biases, the students who participated in
the study could have been more interested in personalized
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learning, which could have influenced their performance
and participation levels differently than a more general
student population. The perception of receiving customized
attention and interventions could have motivated students to
perform better, regardless of the actual effectiveness of the
personalization strategies. This ‘““Hawthorne effect” must be
considered when interpreting the results.

From a practical perspective, our study’s results have
direct implications for implementing personalized learning
in classrooms. The challenge for educators and educational
administrators will be to integrate personalized learning
systems that are adaptable, scalable, and customizable to fit
each student’s learning needs and preferences. In this sense,
our study highlights the value of personalization and serves as
a call to action for the thoughtful and effective incorporation
of adaptive educational technologies in modern education.

In addition to exploring the benefits of personalizing
learning using machine learning models, it is crucial to
consider emerging concerns about using generative Al tools
in educational settings. A recent study by Abbas et al.
[46], “Is it harmful or valuable? Examining the causes and
consequences of generative Al use among college students
highlights these technologies’ risks and potential benefits to
the student’s learning experience. The analysis suggests that
while tools like GPT can offer essential opportunities for
adaptive and personalized learning, they could also induce
technological dependency and negatively impact students’
critical thinking skills. This balanced approach is necessary
to evaluate AI’s pedagogical implications in higher education
fully. Underlines the need to develop technology integration
strategies that promote AI’s ethical and practical use in
learning environments.

Our study highlights the need to research and develop
machine learning models that can optimally balance technical
complexity with accessibility in the context of learning
personalization. This search for balance is a fundamental
challenge in designing personalized learning systems that can
be effectively adopted in diverse academic environments. The
technical complexity of machine learning models is inherent
in the sophisticated algorithms and techniques used to process
and analyze educational data. However, this complexity can
become a barrier to the effective adoption of such models,
especially in academic settings with limited resources or
users with diverse technical skills.

On the other hand, the accessibility of models refers
to their ability to be understood, used, and modified by
various users, including educators, students, and educational
administrators. Accessibility involves the usability of user
interfaces, the clarity of technical documentation, and the
ability of models to adapt to different educational contexts
and customization requirements. By striking the right balance
between technical complexity and accessibility, machine
learning models can significantly improve the scalability
and usability of personalized learning systems. This balance
allows the models to be implemented effectively in various
academic settings, increasing their impact and usefulness
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in improving students’ academic performance and learning
experience.

VI. CONCLUSION

Implementing personalized learning strategies supported
by machine learning technologies represents a significant
milestone in the search for more effective and adaptive
educational practices. This study has shown that adapting
educational content to students’ learning styles is feasible and
significantly improves academic performance and student
engagement with the learning material.

Through the application of machine learning models,
including classification algorithms and neural networks, on a
sample of 450 university students, effective personalization
of educational content was achieved. The results indicated an
average increase of five points in scores, scaling from 70 to
75 out of 100 after the personalized intervention. This
increase validates the proposed approach’s effectiveness and
under-lines the potential of machine learning as a supporting
tool in customized education.

Beyond the quantitative improvement in grades, the
study has revealed more significant student interaction and
engagement with educational materials adapted to their
learning styles. This finding reinforces the premise that
personalization of learning contributes positively to the
overall educational experience, facilitating a more inclusive
and responsive environment for diverse learning preferences.

The methodology applied in this study stands out for its
relevance to practical applications. Using machine learning
techniques to identify learning styles and adapt content
represents a methodological advance that could be replicated
and scaled in different educational contexts. The ability of
these models to process and analyze large volumes of data
offers an unprecedented opportunity to personalize education
at scale, efficiently addressing the individual needs of each
student.

According to the results, we recognize several limitations
crucial to contextualizing our findings within the specific
field of personalized learning. One of these limitations is
the generalizability of the results. Although the models
implemented have been effective in our educational context,
applying these results to different educational settings or
demographics requires caution and may need additional
validation. Furthermore, the inherent complexity of some of
the machine learning models may represent a barrier to their
practical application in environments with limited technical
resources.

Looking forward, we suggest several critical areas for
subsequent research that address these limitations and expand
knowledge in the field of personalized learning. It is
imperative to conduct cross-validation studies that evaluate
the robustness and generalizability of our models in various
educational contexts. Likewise, it is essential to research
and develop machine learning models that balance technical
complexity and accessibility, thus facilitating their adoption
in different academic settings. Furthermore, we see the
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exploration of emerging technologies, such as attention
mechanisms, as promising improvements in the accuracy
and personalization of learning, offering new possibilities for
tailoring education to students’ individual needs.
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