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ABSTRACT In the development of image forensics, detection of Copy-Move Forgery (CMF) has become
a major challenge due to the proliferation of image forgery techniques. The CMF is widely utilized to alter
the content of the original image to spread false information or to use such forged digital images for illegal
purposes e.g. false evidence in the court of law, or to blackmailing any individual. This paper presents a new
method for CMF Detection (CMFD) that uses the power of Graph Convolution Networks (GCNs) and its
multiple layers with ReLU activation, for CMFD and analysis. The aim to use GCN is due to its ability to
improve the feature extraction process by utilizing the spatial and structural affiliation between elements in
the digital images. Also, the GCN aims to store information about images and use it to graphically describe
images with pixels or image areas as features, spatial and correlation relationships as edges. By pulling
data from this image, GCN is able to obtain content rich features that are very powerful at detecting CMF
regions. In proposed methodology, we utilized Support Vector machine (SVM) for classification and the
binary cross-entropy loss, and theAdamoptimizer for improving accuracy. Our scheme successfully achieves
high accuracy and is effective in CMFD. We use the MICC F220, and CoMoFoD datasets to test the GCN
in our proposed CMFD method. Through much testing and evaluation, we have found that GCN has the
tremendous ability for CMFD in digital images in term of accuracy.

INDEX TERMS CMFD, forensic science, feature extraction, GCN.

I. INTRODUCTION
In today’s progressed age, the ease of CMF images uti-
lizing advanced computer program instruments has given
rise to an extraordinary concern. Among various types of
image manipulations, CMF is a prevalent technique, but it
often results in questionable or suspicious enhancements in
the image’s appearance [1]. In CMF method, an area of a
picture is unlawfully reproduced and stuck someplace else
in the same picture, making replicated or cloned locale as
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showed up in Figure 1. This bewildering act can have genuine
consequences, which causes the spread of beguiling data
and the compromise of picture realness. In this way, the
change of compelling and strong CMFD methodologies is
fundamental [2].

Traditional techniques for CMFD have typically relied
on handmade features and block-based inspection, which
may not fully capture the subtle relationships between image
areas [3]. To effectively detect CMF regions in the digital
images it is pertinent to extract meaningful features from
the digital images [4]. The neural network can be utilized
to detect the CMF regions more accurately [5], [6]. To solve
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FIGURE 1. (a) Original image, (b) CMF tampered image.

this issue and increase CMFD accuracy, we suggest a unique
technique that takes the advantage of GCNs’ superior feature
extraction capability.

GCNs have picked up conspicuousness in later a long time
due to their capacity to demonstrate complex connections
and conditions inside graph-structured data. In the context
of computerized image forensics, an image can be concep-
tualized as a graph, with pixels or image regions as hubs and
spatial or relevant connections as edges. GCNs, designed to
proliferate data over graph hubs, offer a promising arrange-
ment to capture the intricate designs and conditions that
develop in images.

This paper presents a novel technique for CMFD uti-
lizing GCNs as the foundation of our feature extraction
process. By representing an image as a graph and utilizing
GCNs to learn feature representations, we point to distinguish
CMF’s with upgraded accuracy and robustness. The proposed
strategy envelops the following key steps:

A. GRAPH CONSTRUCTION
We amend the picture into a graph representation, where
center points compare to individual picture components, and
edges imply associations between them. This graph epito-
mizes both spatial and relevant information, allowing us to
capture the essential structure of the image.

B. FEATURE EXTRACTION WITH GCN’S
The heart of our approach lies in utilization of GCNs to
remove imperative include representations from the graph.
By causing data over centers, GCNs capture complicated
regions, spatial conditions, and significant nuances, in this
way upgrading the include space.

C. FORGERY DETECTION
Our preliminary outcomes is that the proposed technique
holds ensure in basically upgrading the exactness and strength
of CMFD in digital pictures. By saddling the capabilities

of GCNs, we point to provide an arrangement that can
effectively combat the creating challenges posed by picture
imitations in today’s progressed landscape.

We jump into the points of interest of our technique,
display test comes about, and look at the proposals and
future bearings of this explore in the field of advanced image
forensics.

II. OUR CONTRIBUTIONS
In the proposed technique for CMFD utilizing GCNs, a few
commitments can be highlighted to illustrate the novel per-
spectives and advancements over existing strategies. Here is
a point by point portrayal of these contributions:

• Introduction of GCN for Image Forensics: The pro-
posed technique leverages GCNs to identify CMF in
digital pictures. This approach is novel in the set-
ting of image forensics, where GCNs are utilized to
demonstrate and handle the connections between picture
regions as a graph structure, capturing perplexing nearby
and worldwide dependencies.

• Feature Extraction and Graph Development: The GCN
converts the image into graph structure by using the
pixels as nodes and similarity as edges. The convolutions
layers applied to make the model learn new feature
representations. The GCN model provides content rich
features from input image.

• Handling Complex Forged Region: By modeling the
issue as a graph, the proposed strategy can way
better handle complex imitation designs, such as
non-contiguous or sporadically molded copied locales.
Conventional strategies may battle with these designs,
but the GCN’s capacity to learn from the graph struc-
ture permits it to successfully distinguish and separate
between true and copied regions.

• End-to-End Learning System: The proposedGCN-based
approach gives an end-to-end learning system for
CMFD. This contrasts with conventional strategies that
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regularly require isolated steps for highlight extraction,
coordinating, and classification. The GCN show coor-
dinating these steps into a cohesive handle, learning
straightforwardly from the crude picture information to
the last location of forgeries.

• Improved Detection Execution: Exploratory comes
about illustrate that the GCN-based approach accom-
plishes higher precision and strength compared to
conventional strategies. The capacity of GCNs to utilize
the data between picture patches leads to moved forward
execution in identifying inconspicuous and advanced
imitations, which are regularly missed by conventional
CMFD methods.

• Scalability and Versatility: The proposed strategy is
adaptable and can be adjusted to distinctive sorts of
pictures and fraud scenarios. The utilize of graph-based
modeling and GCNs gives adaptability in dealing with
different picture resolutions and complexities. Also, the
system can be expanded to consolidate other sorts of
features and extra relevant data, advance improving its
pertinence and effectiveness.

The proposed CMFD strategy utilizing GCN presents a
noteworthy progression in the field of picture forensics.
By leveraging the control of GCNs to show and ana-
lyze the connections between picture patches, the strategy
accomplishes prevalent execution in recognizing complex
duplicities. This commitment not as it were illustrates the
potential of GCNs in picture forensics but too sets the
organize for future investigate and advancement in applying
graph-based procedures to different picture analysis tasks.

The rest of the article is categorized as follow:
The literature review section provides detail achievements

and limitations of recent CMFD methods.
The proposed methodology sections give details about our

proposed CMFD method.
The Experimental setups section mention details about

hard and software setup for conduction experiments, follow-
ing by the evaluations metrics and results section. Finally,
discussion and conclusion sections provide extensive discus-
sion and conclusion about the proposed CMFD methodology
and its results.

III. LITERATURE REVIEW
Many researchers has proposed CMFD techniques in the last
2 decades. Barad and Goswami [7] presented the survey that
discuss about two types of CMFD, traditional which uses
image processing, and other are Deep Learning (DL) based
techniques. It suggest the DL based techniques are more
efficient in extracting more complex features then traditional
CMFD techniques. However the computational cost of the
proposed method is very high. Mayer and Stamm [8] sug-
gest a novel Forensic Similarity Graph (FSG) technique that
utilize the concept of ‘‘community’’ to detect CMF regions.
However, it does not take in account the post processing
attacks on forged images. Selvarathi et al. [9] uses a Con-
volution Neural Network (CNN) to train the model and

Scale-Invariant Feature Transform (SIFT) for feature extrac-
tion for CMFD. It able to detect the CMF regions in the image
with greater accuracy but trade-off in the complexity of the
methodology due to CNN.

Zhou et al. [10] The show accomplishes lofty exactness in
occasion location by leveraging chart convolutional systems
to capture complex spatial and transient conditions. It appears
solid execution over shifted datasets, showing great gener-
alizability. The approach moreover benefits from improved
highlight representation, driving to more exact occasion dis-
tinguishing proof. In any case, it is computationally seriously,
requiring noteworthy preparing control and memory. Further-
more, the complexity of building and overseeing expansive
charts can influence adaptability and commonsense execution
in real-time frameworks. Hosny et al. [11] presented a novel
CMFD technique which utilizes quaternion polar complex
exponential transform moments (QPCETMs) that has ability
to detect CMF regions even after post processing attacks like
scaling, rotational and translation transformation in the digital
images. However, it does not take in account the CMF regions
which are attacked by compression, contrast change, and
color reduction. Qazi et al. in [12] presented a learning-based
advanced CMFD framework. It utilize the ResNet50v2 using
lingering layers to train the CMFD model. The proposed
CMFD technique show promising results, however it lacks
in detecting complex shape CMF regions in digital images.

Gharibi et al. in [13] utilizes the a non-deep-learning based
a texture-based method for CMFD. It uses Principle Com-
ponent Analysis (PCA) for reducing feature size. However
it is block-based CMFD technique which increase the com-
putational cost of the proposed method. Amirini et al. [14]
presented a key point-based CMFD technique. In the pro-
posed CMFD method, it make the clusters of the extracted
features to make the detection process fast. However, it does
not take in account the post processing attack on CMF regions
in digital images. Al-Qershi et al. in [15] write a survey
article which primarily focus on passive CMFD methods.
It presented the advantages of passive technique over active
CMFD techniques. Xue et al. in [16] proposed a strategy
viably recognizes copy-move imitations by utilizing Sphere
(Situated Quick and Turned BRIEF) highlights, accomplish-
ing elevated precision and strength against common changes
like scaling and turn. It benefits from the productivity of
Sphere, coming about in speedier handling times appropriate
for commonsense applications. The method is moreover less
computationally requesting compared to a few progressed
strategies. Be that as it may, it may battle with exceedingly
complex imitations including unobtrusive varieties, and its
execution can be influenced by picture commotion and moo
surface regions. Moreover, it might require fine-tuning to
keep up precision over diverse sorts of pictures and fraud
scenarios. Another technique [17] presented by Hosny et al.
proposed a methodology for CMFD which detect object
from the input image and extract features for only detected
object hence reducing the computational cost of the pro-
posed CMFD method. The proposed CMFD method detect
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CMF regions after post processing attack like JPEG com-
pression, rotational, and scaling transformation, but unable
to detetec CMF regions that are attacked with translational
transformation. Narasimhamurthy et al. in [18] proposed
a strategy accomplishes soaring precision in identifying
copy-move frauds by utilizing altered SURF (Speeded-
Up Robust Features) and the AKAZE (Accelerated-KAZE)
finder, successfully distinguishing produced locales indeed
beneath different changes. It benefits from the strong high-
light extraction capabilities of SURF and the effectiveness
of the AKAZE locator, coming about in dependable and
quick discovery. Zimba et al. in [19] proposed a CMFD
technique and utilize Discrete Wavelet Transform (DWT)
with PCA through EigenvalueDecomposition (EVD). It lacks
the detection of CMF regions under post-processing attacks.

Warif et al. in [20] presented a study to recognizes key
challenges, such as taking care of complex replications and
keeping up precision over various picture CMF attacks. The
study offers profitable bits of knowledge into the confine-
ments of existing strategies, counting towering computational
costs and affectability to clamor. It too traces future inves-
tigate bearings, emphasizing the require for more strong
and productive calculations. Be that as it may, it does not
propose unused strategies, centering instep on summariz-
ing and analyzing existing investigate. Chen et al. [21]
This strategy viably recognizes locale duplication imitations
by utilizing Harris corner focuses for vigorous highlight
extraction and step division insights for exact coordinating.
It accomplishes high exactness and unwavering quality in
distinguishing copied locales, indeed in the nearness of geo-
metric changes. The approach is proficient, permitting for
moderately quick preparing times. In any case, it may bat-
tle with complex frauds including unpretentious varieties in
surface or low-contrast regions. Moreover, the execution can
be delicate to clamor and requires cautious tuning of param-
eters for ideal comes about. Shahroudnejad and Rahmati
in [22] presented a strategy leverages affine-SIFT for viable
copy-move imitation discovery, giving strength to relative
changes and accomplishing elevated precision in recognizing
CMF regions in digital images. It also has ability to detect
CMF regions even after resized, however it compromises its
precision.

Nguyen and Katzenbeisser in [23] proposed a CMFD
strategy which uses Radon Transformation (RT) and Phase
Correlation (PC). Due to the RT, and PC it enable the
proposed method to detect CMF regions even after rota-
tional transformation. The proposed CMFD method trade
off with accuracy and precision. Chen et al. in [24] sug-
gest a CMFD technique which take advantages of Fractional
Quaternion Cosine Transforms (FrQCT). FrQCT has ability
to extract color features which help the proposed methodol-
ogy extract more rich features from forged image. However,
it lacks detecting CMF regions under post-processing attacks.
Farhan et al. [25] presented a survey on CMFD techniques
which discussed various types of CMF techniques and discuss
several CMFD methods presented in last decade. The study

pointed out limitations in many CMFD methods i.e. lack of
evidence why specific approach is used and how it helps in
capturing the CMF regions. Yang et al. in [26] proposed a
CMFD technique which uses SIFT to extract features from
CMF image. The proposed technique has ability to detect
CMF regions under rotational transformation post-processing
attack.

Mahoud and Husien in [27] uses a Pseudo-Zernike
Moment (PZM). It can detect CMF regions even after
post-processing attack like color and contrast adjustment
thanks to PZM. However, it lack in detecting scale invariant
CMF regions. Divya et al. in [28] a CMFD technique which
benefits from the vigor and speed of SURF, permitting for
productive highlight extraction. The utilize of SVM improves
the classification exactness, making the strategy solid over
different fraud scenarios. Be that as it may, it is compu-
tationally requesting, requiring critical handling control for
both feature extraction and CMFD. Also, the approach may
battle with complex imitations and high commotion levels,
requiring cautious parameter tuning for ideal execution.

Wang et al. in [29] presented a novel key point based
CMFD technique, which utilizes clustering and segmen-
tation followed by hybrid feature extraction using Fast
Quaternion Generic Polar Complex Exponential Transform
(FQGPCET) and ray-level co-occurrence matrix (GLCM)
from the selected segments of the input image. However,
it does not take in account the post-processing attack like
JPEG compression, scaling and rotational transformation.

IV. PROPOSED METHODOLOGY
The technique for CMFD utilizing GCNs is an orderly
approach planned to address the challenges of recogniz-
ing picture imitations, especially the modern CMF’s that
are predominant in the advanced CMF post-processing
attacks. It leverages the control of GCNs to change dig-
ital pictures into organized graphs, empowering nuanced
feature extraction and strong imitation discovery. The tech-
nique includes information collection, graph representation,
demonstrate design, preparing, assessment, and vigor inves-
tigation. By using this strategy, analysts can development
the state-of-the-art CMFD system in digital picture forensics,
contributing to the conservation of picture genuineness in a
manipulated digital world as appeared in Figure 2.

A. DATA COLLECTION AND PREPARATION
Data collection and preparation are crucial steps in the
development of any machine learning model. Following us
discussing about dataset selection and pre-processing in out
proposed CMFD technique.

1) DATASET SELECTION
We select a MICC F220 [30] and CoMoFoD [31] datasets
D1 & D2, comprising N1 & N2 images, where each image is
represented as I1i & K2i is the ground truth forgery map for
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FIGURE 2. Proposed CMFD block diagram.
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image Ii using. (1).

D1 = {(I11,K11), (I12,K12), . . . , (I1N ,K1N1 )}

D2 = {(I21,K21), (I22,K22), . . . , (I2N ,K2N2 )} (1)

Here N1 & N2 is 220 as MICC F220 consist of 220 images,
out of which 110 are original images and 110 consist of
forged images with the resolution of 800 by 532 pixels, and
CoMoFoD consist of 200 forged images which include truth,
and forged images with post processing attack i.e. JPEG
compression, color reduction, scaling, and rotational transfor-
mations with the resolution of 512 by 512 pixels. An original
and forged image from MICC F220 and CoMoFoD dataset
are presented in Figure 3.

The both dataset has original images as well as tempered
images with ground truth. As shown in Figure 2, the images
from both dataset are split into 80-20 ratio for target and test
data. The ground truth help to correctly calculate the accuracy
of out proposed CMFD method.

2) PREPROCESSING
We normalize and preprocess the images, converting them to
grayscale Igray using (2) and (3) [32].

Igray = sum(I )/3 (2)

Inormalized = (I − min(I ))/(max(I ) − min(I )) (3)

B. GRAPH REPRESENTATION OF IMAGES
Graph representation of images includes changing a picture
into an organized graph, where the components of the graph
compare to the components of the picture, such as pixels
or picture regions [33]. Each hub in the graph represents a
substance, and edges characterize connections between these
substances. We represent a picture as a graph as appear in
Figure 4.
In this diagram:

• Each circle (node) represents a region of the image.
• Edges (arrows) represent the similarity or relationship
between the regions.

To make a more point by point and particular graph
representation of an actual image, we perform the following

• Divide the image into littler regions (i.e., superpixels).
• Represent each region as a node.
• Define edges based on similitude measures such as
color, surface, or spatial proximity.

For illustration, adjacent regions with relative color his-
tograms might have edges between their comparing nodes,
weighted by the degree of similitude. This structure empow-
ers the application of graph-based calculations for CMF
detection.

1) NODE AND EDGE CONSTRUCTION
We create a graph G for each image, comprising nodes
(image regions or pixels) [34] and edges to capture spatial
relationships using (4).

Gi = (Vi,Ei) (4)

FIGURE 3. (a) Original image, and (b) forged image from MICC F220
dataset, (b) original image, and (d) forged image from CoMoFoD dataset.

2) NODE FEATURE EXTRACTION
We extract node features, including pixel values I , texture
features Ti and color histograms Hi using (5).

Xi = {[I1,T1,H1], [I2,T2,H2], . . .} (5)

C. GCN ARCHITECTURE
1) GCN LAYER
The GCN layer is a significant component in graph-based
profound learning models, particularly when connected to
assignments like hub classification, interface expectation, or,
in our case, CMFD.

The GCN layer engenders data through the graph struc-
ture to capture connections and conditions among hubs as
displayed in Figure 5.

This diagram represents a GCN layer, showing how node
features are propagated and transformed:
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FIGURE 4. Image regions and their relationship in graph representation.

Nodes: Each node (e.g., R1,R2, . . . ,R9) represents a
region of the image.

Edges: The edges (e.g., w1,w2, . . . ,w8)) represent the
relationships (weights) between these regions.

Feature Propagation: Dotted lines illustrate the propaga-
tion of node features through the weight matrixW l to the next
layer l + 1.
In this diagram, the cluster on the left represents the node

features at layer 1, and the cluster on the right represents
the node features at layer l + 1, after applying the GCN
layer transformation. Each node in the l layer is connected
to its corresponding node in the l + 1 layer by a dotted line,
representing the application of the weight matrix W l . The
solid lines within each cluster represent [35] the adjacency
relationships among the nodes.

Given an input featurematrixX representing node features,
an adjacency matrix A representing the graph structure, and
weight matrixW for the layer, the output Xnew after applying
the GCN layer can be calculated as in (6).

Xi = σ (AiXiWi) (6)

Here,
X is the input feature matrix of shape (number of nodes,

number of features per node).
A is the adjacency matrix of the graph, encoding the

relationships between nodes.
W is the weight matrix for the layer.
σ represents the activation function (commonly ReLU or

another non-linear activation function).

2) FEATURE PROPAGATION
We describe how information is propagated across the graph
using GCN layers to capture relationships and dependencies
within the image using Equ. 7.

Xinew = σ (AiXiWi) (7)

D. TRAINING THE GCN
1) LOSS FUNCTION
For CMFD, the approach we utilize is to outline the errand as
a twofold classification issue where proposed CMFD predicts
whether each pixel or locale is portion of a fraud or not. A rea-
sonable loss function for this double classification errand is
the twofold cross-entropy loss as displayed in Figure 6.

This diagram delineates the prepare of CMFD utilizing a
GCN and the parallel cross-entropy loss function. Here’s a
brief clarification of each component:

Input Image: The input image that is to be checked for
forgery.

GCN Layers:Multiple layers of the GCN that process the
image and extract features.

Output (Predictions): The output from the GCN, repre-
senting the predictions for each pixel or region, indicating
whether it is part of a forgery.

Ground Truth Labels: The actual labels indicating
whether each pixel or region is part of a forgery.

Binary Cross-Entropy Loss: The loss function used to
measure the discrepancy between the predicted and actual
labels [36].

The mathematical equation for the binary cross-entropy
loss is shown in (8).

L = −
N
1

∑N

i=1
(Kilog(Pi) + (1 − Ki)log(1 − Pi)) (8)

Here:
L is the binary cross-entropy loss.
N is the total number of pixels or regions.
Ki is the ground truth label (1 for forgery, 0 for non-forgery)

for pixel or region i.
Pi is the predicted probability that pixel or region i belongs

to a forgery.
This loss function penalizes the model based on the loga-

rithmic difference between the predicted probability Pi and
the ground truth label Ki. It energizes the show to relegate
giant probabilities for genuine forgery regions and low prob-
abilities for non-forgery regions. In the context of GCNs, this
loss function is frequently connected to the yield of the last
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FIGURE 5. Feature transformation and propagation.

layer or a classification layer in the model. The objective
amid preparing is to alter the organize parameters (weights)
to minimize this loss, progressing the model’s capacity to
accurately classify regions as forgery or non-forgery.

E. OPTIMIZATION
We optimize the GCN parameters (Wi) using an optimizer i.e.
Adam optimizer [37] to minimize the loss using (9).

Winew = Wi − α
∂Li
∂Wi

(9)

Here,
Wnew is the updated set of model parameters.
W is the current set of model parameters.
α is the learning rate, a hyper-parameter that determines

the step size in the parameter space.
∂W
∂L is the gradient of the loss function L with respect to the

model parameters W.
The gradient ∂W

∂L points in the direction of the steepest
increase in the loss function. By subtracting this gradient from
the current parameters, scaled by the learning rate α, wemove
the parameters in the direction that reduces the loss.

F. VALIDATION
To validate and update hyper-parameters in our proposed
CMFD method we utilize the following (10).

∂Li
∂Wi

= 0 (10)

G. CLASSIFIER SELECTION AND TRAINING
1) SVM CLASSIFIER
We uses SVM classifier which enable our proposed CMFD
method to extract more rich and content full features from
CMF picture. The Process of using SVM classifier in our
proposed CMFD method is presented in Figure 7.

We employ a SVM classifier [38] for evaluating
GCN-extracted features using (11).

Yi = SVM (Xinew) (11)

Here,
Yi is the output of the SVM classifier.
Xi is the feature matrix obtained from the GCN-extracted

features.
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FIGURE 6. Binary cross-entropy loss for GCN layers.

The SVM classifier is trained to learn a decision bound-
ary that separates different classes in the feature space. The
decision boundary is determined by a set of weights (w) and
biases (b). The decision function can be written as in (12).

Yi = sign(w · Xi+ b) (12)

In this equation,
‘‘w’’ is the weight vector.
‘‘.’’ denotes the dot product.
‘‘b’’ is the bias term.
The sign function assigns a class label based onwhether the

dot product w · Xi+ b is positive or negative. The SVM aims
to maximize the margin between different classes, leading to
a robust decision boundary.

The actual SVM training involves finding the opti-
mal w and b that maximize the margin while satisfy-
ing certain constraints related to the correct classifica-
tion of training samples. The trained SVM is used to
predict the class labels of new samples based on their
features.

V. EXPERIMENTAL SETUP
We have use the following hard and software specification for
out experimental setup as presented in Table 1.

VI. PERFORMANCE EVALUATION METRICS
The adequacy of the proposed GCN-based CMFD strategy
was surveyed utilizing two key assessment measurements:
accuracy and F1 score [39]. These measurements give

FIGURE 7. SVM classifier for CMFD.

TABLE 1. Hardware and software specification for experimental setup.

a comprehensive understanding of the model’s execution,
especially in the setting of double classification errands such
as forgery detection.

A. ACCURACY
Accuracy is a principal metric that measures the extent of
accurately recognized forgeries and non-forgeries out of the
add up to number of occasions. It is calculated as in (13).

Accuracy =
TP + TN

N
(13)

where:
TP : True Positives
TN : True Negatives
N : Total Number of Instances
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TABLE 2. MICC F220 model training results for different values of epochs.

FIGURE 8. Train/validation accuracy and loss for 100 epochs for MICC F220 dataset.

TABLE 3. CoMoFoD model training results for different values of epochs.

B. F1 SCORE
The F1 score is calculated as shown in (14)

F1 =
2TP

2TP + FP + FN
(14)

where:
FP : True Positives
FN : False Negative

VII. EXPERIMENTAL RESULTS
The proposed GCN-based method for CMFD was evaluated
using multiple metrics, including training loss (T_loss), val-
idation loss (V_loss), training accuracy (T_acc), validation
accuracy (V_acc), and F1-score. The results are summa-
rized below for the MICC-F220, and CoMoFoD is presented
in Table 2 and Table 3 respectively for epoch’s values of
20, 30, 40, 50, 60, 80, and 100. The complete results for
0-100 epochs is presented in the Figure 8 and Figure 9.

VIII. COMPARATIVE ANALYSIS
The comparative analysis of our proposed CMFD method is
conducted with state of the art CNN based technique pro-
posed by Kuznetsov et al. in [40] and Elaskily et al. [41]
in term of Training loss and accuracy, Validation loss and
accuracy, and F1 score as presented in Table 3.
By reviewing the Table 4 results of our proposed with the

CNN based technique, it is clear that in the initials epochs
the CNN based technique perform good but in higher epoch
e.g. at 75 and onward out proposed CMFD technique perform
well due the GCN superiority over CNN.

IX. DISCUSSION
The execution enhancements accomplished by the proposed
GCN-based strategy highlight the significance of leveraging
progressed neural organize structures for CMFD. Whereas
GCNs have been broadly utilized and have appeared critical
victory, the capacity of GCNs to demonstrate connections
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FIGURE 9. Train/validation accuracy and loss for 100 epochs for CoMoFoD dataset.

TABLE 4. Comparative analysis of proposed with Kuznetsov et al. [40], and Elaskily et al. [41] for MICC F220 dataset.

between distinctive parts of the picture gives a significant
advantage.

The outcomes show that joining basic data through GCNs
leads to more compelling and exact feature extraction. This is
especially vital in the setting of CMFD, where the produced
locales regularly show complex and inconspicuous designs
that are challenging to distinguish utilizing conventional
methods.

Moreover, the comparative examination underscores the
need of creating vigorous models that can generalize well
to modern information. The higher validation accuracy and
lower validation loss accomplished by the proposed strategy
propose that GCNs can give more dependable execution in
different and erratic real-world scenarios.

X. CONCLUSION
In this section, we have made and evaluated a novel approach
for distinguishing CMF’s in computerize pictures utilizing
GCNs. Our procedure leverages the capabilities of GCNs
to effectively capture the essential and spatial association’s
interior the picture, driving to advanced highlight extraction
and extortion detection.

The test comes approximately outline that our pro-
posed CMFD technique outflanks existing state-of-the-art
techniques. The following key disclosures highlight the
prevalence of our method:

A. TRAINING AND VALIDATION LOSS
• The proposed strategy accomplishes a quick decrease in
training loss, stabilizing at lower values after 75 epochs
goes down to 0.78%. This shows that the GCN-based
approach learns the information representations more
efficiently.

• Similarly, the validation loss for the proposed strategy
is reliably lower than that of the reference strategy and
goes down to 2.32% at after 75 epochs, appearing way
better generalization and vigor in identifying frauds on
inconspicuous data.

B. TRAINING AND VALIDATION ACCURACY
• The training precision of the proposed strategy comes
to about 100% by 25 epochs. This illustrates the ade-
quacy of the GCN in capturing perplexing designs and
connections in the preparing data.
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• The validation precision too favors the proposed strat-
egy, which stabilizes over 99% after 25 epochs. This
proposes that the proposed strategy generalizes superior
to modern information, making it more solid for viable
applications.

C. F1-SCORE
• The F1-scores for both preparing and approval are
higher for the proposed strategy, stabilizing near to
1 after 35 epochs and goes to 100% after 100 epochs.
This demonstrates that our strategy keeps up away better
adjust between accuracy and review, driving to more
precise and solid forgery detection.

In conclusion, our proposed CMFD technique illustrates that
the utilization of GCNs for CMFD offers critical advan-
tage over conventional CNN-based strategies. The proposed
approach not as it were accomplishes higher accuracy and
lower loss but too guarantees an adjusted and vigorous
execution. Future investigate can encourage investigate the
potential of GCNs and other progressed neural arrange
designs to improve the detection of different sorts of digital
forgeries.
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