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ABSTRACT With the rapid advancement of transportation electrification, especially dynamic wireless
charging technology, the interconnection between the transportation network and the power distribution
network has become increasingly evident at both the informational and physical levels. Consequently, the
emergence of integrated transportation-power energy systems has garnered considerable attention. It is
urgent to realize a coordinated operation of the energy systems. In this paper, considering the elastic charging
behavior and mileage limitation of electric vehicles, a modeling framework and corresponding solution
algorithms are proposed to coordinate transportation and power distribution networks operation. In the trans-
portation network, a traffic assignment model with the elastic charging demand and effective path generation
models with themileage limitation of electric vehicles are established to calculate the actual charging demand
of electric vehicles and traffic flow distribution. In the power distribution network, an optimal power flow
model based on second-order cone relaxation is established to calculate the power flow distribution and
scheduling plans of generators. And then, based on the idea of alternating direction multiplier method,
a distributed coordinated operation method and solution algorithm for the integrated transportation-power
energy systems are proposed. Finally, a case study is performed to verify the effectiveness of the proposed
model and algorithm.

INDEX TERMS Coordinated operation, dynamic wireless charging, electric vehicles, power distribution
network, transportation network.

I. INTRODUCTION
In the process of energy revolution, the transportation net-
work (TN) as lifeblood of economy has become an integral
part of energy network. However, its substantial energy con-
sumption and carbon emissions pose significant challenges
to the sustainability of economic development. In recent
years, electric vehicles (EVs) have emerged as the pre-
dominant decarbonized mode of transportation due to their
energy-saving and environmentally friendly attributes [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was S. Ali Arefifar .

The market penetration of EVs is experiencing rapid growth,
and the development of an electrified transportation sys-
tem centered around EVs is progressing swiftly [2]. In this
context, novel interactions have arisen between transporta-
tion and power distribution systems, resulting in intricate
operational control of both systems [3]. For example, traffic
congestion status and policies will affect the driving behav-
ior of EVs, and the choices of charging time and location
will significantly affect the spatio-temporal distribution of
charging load, and further affect the operation status of the
power distribution network (PDN). The electricity price will,
in turn, impacts the travelling and charging plans of EVs,
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thereby influencing the distribution of traffic flow on the TN.
Fortunately, challenges always coexist with opportunities [4].
If the influence of charging load on the PDN is included
in the TN model when designing traffic control strategies,
it may have the potential to enhance the power flow distribu-
tion, operational safety, and economic efficiency of the PDN.
Simultaneously, by considering the traffic characteristics of
EVs in the scheduling plans of PDN, the adaptability of
scheduling strategies can be enhanced and traffic congestion
may be alleviated. Therefore, the research topic of coopera-
tive optimization in power-transportation coupled networks
emerges as an imperative and evolves into a novel interdisci-
plinary field of study [5].
Currently, there exist relevant literatures that have

investigated the coordinated operation of the integrated
transportation-power energy systems (ITPES) with the back-
ground of fast charging stations [6]. For example, the
charging and driving paths of EVs in [7] are effectively
regulated through the implementation of road congestion fees
and electricity prices, thereby optimizing power flow effi-
ciency andminimizing traffic travelling time. In [8], a holistic
modeling framework is proposed to study the intertwined
traffic and power flows in the ITPES. It is revealed that
the coupled network will reach an equilibrium state, which
is characterized by a fixed-point problem. Considering the
elastic travel demand of EVs, a smart charging manage-
ment system is designed in [9]. From the perspective of
global decision maker, a cooperative pricing strategy for
power-transportation coupled networks is proposed in [10]
with the goal of optimal system operation. In [11], an optimal
recovery strategy for coupled systems in the event of com-
ponent failures is investigated. In [12], a generalized user
equilibrium (GUE) method is proposed in the coordinated
operation of ITPES to include the impact of PDN operation
on the traffic equilibrium state. In [13], an N-1 security-
constrained optimal traffic-power flow model is proposed to
coordinate the ITPES toward N-1 secure and reliable.

Compared to plug-in charging, dynamic wireless charging
offers a solution for EVs to charge while driving, eliminating
the waiting time associated with traditional charging methods
and enhancing the convenience of recharging [14]. Benefiting
from its unique charging method, dynamic wireless charging
has been extensively studied and demonstrated in engineer-
ing internationally. The broad implementation of in-motion
EV-charging projects is expected in the near future [15].
In dynamic wireless charging mode, the coupling between
TNs and PDNs becomes more tightly integrated as the cou-
pling point shifts from static charging stations to mobile EVs,
which instead enhances the engagement and timeliness of
interaction between EV users and the power grid.

The research topic of collaborative optimization in
ITPES under dynamic wireless charging mode has attracted
widespread attention from scholars around the world. For
example, to determine the optimal prices of electricity and
roads to maximize social welfare, first-best and second-best
pricing models are proposed under different authoritarian

regimes in [16]. Reference [17] presents the short-term
operation of dynamic wireless charging by capturing the
interdependence among the electricity and transportation net-
works. The independent system operator, a public entity
as mentioned in [18], is authorized to manage genera-
tion assets and impose congestion tolls on electrified roads
with the objective of minimizing social costs. Subsequently,
an optimal traffic-power flow model is proposed to deter-
mine the optimal generation schedule and congestion toll
charges. Based on the [18], a multi-period optimal power and
semi-dynamic traffic flow model is proposed in [19] consid-
ering the flow propagation between adjacent time periods.
Under the dynamic wireless charging mode, EVs charg-
ing demand is shifted from residential plug-in charging to
charging-while-driving during commuting hours, resulting
in a simultaneous congestion in coupled networks. Conse-
quently, a bi-level integrated demand response framework is
further proposed in [20] to alleviate congestion in the ITPES.
To accurately depict the time-varying electricity and traffic
demands, the dynamic spatio-temporal coupling model of
ITPES is established in [21] to simulate the spatio-temporal
distribution of EV charging load and congestion cost. Differ-
ent from the above studies that disregard the uncertainty of
traffic demand and stochastic routing behavior of travelers,
a robust dispatch method for the ITPES is proposed in [22]
considering the PDN load perturbation caused by the traffic
demand uncertainty, and an optimization modeling approach
is presented in [23] based on hybrid stochastic user equilib-
rium/information gap decision theory method for coordinated
operation of ITPES.

A detailed comparison of above mentioned literatures in
the context of DWC is summarized in Table 1, from which
we can identify the following inadequacies:

1) The state of charge (SOC) and range limitations of EVs
during driving are ignored. Most existing studies often
oversimplifies the modeling of TN by assuming that all
EVs have identical energy demands and can reach any
charging station within the TN, thereby disregarding
crucial factors such as driving range limitations and
battery state information. In reality, charging price and
current SOC are crucial factors affecting recharging
behavior of EVs during driving. For instance, when
selecting a charging path, EV drivers must ensure
that the battery does not deplete. Additionally, due
to the impact of charging benefits, EV drivers may
not fully recharge the battery while driving. EVs on
different routes between different OD pairs will be
influenced by charging prices and SOC, leading to dif-
ferent energy demands when passing through charging
stations (roads).

2) The elasticity effect of EVs with rigid charging demand
on travelling costs is not considered and modeled.
The aforementioned literatures assume a fixed number
of EVs that require charging during travel from ori-
gin to destination, without taking into account elastic
responsive behavior of EV drivers to travelling costs.
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TABLE 1. Comparison of relevant literatures related to dynamic wireless charging.

But in situations where the charging prices (costs)
are excessively high or the driving distance is exten-
sive, certain EVs may choose for alternative modes of
transportation or even refrain from traveling altogether,
deviating from their initial travelling and recharging
plans.

3) Given the above two gaps, there still lacks a more
detailed models of TN and an effective coordinated
operation method and corresponding solution algo-
rithms for ITPES in response to the elastic charging
behavior and mileage limitation of EVs. How to maxi-
mize the social profit by tapping the flexibility of both
elastic charging and energy demands of EVs while
respecting PDN security constraints is still an open
question.

In consideration of the above premises, this paper develops
a modeling framework and corresponding solution algo-
rithms considering the elastic charging behavior and mileage
limitation of EVs to coordinate TNs and PDNs operation. The
major contributions of this paper are summarized as follows:

1) A more detailed electrified TN model is established to
accurately represent the SOC and mileage limitation
of EVs during driving, as well as the elastic respon-
sive behavior exhibited by EV drivers. In particular,
an adaptive path generation and solution algorithm
in TN is designed to iteratively determine the actual
charging demand of EVs and traffic flow distribution.

2) In order to promote the coordinated operation of TNs
and PDNs while ensuring data privacy between the two
networks, the idea of alternating direction multiplier
method (ADMM) is adopted to design a distributed
coordinated operation method and solution algorithm
for ITPES.

3) Numerical results on test system verify that the
proposed detailed models of the TN, adaptive path

generation and solution algorithm and distributed
coordinated operation method of ITPES. In addition,
we investigate the impacts of EVs penetration rate on
the coordinated operation of TNs and PDNs.

II. MODEL FORMULATION
A. MODELING OF THE TRANSPORTATION NETWORK
The TN comprises two types of vehicles: some of them are
EVs which need battery recharge, and others are traditional
gasoline vehicles (GVs) along with EVs which do not need
battery recharge. Specifically, the refueling behavior of GVs
is neglected to simplify model and analysis, because it does
not directly impact the PDN [8]. And EVs which do not need
battery recharge, we treat them as traditional GVs and also
call them GVs for simplicity, because they share a common
route selection criterion with GVs. When traveling to their
destinations, a GV seeks the route which has minimal travel
time, and an EV looks for the route whichminimizes its travel
expense (cost) composed of the travel time and charging cost.
And the origin-destination (OD) demands of GVs are fixed
and known while EVs have elasticity in making charging
and travelling plans. Keep those promises in mind, a traffic
assignment model with the elastic charging demand and two
types of effective path generation model are established to
calculate actual charging demand of EVs and traffic flow
distribution of TN.

1) ELASTIC BEHAVIOR MODEL
To depict the elastic behavior of EV drivers to travelling
costs, an elastic demand function qEV,real,w = Dw(µEV,w)
is introduced to calculate the actual charging demands after
EVs response. This demand function is required to have the
following two basic properties:

Property 1: the elastic demand function should be a con-
tinuously decreasing function of the minimum travelling
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expense µEV,w. This design is rooted in the dynamics of the
TN, where the charging demand of EVs for each OD pair
decreases with respect to the increase of minimum travelling
expense.

Property 2: the elastic demand function must be strictly
positive and possess an inverse function D−1

w (qEV,w). This
inverse function serves as a representation of the utility level
for EV users, demonstrating an escalation in value concomi-
tant with the rise in charging demand for EVs.

Aligned with the aforementioned properties, we employ
the widely acknowledged negative exponential function [24],
[25] to describe the elastic demand of EVs, delineated by (1):

qEV,real,w = Dw
(
µEV,w

)
= qEV,w exp

(
−θµEV,w

)
(1)

where qEV,w and qEV,real,w represent the initial charging
demand of EVs and the actual charging demand after EVs
elastic response in OD pair w, respectively. θ is the elasticity
coefficient, which represents degree of elastic responsive-
ness of EV users to the minimum travelling expense µEV,w.
The more pronounced the inclination of EVs to travel and
recharge, the smaller the elasticity coefficient becomes.

2) TRAVELLING TIME AND TRAVELLING COST MODEL
Total path travelling time and travelling cost are the major
consideration for road travelers to choose a route, and it
depends on the congestion level of each road on the route.
The road congestion level is usually quantified by a latency
function χa(ψa) related to road flow ψa, which represents
the actual travelling time of the road a. In practical TNs, the
more vehicles a road carries, the longer the time required to
traverse that road. Therefore, the latency function χa(ψa) is
a strictly increasing function of road traffic flow ψa. Based
on research findings from the Bureau of Public Roads (BPR)
in the United States, it is often represented by the following
BPR function [26].

χa(ψa) = χ0
a

[
1 + ba

(
ψa

Ca

)ν]
, ∀a ∈ �A (2)

where χ0
a equals the length of road a divided by speed limit,

called the free-flow travelling time. Notation Ca denote the
road capacity. The symbol ba and v are parameters of BPR
function model, conventionally set at 0.15 and 4, respectively.
The symbol �A denotes the set of all roads in TN.

Every path comprises a set of roads, and this association
can be delineated through the utilization of an indicator vari-
able. If a path encompasses a particular road, the indicator
variable xa,kg,w/xa,ke,w is set to 1; otherwise, it is set to 0. It is
noteworthy that this variable is predetermined and provided
in advance based on the effective paths. Based on the road
travelling time χa(ψa), the travelling time τkg,w and travelling
cost ζGV,kg,w of each effective path kg for GVs between each
OD pair w is able to be calculated by (3) and (4):

τkg,w =

N�A∑
a=1

χa(ψa)xa,kg,w ∀kg ∈ �KGV,w,w ∈ �OD (3)

ζGV,kg,w =

N�A∑
a=1

ηχa(ψa)xa,kg,w ∀kg ∈ �KGV,w,w ∈ �OD

(4)

where η signifies the conversion coefficient for time and cost,
with a nominal value of $10/h. The symbol�KGV,w and�OD
denote set of effective paths for GVs and the set of all travel
OD pairs in TN, respectively.
Similarly, the travelling time τke,w of each effective path ke

for EVs between each OD pair w can be calculated by (5):

τke,w =

N�A∑
a=1

χa(ψa)xa,ke,w ∀ke ∈ �KEV,w,w ∈ �OD (5)

where symbol�KGV,w denotes set of effective paths for EVs.
Diverging from travelling cost of GVs, the travelling cost

ζEV,ke,w for an EV driver experienced on the effective path ke
becomes the summation of travelling time cost and charging
cost, which is given by:

ζEV,ke,w =

N�A∑
a=1

ηχa(ψa)xa,ke,w +

N�A∑
a=1

λa∈s∈jEa,ke,w

∀ke ∈ �KEV,w ∈ �OD (6)

where λa∈s∈j denotes charging electricity price of road a,
namely the node marginal electricity price of PDN bus j,
which provides power to the dynamic wireless charging
station s. Simultaneously, Ea,ke,w stands for the charging
quantity when the effective path ke between the OD pair w
traverses road a, it is optimized by the subsequently proposed
effective path generation model for EVs.

3) TRAFFIC FLOW MODEL
To ensure traffic flow conservation, the total traffic flow for
each travel OD pair should equal the sum of traffic flows on
all effective paths for that OD pair.

N�KGV,w∑
kg=1

HGV,kg,w = qGV,w ∀w ∈ �OD (7)

N�KEV,w∑
ke=1

HEV,ke,w = qEV,real,w ∀w ∈ �OD (8)

where HGV,kg,w(HEV,ke,w) represents traffic flow of GVs
(EVs) on effective path kg(ke) between travel OD pair w.
qGV,w is the traffic demand of GVs between the travel OD
pair w.
Similarly, adhering to the traffic conservation theorem, the

total traffic flow ψa on any road a is equal to the sum of the
traffic flows of all effective paths for GVs and EVs that will
pass through road a, which can be presented by (9)-(11).

ψa = ψEV,a + ψGV,a ∀a ∈ �A (9)

ψGV,a =

N�OD∑
w=1

N�KGV,w∑
kg=1

HGV,kg,wxa,kg,w ∀a ∈ �A (10)
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ψEV,a =

N�OD∑
w=1

N�KEV,w∑
ke=1

HEV,ke,wxa,ke,w ∀a ∈ �A (11)

Additionally, the path flows for GVs and EVs must adhere
to the non-negativity constraints outlined in (12) and (13):

HGV,kg,w ≥ 0 ∀kg ∈ �KGV,w,w ∈ �OD (12)

HEV,ke,w ≥ 0 ∀ke ∈ �KEV,w,w ∈ �OD (13)

4) MIXED USER EQUILIBRIUM CONDITIONS
In the actual TNs, traffic users consistently tend to favor
paths with minimal travelling costs. Influenced by the traf-
fic congestion effects, there exists an interactive influence
between the path selections of EVs and GVs. This interplay
among vehicles ultimately leads to the attainment of a stable
state in the electrified TN, known as the User Equilibrium
(UE) [27], [28]. In this equilibrium state, each traveler is
unable to reduce their travelling costs by adjusting their route
choice. In other words, when the electrified TN reaches this
equilibrium state, every utilized path kg/ke for each travel
OD pair possesses equal and minimal travelling expense
µGV,w/µEV,w, while the travelling costs for paths not be
chosen exceed this minimum travelling expense.

This equilibrium state can be mathematically interpreted
as the following complementarity constraints.

0 ≤ HGV,kg,w⊥ζGV,kg,w − µGV,w ≥ 0

∀kg ∈ �KGV,w,w ∈ �OD (14)

0 ≤ HEV,ke,w⊥ζEV,ke,w − µEV,w ≥ 0

∀ke ∈ �KEV,w,w ∈ �OD (15)

where 0 ≤ a⊥b ≥ 0 stands for a ≥ 0, b ≥ 0 and ab = 0.

5) TRAFFIC ASSIGNMENT MODEL WITH ELASTIC CHARGING
DEMAND
To sum up, Equations (1)-(15) constitute a traffic assignment
model with elastic charging demand. However, the comple-
mentary constraints illustrated in (14)-(15) violate the restric-
tions of standard constraints. This nonlinear comple-mentary
constraint form makes it challenging to solve the traffic
assignment model using general nonlinear solvers. Follow-
ing paradigm in [29], it turns out that Equations (1)-(15)
can be used to constitute the Karush–Kuhn–Tucker (KKT)
conditions of following strictly convex optimization problem
with linear constraints, which is called a traffic assignment
problem with elastic charging demand (TAP-ECD):

minFTAP = FT + FCH − UE

s.t. {(7) − (13)} (16)

Thus, the traffic assignment model with elastic charging
demand can be equivalent calculated by this optimization
problem (16). The objective function consists of three compo-
nents: the first term is the total traffic delay costFT associated
with travelling time of road a; the second term is the total

charging cost FCH for all of the EVs; the third term is the
total utility for EVs participating in elastic response.

FT =

N�A∑
a=1

η

∫ ψa

0
χa(ψa) dψa

=

N�A∑
a=1

ηχ0
a

[
ψa +

ba(ψa)ν+1

ν(Ca)ν

]
(17)

FCH =

N�OD∑
w=1

N�KEV,w∑
ke=1

∫ HEV,ke,w

0

N�A∑
a=1

λa∈s∈jEa,ke,wdHEV,ke,w

=

N�OD∑
w=1

N�KEV,w∑
ke=1

N�A∑
a=1

λa∈s∈jEa,ke,w

HEV,ke,w (18)

UE =

N�OD∑
w=1

∫ qEV,real,w

0
D−1
w (y)dy

=

N�OD∑
w=1

∫ qEV,real,w

0

1
θ
ln(qEV,w) − ln(qEV,real,w)dy

=
1
θ

N�OD∑
w=1

[
ln(qEV,w) − ln(qEV,real,w) + 1

]
qEV,real,w

(19)

Therefore, the above TAP-ECD is strictly convex optimiza-
tion problem with linear constraints, and can be efficiently
solved by nonlinear solvers such as IPOPT.

6) EFFECTIVE PATH GENERATION MODEL
In previous studies [16], [17], [18], [19], [20], [21], [22],
[23], the sets of travelling paths for EVs and GVs between
each OD pair involved in TAP-ECD, denoted as �KEV and
�KGV, respectively, can be enumerated offline through path
search algorithms. However, due to the inherent tendency
of drivers to choose the paths with the minimum travelling
expense during their journeys, the majority of enumerated
feasible paths are unlikely to be selected by drivers resulting
in redundant paths, which significantly escalate the compu-
tational complexity of the TAP-ECD. Moreover, the route
choices for EVs, unlike GVs, are influenced not only by
travelling distance limitations but also by charging decisions
including selection of charging roads and charging electricity
quantities. If an enumeration method is still employed for the
analysis of EVs paths, the computational burden would be
exceedingly substantial, potentially rendering it impractical.
Therefore, considering the travelling distance limitations and
battery status for EVs, we propose effective path generation
models to construct the effective path sets �KEV and �KGV
for both EVs and GVs.

The fundamental idea behind the effective path generation
model is to optimize for the maximum travelling benefit for
EVs (minimum travelling cost for GVs) between each OD
pair under the current traffic flow distribution, resulting in
the selection of an optimal travel path υke(υkg).
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1) Effective path generation model for EVs
Influenced by charging preferences of drivers, EVs may not
be fully replenish energy during driving. EVs on different
travelling paths between distinct OD pairs may exhibit vary-
ing energy demands when passing through charging roads,
which are affected by charging electricity prices and battery
states. Therefore, the effective path generation model for EVs
(EPM-EVs) is not only required to determine an appropriate
travel path but also optimize the charging electricity quantity
of the charging road along that path based on the battery status
of EVs.

To describe the charging behavior of replenishing energy
for EVs during the travel process, the concept of utility
functions from microeconomics is adopted for analysis and
modeling. In actual TNs, EV drivers who choose the same
driving path often exhibit similar charging behavior, so the
utility function UEV,ke,w for EV drivers on each path ke
between each OD pair w can be unified. This utility function
is required to have the following two basic properties:

Property 1: the charging utility function UEV,ke,w
(Ea,ke,w, ω) for EV drivers should be a non-decreasing func-
tion of the charging electricity quantity Ea,ke,w. Because
drivers tend to replenish energy as much as possible until
reaching the permissible maximum charging capacity, it can
be asserted that user satisfaction and utility levels progres-
sively increase with the augmentation of charging electricity
quantity. When the charging electricity quantity of the EV
attains the maximum value M , users charging satisfaction
reaches its peak, conforming to the functional characteristic
expressed in (20):

∂UEV,ke,w(Ea,ke,w, ω)
∂Ea,ke,w

≥ 0, 0 ≤ Ea,ke,w ≤ M (20)

where symbol ω is a parameter of charging utility function.
It reflects the sensitivity of driver to charging electricity price.
The larger the parameter value, the stronger the charging
willingness of EV drivers to fully recharge the battery. Next,
the partial derivative of the charging utility function to the
charging electricity quantity, Equation (20), is further defined
as the charging marginal revenue VEV,ke,w(EEV,ke,w, ω) of EV
drivers, which is expressed by (21):

VEV,ke,w(EEV,ke,w, ω) =
∂UEV,ke,w(EEV,ke,w, ω)

∂EEV,ke,w
,

0 ≤ EEV,ke,w ≤ M (21)

Property 2: the charging marginal revenue VEV,ke,w
(EEV,ke,w, ω) of EV drivers should exhibit a non-increasing
trend with respect to the charging electricity quantity Ea,ke,w.
As the charging electricity quantity increases, the charging
utility of EV drivers tends to reach saturation, resulting in a
subsequent decline in their marginal revenue.

∂VEV,ke,w(EEV,ke,w, ω)
∂EEV,ke,w

≤ 0 (22)

There aremany types of utility functions that satisfy both of
these properties. Considering the charging characteristics of

EVs, we employ thewidely used piecewise quadratic function
in [30] to quantify the charging utility of EV drivers traversing
charging roads on each charging path between each OD pair.
The specific model is presented in (23):

UEV,a,ke,w(Ea,ke,w, ω)

=


Ea,ke,w(ω −

α

2
Ea,ke,w), 0 ≤ Ea,ke,w ≤

ω

α
ω2

2α
, Ea,ke,w ≥

ω

α

(23)

where α is a preset parameter, which affects peak value of the
utility function.When variableEa,ke,wmaps to the peak value,
charging road will output the maximum charging electricity
quantity La it can provide, and then

ω

α
= La, α =

ω

La
(24)

Combining with Equation (23) and Equation (24), the final
charging utility function of EV drivers on the path ke between
OD pair w is obtained, as shown in (25):

UEV,ke,w =

N�A∑
a=1

[
ωEa,ke,w −

ω

2La
(Ea,ke,w)2

]
(25)

In effective path generation model for EVs, if only con-
sidering maximizing the charging utility or minimizing the
travelling cost of EV drivers to obtain the optimal charging
path and charging electricity quantity, it will notmaximize the
travelling benefit for EVs. Therefore, considering the driving
range limitations and battery states of EVs, this paper estab-
lishes EPM-EVs with the goal of maximizing the travelling
benefitWEV,ke,w of EVs, as shown in (26), (28)-(35).

Objective function:

max
γ,E

WEV,ke,w = UEV,ke,w − κEV,ke,w (26)

κEV,ke,w =

N�A∑
a=1

[
ηχa(ψa)γa,ke + λa∈s∈jEa,ke,w

]
(27)

where κEV,ke,w is travelling cost of EVs in path ke between
OD pair w. γa,ke is an 0-1 decision variable, and if the path ke
includes road a, then γa,ke = 1, otherwise, γa,ke = 0.

Constraints:

1γ ke,w

= IEV,w ∀w ∈ �OD (28)

SOCi,ke,w − daϖ + Ea,ke,w − SOCj,ke,w
= εa,ke,w

∀ (i, j) = a ∈ �A (29){
εa,ke ≥ −M

(
1 − γa,ke

)
εa,ke ≤ M

(
1 − γa,ke

) ∀ (i, j) = a ∈ �A (30)

SOCi,ke,w − daϖ + Ea,ke,w
≥ −M

(
1 − γa,ke,w

)
+ m

∀ (i, j) = a ∈ �A (31)

SOCi,ke,w − daϖ + Ea,ke,w
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≤ M
(
1 − γa,ke,w

)
+ SOCmax ∀ (i, j) = a ∈ �A (32){

0 ≤ Ea,ke,w ≤ Laγa,ke,w if a ∈ c ∈ �WCS

Ea,ke,w = 0 if a /∈ c ∈ �WCS
(33)

SOCr,ke,w
= SOCini,w (34)

SOCend,w

≤ SOCs,ke,w ≤ SOCmax (35)

Equation (28) constrains all possible paths between each
OD Pair. The node-link incidence matrix 1 depicts the net-
work topology. Each column of 1 corresponds to a road
and has two non-zero elements: 1 (−1) at the component
associated with the entrance (exit) node. In view of the def-
inition of 1, γke,w represents a chain of connected roads
from origin r and travels to its destination s. IEV,w has two
non-zero elements, 1 and −1 at the entries corresponding to
the origin node r and the destination node s. Equations (29)
and (30) represent the battery charge variation experienced
by an EV when traveling through any road. SOCi,ke,w and
SOCj,ke,w represent the initial and final state of charge (SOC),
respectively, for the EV when it travels through the road on
a path ke between OD pair w. Notations da and ϖ denote
the distance of road and driving energy consumption rate
of EVs, respectively. The symbols εa,ke and M are Auxil-
iary variable and infinite constant. Equations (31) and (32)
take into account the impact of range limitations and battery
capacity of EVs.When EV traverses a certain road and arrives
at the next node, the SOC should not fall below a certain
threshold m and not exceed the maximum capacity SOCmax.
Equation (33) indicates that if the charging path taken by the
EVs involves a dynamic wireless charging road, the charging
electricity quantity Ea,ke,w in that road is constrained to be
less than the maximum charging quantity La; otherwise, the
charging electricity quantity is set to zero. SOCr,ke,w and
SOCend,w are the SOC of EV at the origin r and at the
destination s, respectively.

1. Effective path generation model for GVs
The effective path generation model for GVs (EPM-GVs) is
comparatively straightforward, as depicted in (36)-(37):

min κGV,kg,w =

N�A∑
a=1

ηχa(ψa)γa,kg (36)

1γkg = IGV,w ∀w ∈ �OD (37)

The above two effective path generation models are mixed
integer linear programming problem and can be effectively
solved using CPLEX or Mosek solvers.

7) ADAPTIVE PATH GENERATION AND SOLUTION
ALGORITHM
Combining the TAP-ECD established in Section V) and two
types of the effective path generation model developed in
Section 6), an adaptive path generation and solution algorithm
is designed specifically to calculate actual charging demand

of EVs and traffic flow distribution of TN. The detailed
algorithm process is illustrated in TABLE 2.

TABLE 2. Adaptive path generation and solution algorithm.

B. MODELING OF THE POWER DISTRIBUTION NETWORK
Power distribution system contains dynamic wireless charg-
ing stations (WCS) and generators which are connected to
electric buses of PDN. The PDN is served by a typical radial
network. Based on the characteristics, an optimal power flow
model based on second-order cone relaxation (OPF-SOCR)
[31] is formulated to calculate optimal power flow distribu-
tion and the scheduling plans of generators.

The objective of OPF-SOCR is to minimize operation cost
FE of PDN including the electricity purchasing costFsub from
the wholesale power market as well as the production cost FG
of generators.

minFE = Fsub + FG (38)
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Fsub =

Nsub∑
j=1

ρsubPsub,j (39)

FG =

NG∑
g=1

[
ag(PG,g)2 + bgPG,g

]
(40)

where ρsub represents the unit cost of purchasing electricity
from the higher-level power grid. Psub,j denotes active power
delivered through line connected to the slack bus. PG,g repre-
sents the active power of the generator. Notations ag and bg
are production cost coefficients of generator.

The OPF-SOCR is subjected to branch flow equations
proposed in [32] and [33] as shown in (41)-(45):

Pi,j + PG,j − Ii,jri,j =

Nj∑
h=1

Pj,h + PL,j ∀ (i, j) ∈ �L (41)

PL,j = PLc,s∈j + PLd,j ∀j ∈ �N (42)

Qi,j + QG,j − Ii,jxi,j =

Nj∑
h=1

Qj,h + QL,j ∀ (i, j) ∈ �L (43)

Ui − Uj = 2(ri,jPi,j + xi,jQi,j)

− [(ri,j)2 + (xi,j)2]Ii,j∀ (i, j) ∈ �L

(44)

Ii,jUi ≥ (Pi,j)2 + (Qi,j)2 ∀(i, j) ∈ �L (45)

where (45) denotes the SOC relaxation. Pi,j and Qi,j are the
active and reactive power of branch (i, j). Pj,h and Qj,h are
the active and reactive power of branch (j, h) connected to
node j. ri,j and xi,j are the resistance and reactance of branch
(i, j).QG,g represents the reactive power of the generator. PL,j
and QL,j are the active and reactive power demand at node j.
PLc,s∈j and PLd,j are the charging and regular loads at node
j. Ii,j and Uj represent square of current magnitude in branch
(i, j) and square of voltage magnitude at node j,respectively.

Furthermore, the security constraints of PDN are also con-
sidered as shown in (46)-(51):

(Pi,j)2 + (Qi,j)2 ≤ (Smax
i,j )2 ∀(i, j) ∈ �L (46)

Pi,j − ri,jIi,j ≥ 0 ∀(i, j) ∈ �L (47)

Qi,j − xi,jIi,j ≥ 0 ∀(i, j) ∈ �L (48)

Umin
j ≤ Uj ≤ Umax

j ∀j ∈ �N (49)

Pmin
G,g ≤ PG,g ≤ Pmax

G,g ∀g ∈ �G (50)

Qmin
G,g ≤ QG,g ≤ Qmax

G,g ∀g ∈ �G (51)

Here, constraints (46)-(48) impose power flow of dis-
tribution lines. Constraint (49) imposes bounds on nodal
voltages. Constraints (50)-(51) impose the upper/lower bound
on generators output. Smax

i,j is maximum allowable capacity
of distribution line (i, j). Umin

j and Umax
j are the minimum

and maximum values of node voltage. Pmin
G,g and Pmax

G,g are
the minimum and maximum values of active power of the
generator. Qmin

G,g and Qmax
G,g are the minimum and maximum

values of reactive power of the generator.

The above OPF-SOCR is a second-order cone program-
ming problem and can be effectively solved using CPLEX or
Mosek solvers.

III. DISTRIBUTED COORDINATED OPERATION METHOD
FOR INTEGRATED TRANSPORTATION-POWER ENERGY
SYSTEMS
In order to promote the coordinated operation of TNs and
PDNs while ensuring data privacy between the two networks,
the idea of ADMM is adopted to design a distributed coor-
dinated operation method and solution algorithm for ITPES.
This method aims to determine appropriate nodal marginal
electricity prices to guide the dynamic wireless charging
behavior of EVs, enabling them to make socially optimal
driving and charging decisions and achieve optimal energy
consumption.

A. METHOD OVERVIEW
The established TAP-ECD and OPF-SOCR are coupled
through the load constraints of WCSs represented by (52):

PLc,s =

Ns∑
a=1

N�OD∑
w=1

N�KEV,w∑
ke=1

HEV ,ke,wEa,ke,w

PELc,s = PTLc,s

∀s ∈ �WCS

(52)

Here, PELc,s and PTLc,s represent the optimized charging
loads obtained from the TN and the PDN, respectively.
Based on the ADMM [34], by introducing the Lagrange

multiplier ρs, the coupling constraints (52) are relaxed, and
an augmented Lagrangian function for ITPES is established,
as shown in (53):

L(PTLc,s,P
E
Lc,s, ρ) = FTAP(PTLc,s) + FE(PELc,s)

+

N�WCS∑
s=1

ρs(PTLc,s − PELc,s)

+

N�WCS∑
s=1

b
2

∥∥∥PTLc,s − PELc,s
∥∥∥2
2

(53)

This augmented Lagrangian function can be decomposed
into three subproblems, which are the PTLc,s−update subprob-
lem 1, PELc,s−update subproblem 2 and Lagrange multipliers
updating subproblem 3. Specifically, the TAP-ECD is PTLc,s−
update subproblem 1, and the OPF-SOCR is PELc,s − update
subproblem 2. The detailed model is provided below:

PT,k+1
Lc,s ∈ argmin

PTLc,s∈�TAP


FTAP +

N�WCS∑
s=1

ρs(PTLc,s − PE,kLc,s)

+

N�WCS∑
s=1

b
2

∥∥∥PTLc,s − PE,kLc,s

∥∥∥2
2


(54)
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PE,k+1
Lc,s ∈ argmin

PELc,s∈�OPF


FE +

N�WCS∑
s=1

ρs(P
T,k+1
Lc,s − PELc,s)

+

N�WCS∑
s=1

b
2

∥∥∥PT,k+1
Lc,s − PELc,s

∥∥∥2
2


(55)

ρk+1
s = ρks + b

(
PT,k+1
Lc,s − PE,k+1

Lc,s

)
∀s ∈ �WCS (56)

Here, �TAP is constraint set of the TAP-ECD in TN.�OPF
is constraint set of the OPF-SOCR in PDN.

B. SOLUTION ALGORITHM
The coordinated operation method for ITPES can be solved
by addressing thePTLc,s−update subproblem 1, PELc,s−update
subproblem 2 and updating Lagrange multipliers. The itera-
tion process terminates when the original and dual residuals,
as indicated in equations (57) and (58), satisfy convergence
conditions. At this point, the optimal nodal marginal elec-
tricity prices are obtained. Under these prices, the ITPES
achieves its socially optimal operating state. The specific
distributed coordinated operation algorithm for ITPES is out-
lined in TABLE 3.

max
{∣∣∣PT,k+1

Lc,s − PE,k+1
Lc,s

∣∣∣ ∀s ∈ �WCS

}
(57)

max
{∣∣∣PT,k+1

Lc,s − PT,kLc,s

∣∣∣ , ∣∣∣PE,k+1
Lc,s − PE,kLc,s

∣∣∣ ∀s ∈ �WCS

}
(58)

The overall flowchart of the solution methodology
(Algorithm 1 and 2) is summarized in Figure 1.

IV. CASE STUDIES
A. BASIC SETTING
A test system with an emblematical ring expressway TN [8]
and an improved 11 kV radial PDN [35] is adopted to demon-
strate effectiveness of the proposed model and algorithm. The
topology of the TN and PDN and coupling relationships are
illustrated in Figure 2.
The electrified TN is composed of twelve nodes, four types

of roads and eight WCSs located on the inner and outer
rings. The characteristics of the roads and WCSs are given
in TABLE 4. The traffic demand qGV,w of GVs and potential
initial charging demand qEV,w of EVs for eleven OD pairs
are listed in TABLE 5. As for PDN, it consists of 119 buses,
118 distribution lines and three generation units. Generators
G1-G3 share the same parameters: ag = 0.3$/MW2h, bg =

150$/MWh, and the capacity is 3 MW. The base value of
power is set as 10MVA. The voltage boundary is

√
Umin,j =

0.85 and
√
Umax,j = 1.05. The voltage magnitude at the slack

bus is
√
U0 = 1.02. The capacity of each distribution line is

Smax
i,j = 1.6 p.u. for all lines.

B. PERFORMANCE ANALYSIS OF THE ALGORITHMS
In this section, the effectiveness of Algorithm 1 and the
convergence and complexity of Algorithm 2 are investigated.

TABLE 6 and 7 respectively present the effective travel
path sets for GVs and EVs between each OD pair in TN

TABLE 3. Distributed coordinated operation algorithm for ITPES.

TABLE 4. Characteristics of roads.

when the coupled network achieves coordinated operation.
It is clear that the proposed effective path generation model
and solution Algorithm 1 have eliminated redundant paths
not chosen by users and optimized the effective path sets
available for both EVs and GVs between each OD pair.
Additionally, the travel time, travel cost, and traffic flow
for GVs (EVs) on those effective travel paths are also
successfully calculated. Notably, when multiple effective
paths exist between an OD pair (e.g., T3-T10, T4-T9, T4-
T10, T4-T12 for GVs; T4-T9 for EVs), the travel costs
for GVs or EVs on each path are equal, which consistent
with mixed UE state (Equations (14)-(15)). These results
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FIGURE 1. Flowchart of the solution methodology.

TABLE 5. OD pairs and their traffic demands (The penetration rate of EVs
is 60%).

largely validate the effectiveness of the proposed electri-
fied TN model and adaptive path generation and solution
Algorithm 1.

TABLE 6. Effective paths, travel time, travel cost and path traffic flow for
GVs in each OD pair.

Figure 3 illustrates the convergence curve of the origi-
nal and dual residuals in Algorithm 2. The primal residual
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FIGURE 2. The topology of the TN and PDN and coupling relationships.

TABLE 7. Effective paths, travel time, travel cost and path traffic flow for
EVs in each OD pair.

reflects whether the coordinated operation of TN and PDN
can be achieved. Meanwhile, dual residual is an important
criterion to judge whether the distributed coordinated oper-
ation algorithm for ITPES achieves the optimal solution,
and its variation trend can reflect the characteristics of the
algorithm. It can be observed that after 6 iterations, both the
original and dual residuals rapidly approach zero, satisfying
the convergence conditions. It illustrates that the distributed
coordinated operation method for ITPES can satisfy all kinds
of constraints set by TN and PDN, and converge quickly to
an optimum solution.

Now consider the computational complexity of the pro-
posed two algorithms. The presented TAP-ECD (PTLc,s −

update subproblem 1) and OPF-SOCR (PELc,s − update

FIGURE 3. Primal and dual residual curves (The penetration rate of EVs is
60%).

subproblem 2) problems are strictly convex nonlinear pro-
gramming problem and second-order cone programming
problem respectively, which can be efficiently solved by opti-
mization software solvers IPOPT and Mosek, respectively.
Meanwhile, as the two problems are convex, the Algorithm
2 will be able to converge to optimal solution with reasonable
computation time. The computational time under different
penetration rates of EVs is shown in Figure 4. It can be
seen that under different EVs penetration rates, the proposed
model can be solved by the proposed two algorithms in a rea-
sonable amount of time. The maximum number of iterations
for the Algorithm 2 is 10. The total computing times are 238s
to 634s under different penetration rates of EVs. Compared
to day-ahead scheduling, and even to a 60-minute dispatch
interval, the proposed algorithms are fast enough to support
managers in promoting the coordinated operation of ITPES.
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FIGURE 4. Computation time under different penetration rates of EVs.

C. RESULTS AND ANALYSIS OF THE PROPOSED MODEL
To analyze the effectiveness of the proposed model, two
scenarios are intentionally designed and compared.

Scenario 1: Non-coordinated operation of the ITPES.
There is no interaction be-tween the TN and PDN. All the
electricity prices of WCSs are equal to each other, uniformly
fixed at $180/MWh, which will not affect the routing selec-
tion and charging decisions of EVs.

Scenario 2: Coordinated operation of the ITPES (proposed
method).

1) COSTS ANALYSIS FOR THE INTEGRATED
TRANSPORTATION-POWER ENERGY SYSTEMS
The costs analysis for the ITPES in both scenarios is pre-
sented in TABLE 8. Compared to Scenario 1, Scenario
2 exhibits a significant reduction in various costs, including
electricity purchasing cost Fsub from the wholesale power
market, production cost FG of generators, total traffic delay
cost FT and charging cost FCH for all of the EVs. The oper-
ation cost FE of PDN reaches a minimum value of $4265.63,
and the total travelling cost (FT + FCH) of TN reaches a
minimum value of $18420.48 in Scenario 2. These reductions
of 8.34% and 3.68% in costs compared to Scenario 1, respec-
tively, demonstrate the superiority of achieving coordinated
operation for ITPES.

TABLE 8. Costs of objective function in PDN and TN.

TABLE 9 provides the travelling costs for EVs and GVs
between each OD pairs in Scenario 2. It is observed that the
travelling cost of EVs is slightly higher than that of GVs
between each OD pair. This is due to the driving range lim-
itations of EVs battery, which require additional recharging

expenses for EVs to fulfill their travel plans, we do not
include the refueling cost of GVs.

TABLE 9. Travel costs of EV and GV in each OD pair.

2) OPTIMIZATION RESULTS ANALYSIS OF TRANSPORTATION
NETWORK
Figure 5 presents the actual charging demand qEV,real,w after
EVs response in both Scenarios. It is evident that the actual
charging demand qEV,real,w of each OD pair in both Scenario
1 and Scenario 2 is less than the initial charging demand
qEV,w. Some EVs, influenced by traffic delay and charg-
ing costs, abandon their original travel and charging plans.
It demonstrates that the TAP-ECD presented in Section II
is able to reflect the elastic charging behavior of EVs to
calculate the actual charging demand.

Furthermore, in Scenario 2, the actual charging demand
qEV,real,w for each OD pair is less than in Scenario 1, indicat-
ing that more EVs are abandoning their original travelling and
charging plans. The primary reason lies in the coordinated
operation mode, where the TN and PDN achieve coordinated
interaction through node marginal electricity prices. Dispar-
ities in electricity pricing result in variations in charging
costs. Consequently, the elastic response behavior of EVs is
no longer solely influenced by traffic delay costs; instead,
discrepancies in charging expenses encourage more users to
give up travel and charging plans.

FIGURE 5. Changing demand of EVs in each OD pair.

Figure 6 displays the traffic flows distribution of EVs and
GVs in each road of TN. It is observed that: (1) in both
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FIGURE 6. Traffic flows distribution in TN.

scenarios, most vehicles choose to travel on the inner and
outer ring expressways of the TN, as they have higher road
capacities and fewer traffic signals (indicated by smaller χ0

a );
(2) Compared to Scenario 1, the total traffic flow in each
road of Scenario 2 has decreased, indicating that regulating
the elastic charging behavior of EVs through nodal marginal
electricity prices is effective in alleviating traffic congestion.

To further illustrate SOC of EVs at each road node and
charging electricity quantity Ea,ke,w at WCS along the effec-
tive travel path, we conduct a detailed analysis using the
effective travel paths T1-T2-T6-T10, T3-T7-T8-T9-T10, and
T4-T5-T9 as examples. Attentively, the minimum threshold
m for the SOC of EVs is set at 10% of the battery capacity,
the initial SOC of EVs is uniformly set to 30% of the battery
capacity, and the final SOC must also be maintained at 30%
of the battery capacity or higher by the trip’s end.

Figure 7 shows SOC of EVs at each road node and charging
electricity quantity at WCS along the effective travel path in
two Scenarios. It is can be seen that in both Scenarios, all
the constraints on SOC of EVs in EPM-EVs can be satis-
fied. In addition, the charging electricity quantity Ea,ke,w of
EVs at each WCS along the travel route reached maximum
limit of 5kWh in Scenario 1. In contrast, in Scenario 2, the
charging electricity quantity Ea,ke,w of EVs at each WCS
along the effective travel route was regulated to ensure that
it can only meet the minimum requirement, maintaining a
SOC 30% of the battery capacity by the trip’s end. These
results demonstrate that the proposed EPM-EVs effectively
describes SOC of EVs at each road node across different
travel paths. It also enables the regulation and optimization
of EV charging electricity quantities Ea,ke,w at WCS along
the travel route.

FIGURE 7. SOC of EVs at each road node and charging electricity quantity
for EVs at WCS along the effective travel path.

In Scenario 2, we further investigate how the recharging
willingness of EV drivers affects the charging electricity
quantities Ea,ke,w at WCS along the travel route. The symbol
ω in Formula (20) represents willingness of EV drivers to
fully recharge the battery, it is set to three different parameter
values, such as 0.1,0.5,1. Relevant results are displayed in
Figure 7 and Figure 8, from which there are the following
findings: Among the three effective paths listed, an increase
in EV drivers’ willingness to recharge leads to a higher
charging electricity quantities Ea,ke,w at eachWCSs along the
travel route, indicating the proposed utility function model
can describe the charging willingness of EV drivers. Namely,
the stronger thewillingness of EV drivers to fully recharge the
battery, the larger the charging electricity quantities Ea,ke,w
obtained through optimization.

FIGURE 8. SOC of EVs at each road node and charging electricity quantity
for EVs at WCS along the effective travel path in Scenario 2 (ω = 0.5 and
ω = 1).

3) OPTIMIZATION RESULTS ANALYSIS OF POWER
DISTRIBUTION NETWORK
The optimization results of purchasing power from the
wholesale power market or main grid, scheduling plans
of generators, and bus voltage in PDN are presented in
TABLE 10 and Figure 9. It can be found that all security
constraints in PDN are maintained in both Scenarios, how-
ever, Scenario 1 shows higher purchasing power from the
wholesale market and greater generator active power output
compared to Scenario 2. Additionally, the voltagemagnitudes
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at some buses connected to WCSs in Scenario 1 are lower
than those Scenario 2. These results indicate that the coordi-
nated operation of ITPES can reduce the charging demand of
EVs, improve the spatial distribution of charging loads, thus
the active power output of the PDN is reduced effectively,
enhancing voltage quality.

TABLE 10. Purchasing power from main grid and dispatching of
generators.

TABLE 11 summarizes optimization results of node
marginal electricity prices and charging load. From
TABLE 11, it is evident that compared to Scenario 1, the
WCSs in Scenario 2 exhibit lower nodal marginal electricity
prices, and the difference between the highest and lowest
prices is smaller. Because, in the coordinated operationmode,
nodal marginal electricity prices influenced the routing selec-
tion and charging decisions of EVs, thereby affecting the
charging loads of WCSs. The variation in charging loads,
in turn, affects the operating state of PDN, and consequently
alters the marginal electricity price at nodes. Through this
coordinated interaction between the TN and PDN, a coor-
dinated equilibrium state is achieved, resulting in relatively
uniform nodal marginal electricity prices.

FIGURE 9. Bus voltage magnitudes of PDN.

4) SENSITIVITY ANALYSIS OF ELASTICITY COEFFICIENT
Elasticity coefficient θ is a very important parameter in
TAP-ECD, and the change of this parameter will determine
whether the proposed detailed electrified TN model, dis-
tributed coordinated operation method and corresponding
solution algorithm have a promising application in the real
world. Therefore, we investigate the impacts of the elasticity
coefficient from different aspects, including operation costFE

TABLE 11. Node marginal electricity price and charging load of DWCs.

of PDN, total travelling cost (FT + FCH) of TN, and charg-
ing demand of each OD pair. The corresponding simulation
results are provided in Figure 10-11.

From Figure 10 and Figure 11, it can be seen that as the
elasticity coefficient increases, both the operational costs for
PDN and travelling costs for TN decrease. The charging
demand of each OD pair also declines, with more EVs aban-
doning their initial travel and charging plans. Additionally,
the gap between the charging demands for each OD pair
narrows, leading to a more uniform travelling distribution
of charging demand across the TN with a larger elasticity
coefficient.

These phenomena occur because, with larger elasticity
coefficients, the willingness of EVs to travel and recharge
diminishes, while their sensitivity (the degree of elastic
response) to travelling costs increases. The proposed model
and method for ITPES more efficiently regulates the travel
and recharge plans of EVs. As a result, more EVs aban-
don their original travelling and recharging plans or choose
other means of transportation, reducing the overall charging
demand. The reduction in charging demand has lowered the
overall charging load, thereby reducing both the total operat-
ing cost of PDN and the total travelling cost of TN.

FIGURE 10. Operation cost of PDN and total travelling cost of TN under
different elasticity coefficient.

The above results demonstrate that the proposed TAP-ECD
model effectively describes elastic behavior of EV drivers to
travelling costs, and the elasticity coefficient has a certain
influence on the proposed model and method. In practical
applications, the dispatching operator should set the elasticity
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FIGURE 11. Charging demands under different elasticity coefficient.

coefficient based on the recharging willingness of EVs and
the load level of the PDN to achieve flexible control of the
elastic charging demand of EVs.

5) IMPACT ANALYSIS OF EVS PENETRATION
In the process of electrification transformation of TN, the
penetration rate of EVs will affect the nodal marginal elec-
tricity prices in PDN. The adjustment of node marginal
electricity prices will affect the routing selection and charging
decisions of EVs, changing their charging location and charg-
ing electricity quantity, and thus affecting the spatio-temporal
distribution of charging load. Therefore, in this section, the
impacts of EVs market penetration rate on the coordinated
operation of ITPES are investigated.

The spatial distribution of dynamic wireless charging load
is illustrated in Figure 12, depicting the scenario where
the total number of vehicles in the TN remains constant
while gradually increasing the penetration rate of EVs. It is
observed that the overall scale of charging loads continues
to increase with the rising penetration rate of EVs, and its
spatial distribution undergoes changes. When the penetration
rate is below 60%, the charging loads at each WCS show
a linear growth trend. However, when the penetration rate
surpasses 60%, the charging loads exhibit nonlinear changes.
The reason for this phenomenon is that the charging demand
from EVs is relatively low and the power flows in the PDN
will not change much. The routing selection and charging
decisions of EVs remain consistent with the initial state.
Therefore, the charging loads at each WCS grow linearly.
As the penetration rate of EVs increases, the charging demand
grows, causing significant changes in the power flow of the
PDN. This affects the trend of nodal marginal price changes
(as shown in Figure 13). Influenced by mileage limitation
and travelling cost, some EVs alter their routing selection and
charging decisions, resulting in nonlinear changes in charging
loads.

Moreover, the penetration rate of EVs also influences the
total operation cost FE of PDN and total traffic delay cost
FT of TN. As presented in Figure 14, the total operation cost
FE of PDN shows an upward trend with the increase of EVs
market penetration, while the total travel delay cost FT of the

FIGURE 12. Relationship between charging loads and penetration rate of
EVs.

FIGURE 13. Relationship between charging electricity prices and
penetration rate of EVs.

TN exhibits a decreasing trend. The main reason is that the
rising market penetration of EVs increases the overall scale
of charging loads, leading to a higher total operation cost
FE of PDN. As GVs decrease and EVs with elastic demand
increase, more vehicles can be regulated by nodal marginal
electricity prices. Consequently, traffic congestion is further
alleviated, leading to a gradual reduction in total travel delay
costs.

FIGURE 14. Relationship between costs and penetration rate of EVs.

V. CONCLUSION
To promote the coordinated operation of TNs and PDNs,
this paper proposes amodeling framework and corresponding
solution algorithms considering the elastic charging behavior
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and mileage limitation of EVs. The main conclusions drawn
from simulation results are as follows:

1) The TAP-ECD and the effective path generation mod-
els established in the TN can compute the actual
charging demand of EVs and traffic flow distribu-
tion through the adaptive path generation and solution
algorithm.

2) The distributed coordinated operation method and
solution algorithm based on the ADMM for ITPES
can determine appropriate nodal marginal electricity
prices. These prices guide the dynamic wireless charg-
ing behavior of EVs, enabling them to make socially
optimal driving and charging decisions and achieve
optimal energy consumption.

3) The penetration rate of EVs significantly influences the
overall scale and spatial distribution of dynamic wire-
less charging loads. Simultaneously, with an increase
in the penetration rate, the total operation cost of PDN
exhibits an increasing trend, while the total travel delay
cost in TN shows a decreasing trend.

The effectiveness of the proposedmodeling framework and
corresponding solution algorithms has been demonstrated
through case studies and comparisons, however, our current
approach does not account for certain uncertainties [36], [37],
such as the variable power output from renewable energy
sources, traffic demand prediction errors, and the random
driving behavior of traffic users. As an immediate next
step, we plan to incorporate these uncertainties, integrate
renewable energy generation into the ITPES, and expand
our modeling framework and solution algorithms to further
enhance the coordinated operation of TN and PDN.
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