
Received 15 August 2024, accepted 21 August 2024, date of publication 29 August 2024, date of current version 10 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3451516

Selecting the Best Compiler Optimization by
Adopting Natural Language Processing
HAMEEZA AHMED 1, MUHAMMAD FAHIM UL HAQUE 2, HASHIM RAZA KHAN 3,4,
GHALIB NADEEM 3, KAMRAN ARSHAD 5,6, (Senior Member, IEEE),
KHALED ASSALEH 5,6, (Senior Member, IEEE), AND PAULO CESAR SANTOS 7
1Department of Computer and Information Systems Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
2Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
3Department of Engineering Sciences and Technology, Iqra University, Karachi 75500, Pakistan
4Neurocomputation Lab, National Centre of Artificial Intelligence, NED University of Engineering and Technology, Karachi 75270, Pakistan
5Department of Electrical and Computer Engineering, College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
6Artificial Intelligence Research Centre, Ajman University, Ajman, United Arab Emirates
7Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre 91509-900, Brazil

Corresponding authors: Hameeza Ahmed (hameeza@neduet.edu.pk) and Kamran Arshad (k.arshad@ajman.ac.ae)

This work was supported by Ajman University Internal Research under Grant 2023-IRG-ENIT-3.

ABSTRACT Compiler is a tool that converts the high-level language into assembly code after enabling
relevant optimizations. The automatic selection of suitable optimizations from an ample optimization space
is a non-trivial task mainly accomplished through hardware profiling and application-level features. These
features are then passed through an intelligent algorithm to predict the desired optimizations. However,
collecting these features requires executing the application beforehand, which involves high overheads.
With the evolution of Natural Language Processing (NLP), the performance of an application can be solely
predicted at compile time via source code analysis. There has been substantial work in source code analysis
using NLP, but most of it is focused on offloading the computation to suitable devices or detecting code
vulnerabilities. Therefore, it has yet to be used to identify the best optimization sequence for an application.
Similarly, most works have focused on finding the best machine learning or deep learning algorithms, hence
ignoring the other important phases of the NLP pipeline. This paper pioneers the use of NLP to predict the
best set of optimizations for a given application at compile time. Furthermore, this paper uniquely studies
the impact of four vectorization and seven regression techniques in predicting the application performance.
For most applications, we show that tfidf vectorization and huber regression result in the best outcomes.
On average, the proposed technique predicts the optimal optimization sequence with a performance drop of
18%, achieving a minimum drop of merely 0.5% compared to the actual best combination.

INDEX TERMS Compiler, optimization, source code analysis, natural language processing, vectorization,
regression.

I. INTRODUCTION
The emergence of new hardware paradigms and the
widespread use of high-level languages make the role of the
compiler even more critical than ever before. A compiler
is a tool that translates a high-level language program into
the assembly and incorporates the relevant optimizations

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

into the code [1]. It is true that the hardware resources can
only be utilized to the fullest if the generated assembly
code is efficient. Therefore, this implies that despite the
presence of powerful hardware designs, performance goals
still need to be met due to a lack of competent software
solutions. Among the millions of optimizations available
inside the compilers, the appropriate optimizations for the
given application can extract higher performance, energy
efficiency, and reduced development time by efficiently

121700

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-0842-3318
https://orcid.org/0000-0001-5365-5033
https://orcid.org/0000-0003-2027-3172
https://orcid.org/0009-0002-8810-0761
https://orcid.org/0000-0002-4447-8335
https://orcid.org/0000-0002-0942-0453
https://orcid.org/0000-0001-8555-2637
https://orcid.org/0000-0002-3945-4363

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

utilizing the hardware resources [2], [3], [4], [5]. However,
the automatic selection of suitable optimization for compiling
an application is a troublesome job. In literature, it has been
done by predicting the appropriate optimization through any
intelligent algorithm trained by employing both application
and hardware-level features [4], [5], [6], [7], [8]. The
collection of these dynamic features requires executing an
application, thus incurring high execution costs, especially
for big data applications [3], [8].

Natural Language Processing (NLP) has recently gained
significant attention for computationally representing and
analyzing human language. It has wide applications in
various fields such as summarization, email spam detection,
machine translation, information extraction, medical, and
question answering [9]. Source code analysis [10] is an
interesting field in which application code, written in various
programming languages, is analyzed to allow appropriate
decisions at compile time. This technique has been actively
adopted for code offloading, whether to run the code on
CPU or any heterogeneous device, and detecting several
vulnerabilities present in the code [11], [12], [13], [14], [15],
[16], [17], [18]. However, opportunities to predict the best
optimization sequence through source code analysis have yet
to be addressed.

In this work, we have employed source code analysis
for extracting the application features through NLP on
a large number of codes, which can make the machine
learn the actual code map and its associated metrics at
compile time, thus saving the overall cost. NLP-based source
code analysis comprises multiple phases like tokenization,
atomization, vectorization, and machine learning. Previously,
these techniques were applied directly to high-level language
code like C, Java, and Python. With the advent of LLVM
[19] which implements a rich and powerful Intermediate
Representation (IR), the analysis can be done on LLVM IR.
There are several advantages of analyzing an IR, mainly
because it is a neutral language that is not specific to
any high-level or architecture-specific language. Any high-
level language can be converted into IR. Hence, the rules
written once for IR are valid for all high-level and assembly
languages. Besides, it is easier to analyze than high-level
languages.

Several works in the literature analyze source codes for
objectives like selecting heterogeneous devices and detecting
vulnerability at compile time [11], [12], [13], [14], [15], [16],
[17], [18]. These works have focused on machine learning
and deep learning models to make the best predictions.
However, they have neglected other stages of the NLP
pipeline. In this regard, and to the best of our knowledge,
this work is the first to study the impact of vectorization
techniques on predicting the best optimization sequence at
compile time.

Due to the inherent benefits of LLVM, the LLVM IR
has been used for source code analysis. Our work used
tfidf, countvec, ngram, and nmf vectorizers along with
random forest, bagging, linear regression, lasso, huber,

bayesian ridge, and adaboost regressors. For evaluating
the performance, CBench benchmark suite [4], [20], [21],
[22] has been used comprising 15 applications, where each
application has more than 4k optimized codes, making
the overall dataset size around 90k with 100 features.
We have used the leave-one-out cross-validation technique.
Therefore, an application under analysis is excluded from the
training set, which ensures not predicting a seen application.
Therefore, an application under analysis is excluded from
the training set, which ensures not predicting a seen
application.

It is observed that tfidf leads in nine applications, ngram
shows the slightest error in three, countvec error rate is
minimum in two, while nmf leads in one application only.
On average, countvec, ngram, and nmf showed 34%, 34%,
and 30% relative error, respectively. On the other hand, the
error rate of tfidf is the lowest at 26%. Our discovered vector-
ization and regression combinations make decent estimations
by predicting the best optimization sequence with an average
performance drop of only 18%. For security_blowfish_e,
tfidf, and ridge discover, the optimal optimization sequence
presents a performance drop of only 0.5% compared to the
best combination.

Our work is highly cost-effective as the prediction is
automatically made at compile time, requiring only the
application-specific features without using hardware fea-
tures that require executing the application. Additionally,
it involves minimal human intervention, significantly reduc-
ing costs and energy as the features are automatically
extracted from the provided code. In recent years, specialized
hardware has emerged, showing great reliance on compilers
for higher performance, energy efficiency, and reduced
development time. In this regard, the presented technique is
generic enough and can easily be adopted by cloud, edge, IoT
devices, or other bigmachines, asmentioned in [23], [24], and
[25] for discovering the best performing and energy-efficient
application codes through NLP-based analysis. For instance,
our technique can be finetuned to find the best optimization
for reducing the data size, which significantly facilitates
memory-restricted devices. Also, energy-limited devices can
demand such optimized codes to avoid certain specific
operations. On the contrary, if the proposed technique
is not used, then all the optimizations must be tested
to discover the best one, which would highly exagger-
ate the time and resources, particularly in big machines.
The main contributions of this paper can be listed as
follows:

1) To the best of our knowledge, the first work that
facilitates selecting the best optimization sequence at
compile time via application features only.

2) To the best of our knowledge, the first work that studies
the impact of various vectorization and regression tech-
niques in predicting the best optimization sequence.

3) Saves from the hassle of collecting features as NLP
automatically extracts them via the provided applica-
tion code.

VOLUME 12, 2024 121701

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

4) It employs a large set of application-specific features
for training the model, which requires no prior
execution, such as profiling.

5) Explores the power of NLP in predicting code per-
formance by utilizing a large set of codes involving
minimal overhead.

Furthermore, Section II discusses the background and
motivation, followed by related work in Section III. The
adopted methodology is presented in Section IV. Section V
discusses the experimental setup and results. The conclusion
is presented in Section VI.

II. BACKGROUND AND MOTIVATION
A. COMPILER TECHNOLOGY
The compiler is the tool responsible for translating the
high-level language code into architecture-specific assembly
and enables imperative optimizations for exploiting the
hardware resources. The compilation life cycle consists of
passing the source code through different stages: front-
end, middle-end (optimizer), and back-end. The front-end
stage emits the Intermediate Representation (IR) code,
which is passed through the middle end to perform
specific optimizations like inlining and unrolling. In the
end, the back end generates the machine code [2], [3], [26],
[27], [28].

Low Level Virtual Machine (LLVM) is an open-source
compiler infrastructure containing reusable and modular
compilation technologies. It provides extensive optimization
opportunities and is widely adopted due to modularity in
its design, hence offering ease of use and programming [3],
[19]. The LLVM code is represented by Static Single
Assignment (SSA)-based Intermediate Representation (IR),
which provides low-level operations, type safety, portability,
and flexibility. The LLVM IR resembles a universal IR, as all
the phases of the LLVM compilation use this IR. Due to
these benefits, LLVM has been selected as a framework to
prototype this research work [1], [2], [3].

B. NLP AND TEXT MINING
Natural Language Processing (NLP) is a fusion of linguistics
and artificial intelligence designed to make computers
understand the words or statements written in human
languages. It can analyze enormous amounts of data
with the help of syntactic and semantic algorithms [29].
It has wide applications in various fields, such as sum-
marization, email spam detection, machine translation,
information extraction, medical, and question answering
[9], [30].
Text Mining is the process of extracting information from

text data by transforming text into numeric data that can be
processed using machine learning algorithms. To build inputs
of the machine learning model, text mining systems use
numerous NLP techniques such as tokenization, atomization,
and vectorization, as discussed below [31].

C. TOKENIZATION & ATOMIZATION
Given a defined document unit and character sequence,
tokenization is responsible for chopping it into pieces. It is
the act of breaking a stream of textual content up into words,
symbols, terms, or other meaningful elements known as
tokens. Certain characters, such as punctuation, are removed
during this process [31], [32].
Atomization transforms code sequences by replacing the

characters that compose a token with the integer identifier of
the token in the dictionary. Afterwards, it performs a filtering
procedure to select the most informative tokens [13].

D. VECTORIZATION
During text analysis, the unstructured documents must be
transformed into structured data. It is necessary to create
feature vectors in a specified feature space for applying
machine learning. In this regard, a vectorization technique
is employed, which stores previously prepared text in a
specified vector space. Vectorization helps transform text
corpus into a vector representation. Different vectorization
techniques are discussed below [33], [34], [35].

1) COUNTVECTORIZER
It is a method that converts a document into vectors by
counting the number of occurrences of each word in that
document [36]

2) N-GRAM
It is a successful and accurate extension of a bag of words
technique. It operates by turning the column of the adjacent
words of length n to form meaningful context. With the
small value of n, sufficient information can not be extracted.
However, the system learns more accurately with the higher
value of n [35].

3) TF-IDF
Tf-idf is one of the most popular vectorization techniques.
Term Frequency (TF) counts the occurrence of a term
(e.g., word) appearing in a document. The vector dimension
corresponds to a word found at least one time. TF produces
vectors based on the occurrence of words in a single
document.

Some words appear in multiple documents, making a
helpful relationship necessary among documents. TF-IDF
(Term Frequency and Inverse Document Frequency) is a
technique considering it. TF is expressed as the ratio of the
number of times the word wi occurs in the document dj, and
the total number of words in the document dj as represented
by Equation 1 [13], [33], [34], [35].

TF(wi, dj) =
Number of times wi occurs in document dj

Total number of words in dj
(1)

121702 VOLUME 12, 2024

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

FIGURE 1. Optimized code fragments of network dijkstra. Each optimization represents different code and execution time. Opt A has less instructions
and time while opt C has more lines and takes maximum time.

The more frequent word has a higher tf, and the less
frequent one has a lower tf. Meanwhile, the significance of
words in the text corpus can be acquired by idf.
idf is obtained by the logarithmic ratio of the documents

that contain the word, which is the fraction of the total number
of documents (N) contained in the text corpus and the number
of documents (ni) containing the required term as shown in
Equation 2. Dc is the set of all documents.

IDF(wi,Dc) = log
N
ni

(2)

The combined tf-idf can be represented by Equation 3. IFIDF
forms a meaningful context by giving importance to rare and
more frequent words together.

TF − IDF = TF ∗ IDF (3)

4) NON-NEGATIVE MATRIX FACTORIZATION
Non-negative matrix factorization (nmf) is a linear algebraic
optimization algorithm that can extract meaningful informa-
tion about topics without prior knowledge of the underly-
ing meaning in the data. It decomposes high-dimensional
vectors into a lower-dimensional representation, where
the coefficients of matrices are constrained to be non-
negative. Nmf emits W and H matrices, where W is the
topics found, and H is the coefficients (weights) for those
topics [37].

E. REGRESSION
Regression analysis is the widely used statistical technique
for modeling and investigating the relationship between

variables. It estimates the relationships between a dependent
variable and one or more independent variables [38], [39].
Several regression techniques used in this paper are discussed
below.

1) RANDOM FOREST
It is an ensemble learning technique, which can predict the
outcome by merging multiple trees. A random subset of data
points and predictors are selected to build the individual trees,
and the overall prediction is done by taking the average of
individual predictions [39], [40].

2) BAGGING
Bagging can be employed with classification and regression
methods to reduce the variance associated with prediction,
hence improving the prediction process. It works by drawing
many bootstrap samples from the available data. A prediction
technique is applied to each bootstrap sample, and the
results are combined by averaging in regression to obtain
the overall prediction, with the variance reduced due to the
averaging [41].

3) LASSO
Least Absolute Shrinkage and Selection Operator (lasso)
regression is a variable selection and shrinkage
technique for regression models. LASSO regression iden-
tifies the variables and corresponding regression coeffi-
cients, leading to a model that minimizes the prediction
error [42].

VOLUME 12, 2024 121703

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

4) HUBER
Huber regression plays an important role in robust inference
and estimation. It is an alternative approach based on a
slightly modified loss function, called Huber loss [43].

5) BAYESIAN RIDGE
Bayesian regression employs Bayes’ theorem to find the best
estimate of the parameters of a linear model that describes
the relationship between the independent and the dependent
variables. It is a Bayesian method in which all regression
coefficients are assumed to have a common variance [44].

6) ADABOOST
Adaboost or Adaptive Boosting is a meta-estimator that starts
by fitting a regressor on the original dataset and then fits
additional copies of the regressor on the same dataset but
where the weights of instances are adjusted according to the
error of the current prediction [45].

F. ANALYZING LLVM IR VIA NLP
Figure 1 shows LLVM IR fragments of the network dijkstra
application. To illustrate, three optimization sequences, A,
B, and C, are presented and the execution time for each
sequence. Each optimization sequence generates different
code for the same application, resulting in different character-
istics. Depending on the optimization sequence, the generated
code can contain, for instance, more memory instructions,
more branch operations, or reducedmemory footprint. There-
fore, each optimization sequence can generate a code that
demands more energy or less execution time, as illustrated
in Figure 1.

By providing IR code and its corresponding metrics (e.g.,
time, energy), there is a high potential for a machine to
learn the mapping of these parameters through NLP. The
accuracy can be increased if the training is applied to a large
set of IR code inputs. This way, the algorithm can learn
all the different code and metrics mapping possibilities. The
discussed approach is expected to be highly automatic as NLP
itself takes the responsibility of extracting features from IR
code instead of manually defining them like conventional
approaches. This way, the system only needs the IR code,
leaving the rest to the NLP’s responsibility.

III. RELATED WORK
The conventional approaches [4], [5], [6], [8] relied on
hardware features to predict an application’s performance.
These features were computed from application profiling,
which requires execution. Collecting these dynamic features
is quite a time-consuming and energy-cost task, especially
for large datasets [3]. In contrast, the proposed work trains
the machine with an application map and then tries to
distinguish amongst applications without prior execution. For
this, Natural Language Processing (NLP) is employed to
differentiate among multiple applications by a large number
of application codes as training samples.

FIGURE 2. Flow chart of prediction mechanism.

In recent years, NLP has gained significant attention in
analyzing language source code, as reported via multiple
works in literature [12], [13], [14], [15]. Several works have
employed NLP to decide heterogeneous devices favorable
applications [11], [12], [13], [15], while others have detected
code vulnerabilities [17], [18]. These works have focused
on finding the best machine-learning model to analyze the
given source code. Compared to these works, our proposal,
to the best of our knowledge, studies the impact of different
vectorization techniques on source code analysis for the first
time. We have focused on a regression problem where the
speedup of different optimized codes is predicted using NLP.

Our work is motivated by [13], which used a single
vectorization technique, tfidf, with a neural network to decide
whether to run the code on CPU or GPU. In our approach,
we have analyzed the LLVM IR using the rules defined
in this work. Moreover, we used multiple vectorization and
regression techniques to select the best option since tfidf
is not the best in all scenarios. Furthermore, the presented
mechanism can predict the best application optimization
sequence.

IV. METHODOLOGY
Before applying machine learning, the compiled LLVM-IR
code (ref. Sec II-A) is required to pass through a prepro-
cessing stage as shown in Figure 2. The preprocessing stage
is comprised of tokenization, atomization, and vectorization
(ref. Sec II-C & Sec II-D) [13]. The detailed working of each
phase can be understood with the help of Algorithm 1.

The tokenization procedure is performed to break the text
stream into tokens. We have performed the tokenization

121704 VOLUME 12, 2024

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

similarly to [13], consisting of pre-tokenization and post-
tokenization phases. The pre-tokenisation stage operates
on each kernel line and removes empty lines, comments,
and all lines outside the function body. It also simplifies
complex data types and replaces constants with a placeholder
which reduces the length of code fragment. Whereas, the
post-tokenisation is applied directly to the tokens. During this
phase, unnamed meta-data and attribute groups are removed
along with replacing function and variable names with a
placeholder. It also identifies special labels, integer constants,
and global and local unnamed identifiers. As observed via
Figure 2, LLVM IR code when passed through tokenization
is greatly simplified such that all local, and global identifiers
and constants are transformed and additionals symbols are
removed which reduces the overall code length.
Atomization replaces the characters in a token with the

integer identifier of the token. At this stage, we have
transformed the tokens into unique numbers. For instance, all
the local identifiers are replaced with the number 8, and the
"=" characters are replaced with 10, as shown in Figure 2.

After this, vectorization is performed, which transforms
the text corpus into a vector representation. This can be
understood via Figure 2, where the bag of word vectorization
is shown, which converts the unstructured text into a
structured table with columns representing features and rows
showing the frequency of those features. For instance, feature
12 has a count of 1, 2, 1, 2 as 12 appears single times in rows
1 and 3 and 2 times in rows 2 and 4 respectively.

The acquired feature vector is then passed throughmultiple
regression techniques (ref. Sec II-E), where training is
conducted with the feature vector and speedup. The training
has been done using cross-validation where an application
under analysis is excluded from the training set. The trained
models are then tested keeping no evidence of test application
in the training set.

V. EXPERIMENTAL SETUP AND RESULTS
This section details the evaluation setup and the results. Also,
the results are presented and analyzed.

A. EVALUATION SETUP
All the implementation has been done using Python scripts.
A single LLVM IR has been optimized using multiple
optimization sequences to construct the dataset. The count
of optimized codes for each application is mentioned in
Table 1. The final dataset is comprised of total 90, 750 codes.
These sequences are generated by pre-built Mitigates the
Compiler Phase-ordering (MiCOMP) technique [5] with 5
optimization clusters and a maximum sequence length of
6. The generated MiCOMP clusters for LLVM 12.0 are
shown in Table 2. Each application has a different number
of optimizations after suppressing the redundant codes using
the approach present in [2]. The suppression of the redundant
codes increases the proposed design’s efficiency. There exists
a total of 15 applications and a total 90750× 100 size of the
dataset, since vectorization only picks the best 100 features.

Algorithm 1 Procedure for Source Code Regression
Input: High level source code dataset
Output: Predicted metrics of given code
dataset← new list;
foreach src in dataset do

llvmir← compile(src);
llvmir_tokens← new list;

end
foreach line in llvmir do

/* Tokenization */
line← simplify_line(line);
foreach token in line do

token← simplify_token(token);
if token is valid then

llvmir_tokens← add token;
end

end
end
dataset← add llvmir_tokens;
/* Atomization */
dataset← atomise(dataset);
/* Vectorization */
dataset← VECTORIZE(dataset);
/* Regression */
parameters← model_training(dataset);
predicted_outcomes←model_testing(parameters);

TABLE 1. cBench benchmark suite details [4], [21], [22].

Where each row represents a particular optimization for
a specific application. For each sequence, the execution
time is measured by using the Linux time command in the
bash script. Further, experimental setup details are shown in
Table 3.

For evaluating the proposed technique, embedded work-
loads belonging to automotive, security, office, and telecom-
munication categories from Collective Benchmark (cBench)
programs [4], [20], [21], [22] are used as described in Table 1.
The prediction accuracy is measured utilizing mean relative
error (MRE), which evaluates the proximity of predicted
outcomes (y′i) to the actual ones (yi) as represented in

VOLUME 12, 2024 121705

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

FIGURE 3. Error rates by different techniques.

TABLE 2. Compiler optimizations clusters using MiCOMP for LLVM-12.0
-O3 [5].

TABLE 3. Experimental setup.

Equation 4 [39].

Mean Relative Error (MRE) =
1
N

N∑
i=1

|y′i − yi|

yi
(4)

TABLE 4. Mean relative error in different vectorization techniques after
optimization with random forest.

Besides, the performance drop of the predicted sequence with
respect to the best sequence is computed using Equation 5.

Performance Drop (PD)

=
|Exection Timebest − Exection Timepredicted |

Exection Timebest
∗ 100 (5)

B. RESULTS AND DISCUSSION
Results are analyzed in two parts. Firstly, the performance of
various vectorization and regression models is compared, and
the performance of predicting speedup is studied.

1) VECTORIZATION AND REGRESSION ANALYSIS
All 15 applications are experimented with four vectorization
and eight regression techniques whose results are reported in
Tables 4, 5, 6, 7, 8, 9, and 10. It can be observed via Table 4

121706 VOLUME 12, 2024

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

TABLE 5. Mean relative error in different vectorization techniques after
optimization with bagging regressor.

TABLE 6. Mean relative error in different vectorization techniques after
optimization with ridge.

TABLE 7. Mean relative error in different vectorization techniques after
optimization with lasso.

that when random forest regression is used, for the majority
of applications, the nmf (highlighted in Table 4) shows the
lowest error rate. ngram also depicts decent performance,
while tfidf shows a larger error compared to others. tfidf shows
the best outcome for automotive_susan_s application.

TABLE 8. Mean relative error in different vectorization techniques after
optimization with huber regressor.

TABLE 9. Mean relative error in different vectorization techniques after
optimization with bayesian ridge.

TABLE 10. Mean relative error in different vectorization techniques after
optimization with AdaBoost regressor.

Error rates also depend on the application. For instance, the
same models show the highest error for security_rijndael_d
and security_rijndael_e, possibly because the training dataset
does not cover these application characteristics. Compared
to other regressors, random forest depicts the slightest error

VOLUME 12, 2024 121707

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

TABLE 11. Application wise best regressor and vectorizer.

for telecom_CRC32 by using nmf vectorizer as highlighted in
Table 4.

The vectorization performance is changed by adopting
the bagging regression technique, as shown in Table 5.
It can be seen that error rates slightly increase compared to
random forest. Bagging technique performs moderately, with
no application showing the least error rate compared to other
regressors. Still, security_rijndael_d and security_rijndael_e
show the highest error rates by all vectorizers.

The application behavior is changed with ridge regressor
shown in Table 6 as tfidf depicts promising outcomes for
most applications. However, for security_rijndael_d and
security_rijndael_e the error rates are still high. Ridge regres-
sor seems to favor tfidf, where the error rates are reduced
drastically for automotive_bitcount, automotive_susan_e,
network_patricia, office_stringsearch1, security_blowfish_d,
security_blowfish_e, security_sha, and telecom_CRC32 in
comparison to other vectorization techniques. Compared to
other regressors, the ridge regressor shows the lowest error
with tfidf for office_stringsearch1 and security_blowfish_e
as highlighted in Table 6. Similarly, with the lasso regres-
sor, shown in Table 7, all the vectorization techniques
show reasonable performance with an overall drop in
error rates compared to other regression methods. Over-
all, concerning other regressors lasso shows the lowest
error rate for automotive_susan_e, network_dijkstra, and
telecom_adpcm_d with tfidf. In contrast, the error rate
is minimal in security_sha with countvec as highlighted
by Table 7.

Overall, huber shows the lowest error rates for most
applications, as pointed out in Table 8. Here, tfidf shows min-
imum error for automotive_bitcount, automotive_susan_c,
security_rijndael_d, and security_rijndael_e, while ngram
and countvec error rate is minimal for automotive_susan_s
and security_blowfish_d, respectively. With huber, the error
rates are significantly reduced for security_rijndael_d and
security_rijndael_e. The error rate is slightly increased with
the bayesian ridge regressor, as depicted in Table 9. Here tfidf
shows the best performance for the majority of applications,
while ngram gives the slightest error for telecom_adpcm_c in
comparison to other regressors, as highlighted by Table 9.

Adaboost regressor also shows reasonable error rates for
most applications, as shown in Table 10. tfidf performs
slightly less than other vectorizers. As pointed out by
Table 10, adaboost showsminimal error for network_patricia
with ngram in comparison to other techniques.

The performance of the vectorizers and regressors is
analyzed by considering the applications in Table 11 and
Figure 3. It is possible to observe how tfidf gives the
lowest relative error for nine applications, for four of them
when coupled to huber regressor. In comparison, lasso and
ridge dominate for the other three and two applications,
respectively.
Ngram vectorizer dominates in three applications, while

countvec and nmf are the best for two and one other
applications, respectively. As observed by Figure 3, ittfidf
shows a more significant number of less than 10% errors
with the lasso regressor. Nmf also presents interesting results
of less than 10% errors with random forest. However, most
errors lie in the 10-20% range, and only some are greater than
100% in most techniques. The error rates also depend on the
application; for some, it is lower, and for others, it is higher.

This behavior may be because some application charac-
teristics are covered well by the training data, while others
properties are not covered. For instance, security_blowfish_d
shows lower errors in all vectorization and regression
methods. Its lowest value is 3.87% with countvec and huber
regressor. Its values are reasonable, with the majority of
techniques, although high with Adaboost regressor. It can be
seen how a vectorizer and regressor combination works best
for an application, and the same combo acts poorly for other
applications. This way, a single technique is not enough for
all applications, and multiple combinations are required to
minimize the error rate for different applications.

2) PREDICTION PERFORMANCE ANALYSIS
The performance difference between the actual and our
predicted sequences is reported in Table 12. It can be seen
for automotive_susan_c that the best sequence is EDCAA
and our predicted sequence using tfidf and huber is AAA
giving a significantly less drop of 1.61%. Similarly, the
performance drop is less for other applications except

121708 VOLUME 12, 2024

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

TABLE 12. Performance difference between actual and predicted
sequences.

for security_rijndael_e and security_sha, which might be
because the training data do not cover the characteristics of
these applications. Otherwise, our proposed technique can
make reasonable predictions, showing an average drop of
18%. It only depends on the application features requiring
no prior execution. This way, it can be known at compile
time which optimizations should be adopted for a specific
application, saving the before-mentioned costs and efforts on
time and energy.

VI. CONCLUSION
The automatic prediction of best compiler optimizations is a
challenging job. In this regard, Natural Language Processing
(NLP) has done reasonably well in selecting the suitable
optimization sequence by analyzing the code. The sequence
predicted using the proposed approach shows a minimum
drop of 0.5% in comparison to the actual best sequence,
which is highly accurate due to the discovery of the most
favorable vectorization and regression combination explored
for an application. By coupling tfidf and huber regressor,
the proposed technique can predict the best optimization
with minimal error for most experimented applications.
Moreover, efficiently utilizing a wide range of optimizations,
the presented technique can generate code according to
specific requirements, such as performance, energy, and
memory size. Therefore, by adopting the NLP for analyzing
the applications, the expected behaviors of code can be
automatically predicted at the compile time with minimal
effort, overhead, and overall costs.

ACKNOWLEDGMENT
The research findings presented in this article are solely the
author(s)’ responsibility.

REFERENCES
[1] H. Ahmed, M. F. Hyder, M. F. U. Haque, and P. C. Santos, ‘‘Exploring

compiler optimization space for control flow obfuscation,’’ Comput.
Secur., vol. 139, Apr. 2024, Art. no. 103704.

[2] H. Ahmed and M. A. Ismail, ‘‘REDUCER: Elimination of repetitive codes
for accelerated iterative compilation,’’ Comput. Informat., vol. 40, no. 3,
pp. 543–574, 2021.

[3] H. Ahmed and M. A. Ismail, ‘‘Toward a novel engine for compiler
optimization space exploration of big data workloads,’’ Software, Pract.
Exper., vol. 52, no. 5, pp. 1262–1293, May 2022.

[4] A. H. Ashouri, G.Mariani, G. Palermo, E. Park, J. Cavazos, and C. Silvano,
‘‘COBAYN: Compiler autotuning framework using Bayesian networks,’’
ACM Trans. Archit. Code Optim., vol. 13, no. 2, pp. 1–25, Jun. 2016.

[5] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and
J. Cavazos, ‘‘MiCOMP: Mitigating the compiler phase-ordering problem
using optimization sub-sequences and machine learning,’’ ACM Trans.
Archit. Code Optim., vol. 14, no. 3, pp. 1–28, Sep. 2017.

[6] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, ‘‘A
survey on compiler autotuning using machine learning,’’ ACM Comput.
Surveys, vol. 51, no. 5, pp. 1–42, Sep. 2019.

[7] M. Zhu, D. Hao, and J. Chen, ‘‘Compiler autotuning through multiple
phase learning,’’ ACM Trans. Softw. Eng. Methodol., vol. 33, no. 4,
pp. 1–38, Apr. 2024.

[8] H. Liu, J. Xu, S. Chen, and T. Guo, ‘‘Compiler optimization parameter
selectionmethod based on ensemble learning,’’Electronics, vol. 11, no. 15,
p. 2452, Aug. 2022.

[9] D. Khurana, A. Koli, K. Khatter, and S. Singh, ‘‘Natural language
processing: State of the art, current trends and challenges,’’ Multimedia
Tools Appl., vol. 82, no. 3, pp. 3713–3744, Jan. 2023.

[10] D. Binkley, ‘‘Source code analysis: A road map,’’ Future Softw. Eng.,
vol. 1, pp. 104–119, May 2007.

[11] E. Parisi, F. Barchi, A. Bartolini, and A. Acquaviva, ‘‘Making the most
of scarce input data in deep learning-based source code classification
for heterogeneous device mapping,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 41, no. 6, pp. 1636–1648, Jun. 2022.

[12] Y. Hakimi, R. Baghdadi, and Y. Challal, ‘‘A hybrid machine learning
model for code optimization,’’ Int. J. Parallel Program., vol. 51, no. 6,
pp. 309–331, Dec. 2023.

[13] F. Barchi, E. Parisi, G. Urgese, E. Ficarra, and A. Acquaviva, ‘‘Exploration
of convolutional neural network models for source code classification,’’
Eng. Appl. Artif. Intell., vol. 97, Jan. 2021, Art. no. 104075.

[14] T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, I. Vats, H. Moazen,
and F. Sarro, ‘‘A survey on machine learning techniques applied to source
code,’’ J. Syst. Softw., vol. 209, Mar. 2024, Art. no. 111934.

[15] F. Barchi, E. Parisi, A. Bartolini, and A. Acquaviva, ‘‘Deep learning
approaches to source code analysis for optimization of heterogeneous
systems: Recent results, challenges and opportunities,’’ J. Low Power
Electron. Appl., vol. 12, no. 3, p. 37, Jul. 2022.

[16] R. Mammadli, M. Selakovic, F. Wolf, and M. Pradel, ‘‘Learning to make
compiler optimizations more effective,’’ in Proc. 5th ACM SIGPLAN Int.
Symp. Mach. Program., Jun. 2021, pp. 9–20.

[17] F. Subhan, X. Wu, L. Bo, X. Sun, and M. Rahman, ‘‘A deep learning-
based approach for software vulnerability detection using code metrics,’’
IET Softw., vol. 16, no. 5, pp. 516–526, Oct. 2022.

[18] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, and L. Karaçay,
‘‘Vulnerability prediction from source code usingmachine learning,’’ IEEE
Access, vol. 8, pp. 150672–150684, 2020.

[19] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim., CGO, 2004, pp. 75–86.

[20] G. Fursin and O. Temam, ‘‘Collective optimization: A practical collabo-
rative approach,’’ ACM Trans. Archit. Code Optim., vol. 7, no. 4, p. 20,
2010.

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, ‘‘MiBench: A free, commercially representative embedded
benchmark suite,’’ in Proc. 4th Annu. IEEE Int. Workshop Workload
Characterization, Jul. 2001, pp. 3–14.

[22] G. Fursin. (2010). Cbench Benchmark. [Online]. Available:
https://sourceforge.net/projects/cbenchmark/files/cBench/V1.1/

[23] X. Han and Y. Zhang, ‘‘Decomposition-Coordination-Based voltage
control for high photovoltaic-penetrated distribution networks under cloud-
edge collaborative architecture,’’ Int. Trans. Electr. Energy Syst., vol. 2022,
pp. 1–20, Jan. 2022.

[24] T. Yang, X. Han, H. Li,W. Li, and A. Y. Zomaya, ‘‘Parallel scientific power
calculations in cloud data center based on decomposition-coordination
directed acyclic graph,’’ IEEE Trans. Cloud Comput., vol. 11, no. 3,
pp. 1–12, Jun. 2022.

[25] X. Han, Z. Li, and Y. Xu, ‘‘Quantum assisted stochastic economic dispatch
for renewables rich power systems,’’ 2024, arXiv:2404.13073.

[26] K. Hoste and L. Eeckhout, ‘‘Cole: Compiler optimization level explo-
ration,’’ in Proc. 6th Annu. IEEE/ACM Int. Symp. Code Gener. Optim.,
Apr. 2008, pp. 165–174.

VOLUME 12, 2024 121709

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

[27] K. Cooper and L. Torczon, Engineering a Compiler. Amsterdam, The
Netherlands: Elsevier, 2011.

[28] A. V. Aho, S. L. Monica, and D. U. Jeffrey, Compilers: Principles,
Techniques and Tools. Pearson Education, 2007.

[29] R. Ferreira-Mello, M. André, A. Pinheiro, E. Costa, and C. Romero, ‘‘Text
mining in education,’’ Wiley Interdiscipl. Reviews, Data Mining Knowl.
Discovery, vol. 9, no. 6, p. e1332, 2019.

[30] J. Hirschberg and C. D. Manning, ‘‘Advances in natural language
processing,’’ Science, vol. 349, no. 6245, pp. 261–266, 2015.

[31] F. Zhang, H. Fleyeh, X. Wang, and M. Lu, ‘‘Construction site accident
analysis using text mining and natural language processing techniques,’’
Autom. Construction, vol. 99, pp. 238–248, Mar. 2019.

[32] S. Vijayarani and R. Janani, ‘‘Text mining: Open source tokenization
tools—An analysis,’’ Adv. Comput. Intell., Int. J. (ACII), vol. 3, no. 1,
pp. 37–47, Jan. 2016.

[33] U. Krzeszewska, A. Poniszewska-Marałda, and J. Ochelska-Mierzejewska,
‘‘Systematic comparison of vectorization methods in classification con-
text,’’ Appl. Sci., vol. 12, no. 10, p. 5119, May 2022.

[34] P. Leelaprute and S. Amasaki, ‘‘A comparative study on vectorization
methods for non-functional requirements classification,’’ Inf. Softw.
Technol., vol. 150, Oct. 2022, Art. no. 106991.

[35] D. Rani, R. Kumar, and N. Chauhan, ‘‘Study and comparision of
vectorization techniques used in text classification,’’ in Proc. 13th
Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT), Oct. 2022,
pp. 1–6.

[36] R. Goyal, ‘‘Evaluation of rule-based, CountVectorizer, and Word2Vec
machine learning models for tweet analysis to improve disaster relief,’’
in Proc. IEEE Global Humanitarian Technol. Conf. (GHTC), Oct. 2021,
pp. 16–19.

[37] Zoya, S. Latif, F. Shafait, and R. Latif, ‘‘Analyzing LDA and NMF topic
models for Urdu tweets via automatic labeling,’’ IEEE Access, vol. 9,
pp. 127531–127547, 2021.

[38] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA:
MIT Press, 2020.

[39] H. Ahmed and M. A. Ismail, ‘‘Towards a novel framework for automatic
big data detection,’’ IEEE Access, vol. 8, pp. 186304–186322, 2020.

[40] A. Liaw and M. Wiener, ‘‘Classification and regression by randomforest,’’
R News, vol. 2, no. 3, pp. 18–22, 2002.

[41] C. D. Sutton, ‘‘Classification and regression trees, bagging, and boosting,’’
Handbook Statist., vol. 24, pp. 303–329, May 2005.

[42] J. Ranstam and J. A. Cook, ‘‘Lasso regression,’’ J. Brit. Surgery, vol. 105,
no. 10, p. 1348, 2018.

[43] Y. Feng and Q. Wu, ‘‘A statistical learning assessment of Huber regres-
sion,’’ J. Approximation Theory, vol. 273, Jan. 2022, Art. no. 105660.

[44] F. A. da Silva, A. P. Viana, C. C. G. Correa, E. A. Santos,
J. A. V. S. de Oliveira, J. D. G. Andrade, R. M. Ribeiro, and L. S. Glória,
‘‘Bayesian ridge regression shows the best fit for SSR markers in psidium
guajava among Bayesian models,’’ Sci. Rep., vol. 11, no. 1, p. 13639,
Jul. 2021.

[45] D. P. Solomatine and D. L. Shrestha, ‘‘AdaBoost. RT: A boosting algorithm
for regression problems,’’ in Proc. IEEE Int. Joint Conf. neural Netw.,
vol. 2, Jun. 2004, pp. 1163–1168.

HAMEEZA AHMED received the B.E., M.Engg.,
and Ph.D. degrees in computer and information
systems from the NED University of Engineering
and Technology, Pakistan, in 2012, 2015, and
2021, respectively. She is currently an Assistant
Professor with the NEDUniversity of Engineering
and Technology. Her research interests include
big data computing, compiler optimizations, and
machine learning.

MUHAMMAD FAHIM UL HAQUE received the
bachelor’s and master’s degrees in telecommuni-
cations engineering from the NED University of
Engineering and Technology, Karachi, Pakistan,
in 2006 and 2009, respectively, and the Ph.D.
degree in electrical engineering from Linköping
University, Sweden, in 2017. He is currently
an Assistant Professor with the Department of
Telecommunications Engineering, NED Univer-
sity of Engineering and Technology. His current

research interests include CMOS power amplifier, high speed digital circuits,
all digital transmitter, RF-DACs, power efficient transmitter, software-
defined radios, massive MIMO, wireless communication, and computer
vision.

HASHIM RAZA KHAN received the B.E. degree
in electrical engineering from the NED University
of Engineering and Technology, Karachi, in 2002,
the M.Sc. degree in communications engineer-
ing from RWTH Aachen, Germany, in 2006,
and the Ph.D. degree in electronic engineering
from the NED University of Engineering and
Technology, in 2014. During the M.Sc. degree,
he was with Agilent Technologies and Infineon
Technologies, on frequency synthesizers design.

From 2009 to 2011, he was a Visiting Researcher with Linköping
University, Sweden, where he involved in the development of switching
power amplifiers. He is currently an Associate Professor with the NED
University of Engineering and Technology, where he is responsible for the
Instrumentation Centre, RF Laboratory, Electronics Design Centre, and the
Neurocomputation Laboratory, National Centre of Artificial Intelligence.
He is involved as the principal investigator or the co-principal investigator in
several grants and funding from industry, as well as local and international
agencies. He has 19 journals and 17 conference papers to his credit. His
research interests include circuits and system design for wide range of
applications, including IC design, the IoT, AI, robotics, electric mobility, and
power electronics.

GHALIB NADEEM received the B.E. degree
in electronic engineering from Iqra University,
Pakistan, in 2018, and the M.E. degree in elec-
trical and computer engineering from NEDUET,
Pakistan, in 2023. He was an Electronic Engineer
with ORAIT, Dammam, Saudi Arabia, in 2019.
He is currently a Senior Lecturer with the Faculty
of Engineering Sciences and Technology, Iqra
University. His significant contributions include
spearheading several noteworthy projects within

the High-Performance Research (HPR) Group. Notably, he played a pivotal
role in the development of the groundbreaking EFG tiles, a revolutionary
concept that harnesses piezoelectric floor tiles to generate electricity in
Pakistan. He has a life time membership of Pakistan Engineering Council.

121710 VOLUME 12, 2024

H. Ahmed et al.: Selecting the Best Compiler Optimization by Adopting NLP

KAMRAN ARSHAD (Senior Member, IEEE)
is currently holds the distinguished position of
the Dean of the Research and Graduate Stud-
ies and a Professor of electrical engineering
with Ajman University, United Arab Emirates.
He has played a pivotal role in leading numer-
ous locally and internationally funded research
projects that encompass the fields of cognitive
radio, LTE/LTE-advanced, 5G, optimization, and
cognitive machine-to-machine communications.

He has made significant contributions to several European and international
large-scale research projects and has over 150 technical peer-reviewed
papers published in esteemed journals and international conferences. He was
a recipient of three best paper awards and one Best Research and
Development Track Award and has chaired technical sessions in several
leading international conferences.

KHALED ASSALEH (Senior Member, IEEE)
received the B.Sc. degree in electrical engineering
from The University of Jordan, in 1988, the
master’s degree in electronic engineering from
Monmouth University, New Jersey, in 1990, and
the Ph.D. degree in electrical engineering from
Rutgers, The State University of New Jersey,
in 1993. From 2002 to 2017, hewaswithAmerican
University of Sharjah (AUS), as a Professor of
electrical engineering, and the Vice Provost of the

Research and Graduate Studies. Prior to joining AUS, he had a nine-year
research and development career in Telecom Industry in USA with Rutgers,
Motorola, and Rockwell/Skyworks. He is currently the Vice Chancellor of
the Academic Affairs and a Professor of electrical engineering with Ajman
University. He holds 11 U.S. patents and has published over 150 articles
in signal/image processing and pattern recognition and their applications.
His research interests include bio-signal processing, biometrics, speech
and image processing, and AI and machine learning. He has served on
organization committees for several international conferences, including
ICIP, ISSPA, ICCSPA, MECBME, and ISMA. He served as the guest editor
for several special issues of journals.

PAULO CESAR SANTOS holds the degree in
digital systems engineering from the State Uni-
versity of Rio Grande do Sul in 2011, and
the master’s degree in microelectronics and the
Ph.D. degree from the Federal University of Rio
Grande do Sul in 2014 and 2019, respectively.
He worked on projects with themes focused on
processing-in-memory, compilers, and processing
and memory systems using 3D technology at the
Federal University of Rio Grande do Sul. Working

mainly on the following topics: multiprocessor system on chip, network on
chip, SoC, network interface, and MPSoC.

VOLUME 12, 2024 121711

