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ABSTRACT Diffractive optical imaging spectroscopy as a promising miniaturized and high throughput
portable spectral imaging technique suffers from the problem of low precision and slow speed, which limits
its wide use in various applications. To reconstruct the diffractive spectral image more accurately and fast,
a three-dimensional spectrum recovery algorithm is proposed in this paper. The algorithm takes advantage
of a neural network for image reconstruction which consists of a U-Net architecture with 3D convolutional
layers to improve the processing precision and speed. Numerical experiments are conducted to prove its
effectiveness. It is shown that the mean peak signal-to-noise ratio (MPSNR) of the recovered image relative
to the original image is improved by 1.8 dB in comparison to other traditional methods. In addition, the
obtained mean structural similarity (MSSIM) of 0.91 meets the standard of discrimination to human eyes.
Moreover, the algorithm runs in just 0.36 s, which is faster than other traditional methods. 3D convolutional
networks play a critical role in performance improvement. Improvements in processing speed and accuracy
have greatly benefited the realization and application of diffractive optical imaging spectroscopy. The new
algorithm with high accuracy and fast speed has a great potential application in diffraction lens spectroscopy
and paves a new way for emerging more portable spectral imaging technique.

INDEX TERMS Computational imaging, spectral imaging, inverse problems, diffractive lenses.

I. INTRODUCTION
Hyperspectral imaging, which acquires information about the
spatial and spectral dimensions of a scene simultaneously, has
a wide range of applications in various fields such as medical
diagnosis [1], art conservation [2], food quality analysis [3],
agriculture [4], and water resources mapping [5]. However,
traditional hyperspectral imaging systems typically possess
the large system size and poor mobility since their spatial
scanning or spectral scanning relying on complex prisms or
gratings. It is time-consuming that spatial scanning acquires
the complete spectrum of each pixel through a point-scanning
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instrument or a line-scanning instrument. Spectral scanning
methods capture the entire scene in a single exposure using an
array of photodetector detectors, and then progressively scan
through the wavelengths to complete the data cube. However,
Conventional hyperspectral imaging with the spectral sepa-
ration typically exhibits the low energy utilization efficiency
and longer scan times, facing limitations in miniaturized and
high throughput portable spectral imaging technique [6].

In recent years, computational spectral imaging methods
receive more and more attentions form researchers due to
its advantages on the high energy utilization and working
efficiencies over traditional spectral imaging methods [7],
[8], [9]. Coded aperture snapshot spectral imagers (CASSI)
as one of the computational spectral imaging techniques
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employ a mask-encoded aperture and dispersion elements to
obtain spectral aliasing information, and thus have a higher
energy utilization in comparison with traditional slit-grating
based spectral imager. However, effective and accurate
compressed sensing algorithms are critical for CASSI to
reconstruct multi-spectral images quickly and easily [7], [8].
The diffractive optical imaging spectroscopy (DOIS) as
another computational spectral imaging technique has also
been practically verified in various applications such as gas
detection [10], military identification [11], and gas leak-
age [12]. Different from the CASSI system using coded
aperture and dispersive elements like prisms and gratings,
the DOIS employs diffractive lenses and takes advantage
of its unique axial dispersion property to acquire images
of different wavelengths at different focusing distances by
moving the focal plane imaging detector. Similarly, the image
quality of the DOIS system is also determined by good image
recovery algorithms [13]. Traditionally, iterative algorithms
based on inverse filtering method are used, but they suffer
from long iteration times and produce poor recovery results.
More recently, researchers reported the application of neu-
ral network algorithms in spectral image reconstruction that
can achieve a higher spectral resolution with better spatial
imaging quality as well [14], [15], [16]. These algorithms
typically include four groups: deep networks unfold the iter-
ative process into multiple stages of the deep network; joint
networks simultaneously learn mask coding and reconstruc-
tion processes, and untrained networks use a wide range of
neural network as priors and end-to-end networks to direct
reconstruct aliasing spectral images. In DOIS, spectral fea-
tures propagated by point spread functions require spectral
reconstruction to recover the convolution results of large
wavelength-dependent convolution kernels. This causes a
great mathematic challenge because the reconstruction of
DOIS is a pathological deconvolution problem. Traditional
spectral reconstruction algorithms based on optimization
algorithms, utilize the image prior to constrain the solu-
tion space and exhibit mutual constraints on spectral and
spatial resolution when solving the reconstruction problem
of DOIS [17], [18]. The accuracy and speed of the image
restoration have been greatly improved via deep learning
methods [14], [15], [19]. However, these methods still apply
the two-dimensional convolution to fabricate the backbone of
neural network computation, resulting in the underutilization
of information between spectral channels and low energy
utilization.

In order to resolve this problem, we propose a new high
accurate and efficient 3D Network ‘‘HAS3D’’ for image
restoration to enhance the utilization of cross-information
between spectral channels in image restoration by 3D con-
volution. The algorithm employs a 3D U-Net structure that
the encoding and decoding paths are composed of 3D con-
volutional blocks. Numerical experiments are conducted to
validate its effectiveness. The experimental results show that
the mean peak signal-to-noise ratio (MPSNR) of the recov-
ered image relative to the original image can be improved by

1.8 dB in comparison to other traditional methods. The new
method possesses a mean structural similarity (MSSIM) of
around 0.91, which meets the standard of indistinguishable-
ness to human eyes. Moreover, the proposed algorithm runs
in just 0.36 s that is faster than other traditional methods. The
effectiveness of 3D convolution is also verified and compared
with the SCA in our HAS3D.

II. FORWARD MODEL
Fig. 1(a) shows the schematic of the diffractive spectral
imaging system that is typically consisted of a diffractive
lens and a movable sensor. The optical field from the object
such as a parrot is dispersed by the diffractive lens along the
optical axis (z-axis), where the focal length f of the diffractive
lens is inversely proportional to the wavelength as f

(
λ

)
=

λ0f0/λ with λ0 and f0 is the designed wavelength and focal
length respectively. Considering the wavelength-dependent
behavior of the diffractive lens, the multispectral light field
is divided into slices at different focal positions of the mea-
surement end. By moving the position of the sensor, different
slices of the multispectral light field are measured. Typically,
the forward model is utilized to emulate the process of the
diffractivemultispectral imaging. As is shown in Fig. 1(a), the
discretized true spectral distribution I (x, y, λ ) corresponding
to the object is convolvedwith the point spread function (PSF)
H (x, y, λ ) of the diffractive lens at different wavelength
channels separately. Then, the simulated result Yc (x, y) of a
certain position can be obtained by summing these convolved
results of different wavelength channels and adding gaussian
white noise η. Calculating the PSFs of DOIS is essential
for high accurate deconvolution. In this work, the diffraction
model of DOIS is applied to simulate the imaging process.
According to the classic scalar diffraction theory [19], [20],
the function of the incident light field P can be expressed
by (1),

P(s, t, λ ) = A(s, t)eik(n(λ )−1)h(s,t) (1)

where A(s, t) represents the function of the aperture, h(s, t) is
the function of the surface height of the diffractive lens, (s, t)
is the spatial coordinates in the plane of the diffractive lens,
λ and k donate thewavelength andwave number respectively.
The axial PSF of diffractive lens can be determined by (2),

H(x, y, λ )

=

∣∣∣∣ 1
λ f

e
ik
2f

(
x2+y2

) ∫ ∫
P(s, t, λ )e

ik
2f

(
s2+t2

)
−
ik
f (xs+yt)dsdt

∣∣∣∣2
(2)

where here (x, y) is the spatial coordinate in the plane of the
image sensor, f donates the distance between the lens and
the sensor, and n(λ ) is the refractive index of the material
that varies with the wavelength [21], [22]. Then, the image
information at the sensor Yc can be calculated by (3),

Yc(x, y) =

∫
λmax

λmin

[H(x, y, λ ) ⋆ I(x, y, λ )]dλ + η (3)
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FIGURE 1. (a) The schematic of a typically diffractive spectral imaging system and its physical process of
the multispectral imaging (b) Theoretical PSFs(x, y,zi ,λj ) of 16 different positions for z1∼z16 and
wavelength λ1∼λ16, where each subgraph represents a 2D PSF in x and y direction. The circled red
dashed box exhibits the Airy spot of PSFs(x, y,zi ,λj ) at diagonal position i = j .

where [λmin, λmax] denotes the spectral range and η denotes
the sensor noise that is simulated by Gaussian noise η ∼

N (0, σ 2). Discretizing (3) and denoting the pixel size by 1,
then the optical transfer function can be obtained and

expressed by (4),

H(x, y, λ )=
∑
m,n

H(m, n, λ ) rect
( x
1

−m,
y
1

−n
)
+η (4)
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where m and n donate the discretizing position of the center
of each pixel in x and y direction. Finally, the signal g in each
pixel can be obtained by sampling the accumulation of the
image information of each spectral segment and expressed
by (5),

g(m, n)

=

∫ ∫
Yc(x, y) rect

( x
1

− m,
y
1

− n
)
dxdy+ η

=

∫ ∫
rect

( x
1

− m,
y
1

− n
)
dxdy∫

λmax

λmin

∑
m′n′

I(x, y, λ )

∗ PSF
(
m′, n′, λ

)
rect

( x
1

− m′,
y
1

− n′

)
dλ

]
+ η

(5)

when the image applied for simulation is discrete, (5) can be
simplified by using the intensity I(ξ, ζ, λ ) at the central pixel
that represents the light intensity near the (x, y) position of the
original image approximately, and can be calculated by,

g(m, n) =

∑
λ

∑
m,n

I(ξ, ζ, λ )H(m− ξ, n− ζ, λ ) + η (6)

the PSFs
(
x, y, z, λ

)
can be calculated for the waveband rang-

ing from 400 to 760 nm at full space with 360 sampled
imaging positions according to (2) and (4). Fig. 1(b) shows
the calculated PSFcal(x, y, zi, λj) at 16 different positions for
zi (i = 1-16) and wavelength λj (j = 1-16), where each
wavelength λj is associated with a diffractive specific imag-
ing position zi.
As illustrated by the red dashed circular in Fig. 1(b), the

PSFs
(
x, y, z, λ

)
at diagonal positions with i = j appears

as a converging Airy spot. Otherwise, the PSFs exhibits as
intricate out-of-focus diffraction patterns. For a given wave-
length λi, the concentrated converging Airy spot emerges
only at the corresponding focusing position zi, and the energy
is divergent with increasing distance, forming various diffuse
diffraction patterns. Representing the PSFcal as a matrix form
PSFmat, PSFmat is traditionally treated as a block circulant
matrix according to the principle of spatial translation invari-
ance. However, Fig. 1(b) reveals that the sub-matrix rows
do not follow a simple circulation pattern in z direction.
In accordance with (6), the simulation results can be com-
puted by using the approximation of the block loop matrix,
which shows a difference in MPSNR of 19.33 dB compared
with the result of the simulation using the real PSFs matrix.
These above results indicate the approximation hinders the
image restoration with a high accuracy. Therefore, the 3D
convolution is used to extract features of the cyclic matrices
and reserve the discreteness at the same time.

III. SPECTRAL IMAGE RECONSTRUCTION
According to the analysis results in the previous section, the
imaging process of the diffractive lens in (6) is a convolution
of a three-dimensional PSF function of the incident light field.

Then, the diffractive imaging process can be expressed as
Y = A ⊗ I + N , where Y denotes YC (x, y), A denotes the
PSF(x, y, λ ), I denote I(ξ, ζ, λ ),and N denotes η. The pro-
cess of the spectral reconstruction is a typically invert method
that the incident light information I can be formulated by the
captured image Y and the PSF function A as an optimized
problem of (7) [21],

Î = argminI
1
2
∥y− AI∥22 + λR(I ) (7)

Traditionally, iterative methods with constraint terms such
as TV regularization and l2 regularization are commonlly
used to achieve convergence and obtain the optimal solution.
However, methods with iteration are time-consuming and
greatly rely on the selection of appropriate priori factors.
When chosen priori factors deviate from the real data dis-
tribution, severe distortions in the recovery results could
be caused. Inspired from the learning properties of neural
networks, convolutional neural networks (CNNs) have been
shown to have a great potential to improve the quality of the
reconstruction of the diffractive spectral imaging [17], [23].
Particularly, Jeon et al. developed a U-net based end-to-end
network to enhance the accuracy and speed of the derived
imaging recovery, making it more suitable for practical appli-
cations [23]. Similarly, Oktem et al. demonstrated that the
combination of model-based deep learning methods with
traditional approaches can achieve significant performance
improvements [14]. Aforementioned methods effectively uti-
lize the feature extraction capabilities of neural networks
and employ the simple algorithm design to invert complex
functionmappings. However, their networks adopt 2D convo-
lution and leave out the learning of inter-channel information
between spectra, causing the wastage of acquired spectral
energy and inter-channel spectral information. To resolve this
issue, we propose a method that combines 3D convolution
with inter-channel attention to extract the spatial-spectral
structure of the captured image data.Moreover, it is important
to note that utilizing 3D convolution typically requires higher
computational power and larger data storage. In order to
address this problem, a baseline for 3D image reconstruction
network is also proposed by the reported 2D reconstruction
network [24].
Fig. 2(a) shows the U-net structure employed in our

design [25]. This structure made by extended modules
possesses strong capabilities in integrating contextual infor-
mation and processing detailed information, and requires
fewer parameters and computational resources, which could
be a popular choice for spectral reconstruction problems.
PSFs in Fig. 1(b) shows the similarity of internal structure
and the features of adjacent local regions as mentioned in
previous section. The 3D convolution template could act on
different pixels (m, n) and wavelengths λj in the neighbor-
hood simultaneously, and extract the 3D context features
more directly and efficiently. The aliasing diffraction spectral
image at zj is constituted by a combination of the image of
focused wavelength λj and images of other wavelengths λk
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FIGURE 2. (a) Structure of the U-net network and (b) its 3D block.

(k = 1 . . . , j−1, j+1 . . . ,16). The influence of the nearest
wavelengths λj−1 and λj+1 on the aliasing image at zj is
particularly pronounced. It is a great challenge for character-
ing multispectral relationship through interchannel attention
methods and two-dimensional convolution. In contrast, 3D
convolution offers a straightforward and precise means of
characterizing this feature. From Fig. 2(b), 3D-Block based
on the baseline is designed for the reconstruction of 3D data
cubes. Additionally, to overcome the limitation of the small
receptive field of the convolutional network, the inter-channel
attention module is introduced to obtain the spectral channel
correlation. The inter-channel attention module adjusts the
inter-channel weights of the spectral channels to enhance
the expression capability of features. The 3D convolution
layer is used to capture the characteristics of the spectral
dimension, and the simplified channel attention (SCA) layer
is used to adjust the channel weight of the spectral dimen-
sion. The SCA enables cross-channel attention extraction,
and reduces computational complexity. The 3D convolution

dominates the learning of three-dimensional feature while
SCA emphasizes the relationship between spectral steps,
so that these two steps can complement each other. The
layer normalization is applied to resolve the problem of small
batchsize division arising from the small number of data vol-
ume groups and the large memory occupancy of each group.
Furthermore, the layer normalizationwithin each group of 3D
data cubes is normalized to preserve the differences between
the data. Considering the nonlinear function relationship
between wavelengths and positions factor of PSFs, ReLU
and GELU are employed to accelerate the initial learning
process and improve the learning quality in the later stage
respectively [26], [27].

IV. RESULTS AND DISCUSSIONS
We implemented python programs to execute the aforemen-
tioned network structure. All experiments were performed on
a server that had an Intel(R) Xeon(R) Platinum 8255C CPU
and an RTX 3080 (10GB) GPU. The used operating system
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TABLE 1. Comparison of recovery effects of different algorithms.

FIGURE 3. Comparison of space performance (PSNR) of single spectral image unmixing results using different algorithm. (a) ground-truth for
reference, (b) aliased image influenced by other wavelengths, (c) image recovered by gap-tv algorithm, (d) image recovered by autoencoder
algorithm (e) image recovered by ISTA-Net algorithm (f) image recovered by Unrolled network algorithm (g) image recovered by our HAS3D
algorithm.

was Ubuntu 20.04.4 LTS. The model was developed by using
the pytorch version 1.11.0 framework, and was built on the
open-source BasicSR library [28].

The training data was obtained by simulating the model
and selecting a number of publicly available spectral datasets
as the original spectral data [29], [30]. The simulated 3D
signal data was obtained by using the forward model simu-
lation mentioned earlier, resulting in 1,000 sets of 3D data
cubes. The ratio of the training set, test set, and validation set
was 6:2:2.

In order to prevent the problem of convergence difficulties
of the 3D network, the 2D network was firstly trained by
using the same structure as shown in Fig. 2. The 3D block
was then converted to 2D, and the parameters of the 2D
convolution was then imported into 3D along the spectral
dimension, where these training results of 2D network was
used as the pre-trained network parameter inputs. Model

optimization was performed by using the Pytorch framework
and the AdamW solver [31]. All convolutional layers except
the 1 × 1 convolutional layer used a 3 × 3 filter with zero
padding to keep the feature map constant. The whole network
contained around 589.1× 106 parameters, and took 26.5 hrs.
to train.

Two parameters of MPSNR and MSSIM are used the main
evaluation metrics to measure the effectiveness of image
restoration [32]. MPSNR measures the similarity between
the restored image and the original image by comparing the
pixel difference, where the higher value indicates a higher
similarity. Typically, a restored image with a MPSNR over
30 dB is considered acceptable for human eye recognition.
On the other hand, MSSIM characterizes the influence of
brightness, contrast, and structure, which is in consistent
with the subjective perception of image quality from human
eye. The MSSIM value commonly ranges from 0 to 1,
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FIGURE 4. Comparison of spectral performance of multispectral image unmixing results. Reconstructed spectral data curve and accuracy (a)-(e) are
spectral curves extracted from different data, (f) is the average of the accuracy of the spectral curves for all data. Red curve is the target spectral
curve extracted from ground-truth. Black curve is the spectral curve recovered by our algorithm. (g) is a comparison of ground truth, network input
and reconstructed outputs at different wavelengths.

where 1 denotes identical images and 0 signifies completely
different images. As shown in Table 1, the recovery effect
of our HAS3D network is also tested and compared with
typical Gap-tv, Autoencoder, ISTA-Net and Unrolled net-
work on various datasets. The HAS3D network exhibits a
MPSNR of around 37.68 dB, showing an improvement of

1.8 dB in comparison with the highest MPSNR of typical
Unrolled Network (around 35.88 dB). The MSSIM of our
designed network is around 0.91 that meets the standard of
indistinguishableness to human eyes (MSSIM>0.9). How-
ever, in terms of improving MPSNR, the improvement in
MSSIM is only marginal, possibly due to the network’s
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oversimplified structure lacking depth in processing image
information [33]. The execution time of the designed pro-
gram for a single run only takes 0.36 s that is faster than
above algorithms in Table 1, showing the time efficiency is
improved for around 37.9% in comparison with that of the
typical Unrolled Network (0. 58 s). The rebuilding time tr
of the proposed HAS3D is around 0.36 s that is faster than
other algorithms. Furthermore, the proposed HAS3D needs a
shorter training time of tt ∼ 26.5 h than that of the Unrolled
Network (tt ∼ 32.9 h) but longer than that of the Autoencoder
(tt ∼ 19.4 h) and ISTA-Net (tt ∼ 23.6 h). However, the
Autoencoder and ISTA-Net need longer rebuilding time of
around 2.03 s and 1.28 s respectively. In practice, different
spectral image systems only need to train once to learn param-
eters of the model but have to take the rebuilding time every
time for different scenes to obtain multispectral images, and
thus shorter rebuilding time is apparently more important for
a good algorithm for the multispectral imaging application.
As a result, the proposed HAS3D shows a faster rebuilding
speed and an acceptable training speed in comparison with
other traditional algorithms. In view of this, we believe the
proposed HAS3D has a great potential to be an alternative
algorithm for the diffractive multispectral imaging under dif-
ferent scenes.

The restoration results of computing spectral imaging are
also analyzed in spatial and spectral dimension as shown in
Fig. 3 and Fig. 4, and are carefully compared with the other
traditional methods. From the reconstruction results of the
first set of data (Data #1, first row) in Fig. 3, the aliased image
exhibits a MPSNR around 12.89 dB in contrast to the ground
truth image, and the restoration results calculated by gap-
tv, autoencoder, ISTA-Net, Unrolled network and HAS3D
algorithm, whose MPSNR is around 17.58 dB, 27.68 dB,
32,71 dB, 33.67 dB and 39.03 dB respectively, showing our
3D convolutional network could efficiently rebuild aliased
spectral images with the highest PSNR 39.03 dB. Similarly,
the second (Data #2, second row) and third set of data
((Data #3 third row) also show the highest value of MPSNR
43.41 dB and 35.47 dB that can be achieved in comparison
with other networks, confirming our HAS3D could effi-
ciently rebuild aliased spectral images in various scenes and
may provide a useful method for highly accurate reconstruc-
tion of diffractive-based computational spectral imaging. The
spectral curves of the recovered images are further extracted
and compared with the original image. From Figs.4(a)-(b),
the accuracy of the reconstructed spectral data curve of five
different original image is 97.3%, 99.4%, 97.4%, 98.1% and
92.0% respectively, and the average accuracy in Fig. 4(f) is
around 86.7%, showing a high accuracy of the reconstructed
method. The reconstruction multispectral results for wave-
lengths of 400 nm, 520 nm,640 nm and 760 nm are given
in Fig. 4(g). It is obvious that the reconstructed multispectral
images in the last row are clearer than the input images and
are similar with the ground truth images, which confirms
the accuracy of our network in the computational spectral
imaging.

TABLE 2. The effectiveness of 3D convolution and Simplified Channel
Attention (SCA) have been verified.

The effectiveness of the 3D convolution and SCA is also
verified by ablation experiments in our HAS3D. As illus-
trated in Table 2, simulated PSNR from HAS3D algorithm
with 3D convolution and SCA modules is around 37.68 dB,
while the simulated of PSNR from HAS3D algorithm only
with 3D convolution is around 35.70 dB, confirming SCA
is more effective in integrating adjacent band information.
Similarly, HAS3D with 3D convolution and SCA modules
has a higher PSNR3D&SCA of around 37.68 dB. In comparison
with that of the pre-trained 2D algorithm only with SCAmod-
ules (around 29.70 dB), the 3D convolution plays a critical
role in improving the PSNR. On the other hand, simulated
SSIM and times of HAS3D with 3D convolution and SCA
modules are similar to HAS3D of 3D convolution, which is
around 0.9 and 0.36 respectively and is in accordance with
the SSIM and times of Pre-trained 2D algorithm. Ablation
experiment confirms the important role of the inter-spectral
communication in improving the quality of spectral
reconstruction.

V. CONCLUSION
In summary, we propose a highly accurate and efficient 3D
network with encoding and decoding paths from 3D convo-
lutional blocks for spectral image restoration of the DOIS
system. Our algorithm shows significant improvements in
the increase of PSNR∼ 1.8 dB and the enhancement speed
around 37.9% at the same time. The shallow network with
a small convolutional kernel is applied to enhance speed,
and its MSSIM of 0.91 meets the standard of indistinguish-
ableness to human eyes, and meanwhile the algorithm runs
in just 0.36 s that is faster than other traditional methods.
However, the shallow network with a small convolutional
kernel exhibits the indistinct improvement of MSSIM, which
may attribute to the oversimplified structure lacking depth
of network. Of course, the limitation of MSSIM should be
addressed in future research. Simulated experiments confirm
the utilization of 3D convolution can effectively integrate
information from different spectral bands and play a critical
role in optimizing the spectral image recovery. Furthermore,
the designed algorithm can be physically validated by apply-
ing it to a diffraction spectral imager. The application of our
3D network algorithm to diffraction lens spectroscopy may
benefit more areas such as Chemical Identification, medical
diagnosis and food monitoring in future [34], [35], [36].
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