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ABSTRACT The prediction and identification of key factors in road traffic accidents are crucial for accident
prevention, yet previous studies have often examined these aspects separately. To comprehensively assess
the risk level of road traffic accidents and their key determinants, this paper proposes a comprehensive
forecasting and analysis framework that offers a novel perspective for identifying key risk factors from a
modeling standpoint compared to existing methods. The CNN-BiLSTM-Attention model was developed for
predicting the risk value of road accidents, and DeepSHAP was employed to interpret the model and extract
the key factors contributing to traffic accidents. This deep learning framework combines convolutional
neural networks (CNN) and Bi-directional long short-term memory (BiLSTM), while incorporating a
spatial-temporal local attention mechanism to enhance its capability in capturing spatiotemporal features.
Through analysis and experimentation on real-world datasets, our model demonstrates superior accuracy
in predicting traffic accident risk compared to the benchmark model, achieving a Mean Absolute Error
(MAE) of 0.2475 on the UK dataset and 0.2683 on the US dataset. The results obtained from DeepSHAP
were found to be more rational and informative in identifying key factors of different severity levels using
four methods. To verify the rationality and stability of obtaining these key factors, the first 15 factors were
reintegrated into the prediction model, resulting in almost unchanged accuracy and reduced model iteration
time. By improving the influential factors, road traffic accidents can be effectively mitigated.

INDEX TERMS Traffic accidents, risk prediction, explainability, deep learning.

I. INTRODUCTION

Currently, approximately 1.27 million individuals perish in
traffic accidents annually, with nearly 20 to 50 million
sustaining injuries because of such incidents. Road traffic
accidents represent a significant cause of death, injury, per-
manent disability and property loss [1]. They impact not only
the economy but also the healthcare system. It is crucial to
reduce accident likelihood by identifying key factors and
road accident risk levels since accidents do not occur ran-
domly; they can be predicted and prevented [2]. Predicting
regional accident risk degree constitutes an essential aspect
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of accident management that enables rescue personnel to
evaluate regional traffic accident risks and their potential
impacts. Simultaneously, implementing effective accident
management procedures through improving critical influenc-
ing factors plays a vital role in preventing accidents [3].

In order to mitigate the impact of traffic accidents on
regional safety, it is imperative to conduct an analysis of
traffic accident data in order to investigate the correlation
between regional accident risk levels and associated risk
factors, thereby developing a novel predictive model for
regional risk assessment. The degree of traffic accident risk is
often influenced by four primary factors, namely the driver,
vehicle, road conditions, and environmental conditions [4].
By exploring the influence of these various factors on the
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level of regional traffic accident risks, effective measures can
be implemented to enhance safety. Currently, diverse research
methodologies are employed for analyzing and forecasting
the degree of regional traffic accident risks.

The first research method involves analyzing the key fac-
tors contributing to traffic accidents through data analysis
and making statistical predictions [5]. While this traditional
approach allows for a comprehensive examination of the
interrelationships among various factors and enables the
establishment of linear or parametric models, it falls short
in accurately predicting accident risks. Additionally, this
method heavily relies on extensive data support but lacks
effectiveness in processing multidimensional data [6]. Conse-
quently, machine learning methods have gradually replaced it
and garnered significant attention from researchers in recent
years.

The field of machine learning can be categorized into
two research methodologies: traditional machine learning
models and deep learning models. Due to their proficiency
in effectively capturing the nonlinear relationship between
input and output data, traditional machine learning meth-
ods can explore the contribution of various factors to traffic
accident risk and predicting the degree of risk associated
with such accidents [7]. Simultaneously, by uncovering the
interrelationships among these factors, it becomes possi-
ble to determine their respective contributions towards the
degree of risk in traffic accidents, thereby establishing their
relative importance as influencing factors [8]. However, tra-
ditional machine learning models tend to overlook certain
spatiotemporal correlations, resulting in weaker predictive
capabilities.

Currently, deep learning has emerged as a cutting-edge
analytical technology extensively employed in the analysis
and prediction of traffic accident factors. These models can
accurately assess regional-level traffic accident risks by uti-
lizing activity data such as GPS, thereby achieving superior
precision [9]. However, while deep learning models excel
at predicting traffic accident risks with remarkable accu-
racy, they often only consider specific contributing factors to
accidents, which may not fully capture the complexity of real-
world scenarios.

The machine learning and deep learning methods men-
tioned above have distinct focuses on various aspects of
predicting traffic accident risks; nevertheless, there exist
several unresolved issues in the field of traffic accident
prediction. Firstly, previous studies have rarely compared
state-of-the-art machine learning models with hybrid mod-
els [10]. Secondly, machine learning, being a black box
method, fails to provide explanations for the relationship
between influencing factors and the degree of traffic acci-
dent risk [11]. The prediction of traffic accidents is often
disconnected from the identification of key factors, with the
key factors not being determined from a model’s perspective.
Ultimately, due to the consideration of individual factors, the
predictive capability of the model becomes weakened when

120598

dealing with unbalanced data, thereby diminishing prediction
accuracy.

The aim of this study is to address the issue of deep
learning models in the field of traffic accident prediction
by accurately forecasting the risk of traffic accidents and
identifying key factors from a model perspective. To achieve
this, a comprehensive framework is developed that inte-
grates predictive analysis of traffic accident risk levels with
identification of crucial factors. The framework proposes an
innovative CNN-BiLSTM-Attention model, which integrates
a convolutional neural network (CNN), Bi-directional long
short-term memory (BiLSTM), and spatial-temporal local
attention mechanism to construct a prediction model capa-
ble of capturing both temporal and spatial characteristics of
traffic accidents.

The problem of data imbalance is addressed through the
utilization of data cleaning and local attention mechanism,
while the reliability of the model is validated by employ-
ing real-world data to predict traffic accident risk levels in
different regions. To tackle the issue of black box models
and identify key factors, DeepSHAP is introduced for model
interpretation and assessing the contribution degree of influ-
ential factors. This approach enables us to identify crucial
determinants, mitigate prediction errors caused by risk dis-
parities, and provide a novel perspective for comprehending
model predictions.

The main contributions of this paper are as follows:

e The present study proposes a novel framework for traffic
accident analysis that integrates deep learning models and
explainable algorithms to combine accident risk prediction
with critical factor identification. This framework constructs
a CNN-BiLSTM-Attention model, utilizing CNN to capture
the spatial features of accidents, BILSTM to capture the
bidirectional temporal features of accidents, and incorporat-
ing spatial-temporal local attention mechanism to enhance
the predictive capability of the model, thereby improving its
accuracy.

e The DeepSHAP algorithm is specifically employed in
this paper to interpret and analyze the influencing factors
of deep learning models, aiming to provide a comprehen-
sive explanation and analysis from the model’s perspective.
It identifies key factors at different levels of traffic accidents
and compares them with those identified by different models.
Furthermore, these key factors are re-input into the model to
verify their robustness.

e The proposed analytical framework was validated
using real data, encompassing a decade of traffic accidents
in the UK, thereby establishing its validity. Additionally,
to assess the model’s applicability, we employed traffic acci-
dent data from the United States for forecasting purposes.
The results demonstrate that our CNN-BiLSTM-Attention
model achieves higher accuracy than any other benchmark
model. The comparison of key factors calculated by different
methods simultaneously validates the comprehensiveness of
DeepSHAP.
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Il. RELATED WORKS

In recent years, predicting traffic accident risk has emerged
as a pivotal aspect within the realm of safety. Consequently,
comprehending and interpreting deep models have become
focal points in algorithmic research. The subsequent section
will analyze and summarize both aspects.

A. STUDY OF TRAFFIC ACCIDENT RISK PREDICTION

For the prediction of traffic accident risks, statistical research
primarily involves constructing various parameter models.
Xu et al. [12] analyzed and predicted the characteristics
and models of collision accidents involving Connected and
Autonomous Vehicles (CAV) using a logit model, thereby
identifying key influencing factors. Kwak [13] analyzed key
variables by constructing a multivariate logistic model based
on Korean highway data set, resulting in the development of
areal-time collision program prediction model. Ma et al. [14]
developed a prediction model that combines cloud modeling
and Markov chain analysis to forecast the number of traffic
accidents based on accident characteristics. Liu et al. [15]
employed grey correlation analysis to establish association
rules for mining traffic accidents, which were then validated
using data from 31 provinces. Reeves et al. [16] used par-
tially constrained generalized logistic regression models to
characterize traffic accidents in the United Kingdom while
exploring combinations of key risk factors.

Traditional machine learning models primarily employ
algorithms to analyze and predict the risk of traffic accidents.
Taamneh et al. [17] utilized a decision tree model (DT)
for analyzing traffic accidents in ABU Dhabi and predict-
ing the extent of damage caused. Ma et al. [18] integrated
evidence theory with Bayesian network to forecast the prob-
ability of accident occurrence. Tang et al. [19] compared
the random forest model (RF) with the K-nearest neighbor
model (KNN) for predicting the duration of traffic accidents.
Gong et al. [20] proposed A quantum K-nearest neighbor
algorithm, which has higher classification efficiency and
accuracy in high-dimensional data and greatly reduces the
time.

Silagyi and Liu [21] employed a support vector machine
model (SVM) to predict accident severity and personal
injuries, ranking 14 factors contributing to accidents. Some
combination models achieve improved prediction accuracy
by integrating different algorithms. Assi et al. [22] combined
fuzzy c-means (FCM) with SVM, inputting 15 collision fac-
tors for predicting and analyzing traffic accident severity.
Peng et al. [23] predicted taxi accidents through a combina-
tion of eXtreme Gradient Boosting tree model (XGBoost),
highlighting job-related factors as more significant.

As an emerging machine learning technology, deep learn-
ing is gradually being applied in the prediction of traffic
accident risks. Gong et al. [24] inspired by quantum com-
puting, a quantum convolutional neural network (QCNN) is
proposed, which greatly improves the convergence speed and
classification accuracy compared with traditional models.
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Jiang et al. [25] employed Long Short-Term Memory
(LSTM) with varying time resolutions to predict the pre-
and post-collision situations. Huang [26] utilized a sophis-
ticated deep learning model to forecast collision accidents
and validated it using accident data from the United States.
Liu and Ukkusuri [27] combined spatial-temporal convo-
lution with LSTM to predict the impact of Manhattan
accidents. Additionally, numerous novel models have been
proposed and implemented for traffic accident risk pre-
diction. Zhou et al. [28] developed a minute-level urban
traffic accident prediction model based on Graph Neural
Network (GNN). Ma et al. [29] constructed an accident
prediction framework utilizing Semi-Supervised Autoen-
coders (SSAE) to safeguard vulnerable road users (VRU),
ensuring their safety. In the latest study, Wang et al. [30]
used distance Graphs to capture the correlation of accidents
in unbalanced data and proposed an Adaptive graph with
Self-Supervised Learning (AGSSL) traffic accident predic-
tion method. Zhou et al. [31] studied feasible edge caching
strategies by using the distributed Multi-Agent Reinforce-
ment Learning (MARL). They developed a computationally
efficient method called DeepDMRE, and experimental results
demonstrate its enhanced efficiency.

B. STUDY OF MODEL EXPLAINABLE ALGORITHMS

The machine learning algorithm, being an exceptional
data-driven model, demonstrates the predictability effec-
tively. However, due to its opaque nature, the internal
decision-making process of machine learning is challenging
to visualize and comprehend [32].

To gain a comprehensive understanding of the intrinsic
relationship between meaningful input features and output
goals, as well as comprehend the decision-making process
of the model, extensive research has been conducted by
numerous scholars in this field. Lundberg [33] introduced
Shapley Additive Explanations (SHAP), which is rooted in
game theory’s concept of Shapley value and offers explana-
tions for model predictions through the calculation of each
feature’s contribution. To interpret traditional machine learn-
ing models, Apley and Zhu [34] proposed local effects plots
to provide explanations. Ding [35] developed a neural net-
work interpreter-segmentation recognition and interpretation
(NNI-SRI) algorithm capable of interpreting CNN models.

Currently, the explanatory algorithm introduces the
concept of local explanation and global explanation.
Ribeiro et al. [36], [37] have proposed two successive
explanatory algorithms, namely LIME and Anchor, to pro-
vide local explanations for models and identify key factors.
Binder et al. [38] have introduced Layer-Wise Relevance
Propagation (LPR) for neural networks to quantify the con-
tribution of input features. Some explanatory algorithms are
also being developed for specialized models. Wei et al. [39]
have constructed NeuronMotif, a neural network inter-
pretation model that deciphers gene codes layer-by-layer.
Zhao and Hastie [40] have conducted a causal analysis of
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the model’s interpretation, starting from Pearl’s back-door
adjustment.

The prediction of traffic accident risks necessitates the
consideration of multiple factors and an understanding of
their respective degrees of influence. Consequently, this study
aims to establish an interpretable analytical framework for
predicting and identifying the degree of risk and key factors
associated with traffic accidents.

IIl. FRAMEWORK FOR ANALYZING TRAFFIC ACCIDENTS
The proposed framework in this paper for predicting traffic
accident risk consists of two components: risk prediction and
key factor identification. This section initially outlines the
fundamental concepts and model structures of CNN and BiL-
STM models used for traffic accident risk prediction. And it
discusses the incorporation of a spatial-temporal local atten-
tion mechanism. Subsequently it introduces the principles
and calculation methods of DeepSHAP. Finally, it summa-
rizes the traffic accident risk prediction framework based on
an explainable deep learning model.

A. CNN-BiLSTM-ATTENTION MODEL

The occurrence of traffic accidents is influenced by com-
plex spatial-temporal factors. To comprehensively study the
influence of spatial correlation among various influencing
factors on traffic accidents and to obtain the key factors of
traffic accidents. The CNN model is employed to extract
spatial features of samples, while BiILSTM captures tem-
poral features of accidents to comprehensively investigate
the impact of spatial correlation among various influencing
factors on traffic accidents. Additionally, the spatial-temporal
local attention mechanism is incorporated to mitigate noise
interference and further enhance the predictive performance
of the model.

CNN possesses the characteristics of local connectivity,
weight sharing, and a multi-level pooling structure, which
effectively capture local features such as road type and
accident location. These attributes are pivotal in predicting
traffic accident risks, while the CNN’s processing model
adeptly captures key spatial features related to traffic acci-
dents. Within model, BiLSTM plays a primary role in
capturing temporal information regarding accidents includ-
ing weather fluctuations and changes in accident timing
among other characteristics. The bidirectional structure of
BiLSTM enables the model to learn from both past and future
information, enhancing its feature-capturing capabilities and
ultimately improving prediction accuracy.

Meanwhile, we introduce a novel spatiotemporal local
attention mechanism into the model to further enhance its
focus on crucial information. In contrast to the global atten-
tion mechanism, this approach enables the model to identify
the spatial-temporal segments that have the greatest impact
on traffic accident risk and concentrate on significant fea-
tures, thereby enhancing the accuracy of traffic accident
risk prediction. To comprehensively capture traffic accident
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characteristics and accurately predict their likelihood, we pro-
pose a CNN-BiLSTM-Attention model for prediction.

This paper utilizes a combination of convolutional layer
and Batch Normalization (BN) layer to enhance the sta-
bility of the model [41]. When processing textual data, a
1-dimensional convolutional neural network (1IDCNN) was
employed to capture the salient information, followed by uti-
lization of a fully connected layer (FC) for classification and
feature extraction. The computational procedure is illustrated
in equations (1)-(3).

F = op(BN(X*wF + br)) ey
0 = 5(F) + bg @)
P = op(Q*wp + bp) 3

where F, Q, P represent the outputs of the convolutional
layer, pooling layer, and fully connected layer, respectively;
BN normalizes to a standard; oF, op represent the activation
function of the convolutional layer and the fully connected
layer; X is the matrix of the input data; § is the pooling layer
pooling mode; wr, wp are the weight matrix of convolutional
layer and fully connected layer; b, bo, bp are the bias vectors
of convolutional layer, pooling layer, and fully connected
layer.

In addition to spatial correlation, there is also a clear
temporal correlation observed in traffic accident data, encom-
passing both short-term and long-term correlations. LSTM,
as opposed to traditional RNN, effectively addresses the
issues of gradient explosion and gradient disappearance
through the utilization of gated units [42].

LSTM consists of oblivion gate, input gate and output gate.
The structure of the model is shown in Figure 1.

ﬂarget Gate

f(/)

hr—l ﬁ:‘ ! hr
| /l Output Gate‘/ O

Input Gate

(b)The structure of internal unit

FIGURE 1. The structure of LSTM model.

Given its inherent memory function, this paper employs
BiLSTM for extracting temporal features from samples. The
BiLSTM model not only inherits the advantages of LSTM
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but also effectively incorporates temporal information from
both past and future directions, thereby enhancing prediction
accuracy [43].

The calculation process of LSTM is illustrated in equa-
tions (4)-(9).

fi = o (Wyrx; + Wiphi—1 + by) 4)
iy = o (Wyix; + Wpihi—1 + b)) (5
g = tanh(Wygx; + Wighs—1 + by) (6)
0r = 0 (Wyoxt + Wioh—1 + by) @)
cr = grir + i 1ft (®)
h, = tanh(c;)o; )

where x; is the input at time ¢; Wyr, Wy, Wyg, Wy, Tepresents
the weight matrix associated with x;; h;_; is the previous
moment; Wyr, Wpi, Wig, Wy, are the weight matrix associ-
ated with h,_1; by, bj, bg, b, are the bias vector.

The addition of an attention mechanism simultaneously
enhances the spatial and temporal feature capturing abilities
of CNN and BiLSTM models. This mechanism effectively
reduces interruption loss during training, enabling the assign-
ment of varying weights to input features for improved
prediction accuracy and faster convergence speed [44]. Con-
sequently, it facilitates the extraction of relationships between
traffic accidents and different traffic indicators.

The local spatial attention mechanism in the encoder stage
serves as a weighting mechanism for input data, enabling
enhanced focus on the impact of regional traffic indicators.
In each region, there exists a complex relationship between
multiple local traffic flow data and traffic accident risk data
with future traffic accident risk, which dynamically evolves
over time [45]. The spatial attention mechanism is shown in
equations (10)-(11).

d, = wi tanh(wah,_1 + W3Cjt» + b)) (10)
o — exp(a’;)
S = 1
> (af)

where @, is the importance of the hidden layer at the previous
moment for moment #; c]’. is the j th indicator sequence at time

Y

t; ot{ is the weight of attention; b; is the bias vector.

The temporal attention mechanism is employed to adap-
tively capture the dynamic significance of historical time
slices with respect to future time slices, thereby facilitating
the model in acquiring a more comprehensive understanding
of the impact of past moments on future instances. The hid-
den layer attention value at each moment is computed using
equations (12) - (14).

T .
Co=2  0h (12)
i
o = 00D (13)
2 i1 exp(ry)
rzl =hi_1Wrh; + b, (14)
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where r;' is the information at moment ¢;W, is the associated
weight matrix; b, is the bias vector.

The final step involves utilizing a fully connected layer
to establish connections between each node and the nodes
in the preceding layer. This ensures that the extracted
features from both before and after are interconnected, ulti-
mately yielding an output value typically employed for
multi-classification through Softmax logistic regression. The
propagation formula for this fully connected layer is provided
in equation (15).

Xour = 0 (Wour + bour) (15)

where x,,; is the final output value; o is the sigmoid function;
Wour is the weight between neurons in the last layer; by, is
the bias vector of the last layer.

The proposed CNN-BiLSTM-Attention model, as illus-
trated in Figure 2. Firstly, the processed data is initially fed
into the spatial attention mechanism to enhance the spatial
feature extraction capability of IDCNN and mitigate the
impact of imbalanced data. Subsequently, it undergoes nor-
malization processing in the BN layer, followed by feature
extraction through convolutional and pooling layers. Next,
the information processed by IDCNN is integrated into the
temporal attention mechanism via an FC layer to reinforce
time information extraction, which is further complemented
by bidirectional BiLSTM for comprehensive time feature
extraction. Ultimately, a prediction result indicating road traf-
fic accident risk level is generated using an FC layer.

CNN

Spatial gN FC
Attention Convolutional Layer Ponding Layer Output

BiLSTM

Temporal
Attention

FC

(TTTTTTTT T I I T T I ITTITITTI I ]

Level of risk of traffic accidents

FIGURE 2. Structure of CNN-BiLSTM-Attention model.

According to the number of casualties in traffic acci-
dents, traffic incidents are categorized into three levels: slight
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incidents, serious incidents, and fatal incidents. The corre-
sponding risk values for these traffic accidents are 1, 2, and
3. The prediction of the degree of traffic accident risk aims to
forecast the cumulative sum Y/ of traffic accident risk values
occurring within a given time period ¢ for road section i based
on input indicators.

When the accident sample contains numerous zero values,
the marginal probability of ““‘zero value™ for each influencing
factor tends to be overestimated, leading to erroneous con-
clusions [46]. To mitigate the issue of zero inflation, after
computing the accident risk for each road section during any
given period, we employ mean square error (MSE) as the loss
function. During loss calculation, samples with higher acci-
dent risks are assigned greater weights based on a formulated
calculation equation (16).

1
Loss(Y,Y') = % > i—v)? (16)

i=1

where Y is the accident risk value for all road sections; Y’
is the predicted accident risk value for all road segments; /
represents total number of accidents; Y; is the actual risk value
of the ith accident; Yl.’ is the predicted risk value for the ith
accident.

B. EXPLAINABLE ALGORITHMS AND FRAMEWORK
BUILDING

The quality assessment of a model in algorithmic modeling
typically relies on the precision and recall metrics of the test
set. However, not all models conform to regular patterns,
which poses challenges for comprehending and trusting their
prediction outcomes. The feature contributions of traditional
interpretable models are easily obtained due to their simplis-
tic structure, whereas obtaining such contributions for deep
learning models is challenging. Hence, explainable algo-
rithms are employed to extract key features. To quantify the
impact of features and provide a comprehensive explanation,
we propose employing DeepSHAP [47] as an explainable
tool to account for the model’s predictions. This tool offers
feature importance scores that elucidate the contribution of
each input feature towards the model’s predictions.

The DeepSHAP algorithm computes the Shapley value for
each feature using the Deep Learning Important FeaTures
(DeepLIFT), making it well-suited for deep learning models.
equation (17) provides the formula to calculate the Shapley
value.

3 |sI!'(M —IS] — D! (S Uxj) —v(S))

oi(v) = 70

Sg(xlamxm)/xj

17)

where x; is the jth feature; ¢;(v) is the characteristic contri-
bution; S is the subset of features; M is the total number of
features; v(x) is the model predicted value for the study.

The Shapley values are approximated by DeepLIFT
through the calculation of feature contributions using the
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multiplier principle and the chain rule. The theoretical for-
mulation of DeepLIFT is provided in equation (18).

n
D Canag = AG (18)

where x; is the set of neural networks; x is the reference value
for x;, Ax; = x; — xo; G 1is the target output; AG is the sum
of the contributions of the individual input features.

The explanations provided by DeepSHAP enable us to
quantitatively assess the degree to which relevant factors
impact accident risk. This information can then be utilized
for the development of targeted policies and measures aimed
at mitigating accident risk.

Traffic Accident Data

v v v v v

Vehicle Personnel
Factors factors

Time Spatial Environmental
Factor Factor Factor

v
Data Processing

]
CNN-BIiLSTM-Attention Model

!

Level of risk of traffic accidents

Model ]
Comparisons <+— DeepSHAP

v

Key Influencing Factors

]
Robustness
Verification

!

Traffic Accident Risk Prediction And
Key Factor Identification

—

FIGURE 3. Framework process.

Therefore, the framework flow depicted in Figure 3
illustrates the integration of risk prediction and key fac-
tor identification. Initially, accident data is acquired and
selected features are pre-processed into five categories for
visualization. Subsequently, the pre-processed data is divided
into training and test sets, which are then inputted into the
CNN-BiLSTM-Attention model to predict traffic accident
risk levels. Evaluation metrics are employed to assess the
effectiveness of the model’s predictions. Furthermore, a com-
parison between this paper’s model, classical models, and
novel models is conducted to demonstrate the superiority of
our proposed approach.

The DeepSHAP technique is utilized to explain our model
and determine each influencing factor’s contribution extent.
Additionally, different models are employed to obtain key
factors associated with accidents of varying severity degrees
for comparison purposes to validate the rationality of infor-
mation obtained through DeepSHAP analysis. Through this
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comparative analysis process, we select an optimal model that
identifies key factors with maximum contribution degrees.
Finally, these top 15 contributing factors are re-inputted into
the CNN-BiLSTM-Attention model for prediction purposes
to evaluate performance time and verify robustness while
assessing rationality before outputting both risk prediction
results and identified key factors.

IV. CASE STUDY

A. DATASET SOURCE

In order to validate the algorithm’s predictive performance,
this paper utilizes a publicly available dataset on road safety
accidents and vehicles in the UK spanning from 2005 to 2018.
The dataset consists of two components: accident-related per-
sonnel information and vehicle conditions, which are merged
based on the accident index for experimental purposes in this
study.

(https://www.kaggle.com/datasets/tsiaras/uk-road-safety-
accidents-and-vehicles/code?resource=download)

The preprocessing of data can enhance computational
performance. In this way, features missing more than 10%
in the data are deleted, and to find suitable features, the
proportion of discrepancy less than 0.02 is also deleted. Cat-
egorical variables in the processed data are imputed using
mode-based filling for missing values, while temporal infor-
mation is transformed into year, month, week, and hour
formats to emphasize accident-related temporal character-
istics. The original dataset comprises 2,058,408 accident
record. The processed data set involved 2,755,286 injured
persons. Of these, 1,734,548 (84.7%) were slightly injured,
286,339 (14%) were seriously injured, and 26,369 (1.3%)
were killed.

The training set exhibits a significant disparity in the
distribution of three types of traffic accident risk levels.
To address this issue, this study employs SMOTE for over-
sampling and RandomUnderSampler for under sampling to
achieve data balance. SMOTE is a widely used technique
that generates new samples by interpolating existing ones,
particularly useful in the domain of traffic accidents [48]. The
RandomUnderSampler is an under-sampling technique that
aims to balance the class distribution by reducing the sample
size of the majority class. By combining these two methods,
we can effectively address data imbalance and mitigate over-
fitting issues in forecasting tasks. To ensure robustness in data
processing, 10-fold cross-validation is performed during the
training process.

Additionally, 32 indicators with minimal missing data
that are relevant to accident prediction were selected. Non-
numerical indicators were encoded using the LabelEncoder
algorithm from Sklearn package to establish one-to-one map-
ping for subsequent processing. The selected indicators are
presented in Table 1.

The processed data were subjected to statistical analysis
to observe the temporal and spatial patterns of the accidents.
The trends depicting the three levels of accident severity are
illustrated in Figure 4-6.
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TABLE 1. UK data set traffic accident influencing factors.

Factor Factor
. . Factor name . . Factor name
classification classification
Year Road Surface
Conditions
Temporal month Speed limit
Factor Day of Week Propulsion Code
hour Age of Vehicle
. Latitude & . .
Spatial Factor Longitude Engine Capacity
Junction Towing and
Control Articulation
Junction Skidding and
Detail Overturning
Juncti Vehicle
unction factors Vehicle Manoeuvre
Location
Number of .
Vehicles Vehicle Type
Pedestrian
Crossmg Vehicle Reference
Physical
Facilities
Environmental
Factor Light Age Band of
Conditions Driver
Weather Driver Home
Conditions Area Type
Urban or Journey Purpose
Rural Area . Of Driver
Special Driver
i factors Sex of
Conditions at A
. Driver
Site
Carriageway Was Vehicle Left
Hazards Hand Drive
Road Type Accident Severity

Proportion of Accidents Severity

e Sea AN g P8I A
08

—— Serious Accidents
— Slight Accidents

2008 2008 2010 2012 2014 2016

FIGURE 4. Annual change in severity of three types of accidents.

According to the annual variation of the data, there has
been a slight decrease in the incidence of minor acci-
dents, while the incidence of serious accidents has shown
a gradual increase. The number of fatal accidents, how-
ever, has remained relatively stable. On a weekly basis,
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FIGURE 7. Spatial distribution of traffic accidents.

Fridays consistently record the highest number of traffic acci-
dents, whereas Sundays consistently have the lowest number.
This can be attributed to reduced travel during weekends.
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Analyzing daily changes reveals that peak hours in the morn-
ing and evening witness the highest occurrence of accidents
due to high volumes of commuting trips.

The spatial distribution of traffic accidents is depicted in
Figure. 7, wherein red indicates fatal accidents, yellow rep-
resents serious accidents, and green denotes minor accidents.
Based on the spatial analysis, it can be observed that accident
occurrences are concentrated along the road network and
within urban areas such as London and Birmingham. Notably,
there is a clear clustering pattern evident in the spatial char-
acteristics of fatal accidents

At the same time, to verify the applicability of the
model, road traffic accident data sets of 49 states in the
United States from 2016 to 2020 were selected for compar-
ison. (https://www.kaggle.com/datasets/sobhanmoosavi/us-
accidents) After the same pre-processing of the data, the
selected features are shown in Table 2.

The analysis of Table 1 and Table 2 reveals that the features
collected in the US data set are comparatively less compre-
hensive than those obtained from the UK data set, exhibiting
significant disparities in environmental characteristics and
vehicle attributes. Consequently, the third part of feature
interpretation primarily focuses on analyzing and comparing
the British data set’s features.

TABLE 2. USA data set traffic accident influencing factors.

Factor Factor

. . Factor name . . Factor name
classification classification

Year VEHCOUNT
Temporal Month COLLISIONTYPE
Factor Day of week JUNCTIONTYPE
Environmental
hour Factor WEATHER
Spatial Factor LLZT;?S d‘i‘ ROADCOND
ADDRTYPE JUNCTIONTYPE
PEDCOUNT SERIOUSINJURIES
Environmental PERSONCOUNT FATALITIES
Factor PEDCYLCOUNT  Driver factors UNDERINFL
LIGHTCOND HITPARKEDCAR
SPEEDING INJURIES

B. PARAMETER SELECTION

The dataset in this study is divided into a training set, vali-
dation set, and test set in chronological order with a ratio of
6:2:2. The system configuration includes an AMD Ryzen9
7845HX CPU, GTX4060 GPU, and Windows 11,64-bit
operating system. Python3.7 is used as the programming
language, while Pytorch1.12.0 serves as the framework for
building the model. After parameter tuning and inspec-
tion, the hyperparameter settings presented in Table 3 are
adopted.
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TABLE 3. Hyperparameter settings.

Parameter value
Convolutional kernel 3:1, depth

Parameter name

IDCN 3
BiLSTM 2 hidden layers
Dropout IDCNN (rate=0.3)

BiLSTM(rate=0.2)
Optimizers Adam
Initial learning rate 0.001
regularization parameter 0.1113e-04
activation function Relu
Number of iterations 100/200

As it assesses the risk of traffic accidents, it can be consid-
ered a regression model for predicting accident risks. It can
also serve as a predictive model for assessing the degree of
accident risks. Therefore, to evaluate the prediction model
in this paper, four evaluation indicators are employed to
measure its accuracy, including Mean Absolute Error (MAE),
Precision, Recall, and F1 Score. MAE reflects the average
magnitude of errors made by the prediction model. Also,
Precision, Recall, and F1 Score enable evaluation of the
model’s performance in imbalanced datasets from different
perspectives. The relevant formulas are provided below.

SNy @) — 50|

MAE =
N
. TP
Precision = ——
TP + FP
TP
Recall = ——
TP + FN
2Precision*Recall
F1 score =

Precision + Recall

where N is the number of samples in the test set; y (¢) is the
true value of risk for the 7 th sample; y(¢) is the predicted value
of risk for the ¢ th sample; TP is the number of samples that
are actually true and predicted to be true; FN is the number of
samples that were actually true but predicted to be false; FP is
the number of samples that were actually false and predicted
to be false.

The presence of a small MAE in a model indicates
its strong fit. And if the model exhibits high Precision,
Recall, and F1 score, it signifies its exceptional accuracy in
predicting traffic accident risk.

C. ANALYSIS OF EXPERIMENTAL RESULTS

To validate the superiority of the proposed model, a module
ablation experiment was concurrently conducted, wherein
10 benchmark models were selected for comparative analysis.
These encompass the historical average model (HA), sup-
port vector machine model (SVM), back propagation neural
network model (BP), multilayer Perceptron model (MLP),
time series prediction model (GRU), stack denoising autoen-
coder (SDAE) [49], CNN model, LSTM model, BiLSTM
model, CNN+BiLSTM model and CNN+BiLSTM+ Global
attention model. The comparison model encompasses a broad
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spectrum of domains, ranging from conventional statistical
models to state-of-the-art deep learning algorithms, to estab-
lish a comparative analysis with the model constructed in this
paper.

The classical machine learning models employed in this
paper include HA and SVM, while the most advanced mod-
els encompass BP, MLP, GRU, and SDAE. Currently, HA,
SVM, BP, MLP, and GRU find extensive applications across
various fields. On the other hand, SDAE represents the latest
approach for constructing deep networks and acquiring hier-
archical feature representations from inputs.

The role and effectiveness of each module in the model
are verified through module ablation experiments using
CNN, LSTM, BiLSTM, and CNN+BiLSTM. Additionally,
a CNN+BIiLSTM+Global attention model is designed to
demonstrate the superiority of the proposed spatiotemporal
local attention mechanism over the common global attention
mechanism. Table 4 presents the optimal parameter settings
for comparison methods. The parameter settings for the
CNN model, BILSTM model, CNN+BiLSTM model, and
CNN+BiLSTM+-Global attention model align with those of
the CNN-BiLSTM-Attention model.

TABLE 4. Optimal parameter setting of the comparison method.

Models Optimal parameter setting
regularization parameter: 0.5
SVM kernel type: rbf
kernel coefficient: scale
learning rate:0.001
L2 regularization term:0.001
batch size:300

BP Optimizer: Adam
The number of hidden layer
neurons:30
Number of fully connected layers:3
MLP The number of Relu activated

hidden units:128,64,32
Hidden size:100
Num layers:3
GRU batch size:500
learning rate:0.001
Optimizer: Adam
learning rate:0.001
L2 regularization term:0.001
SDAE number of denoising autoencoder
layers :3
hidden dimension of each layer:30
learning rate:0.001
L2 regularization term:0.001
number of LSTM layers:2
number of FC layers:2
LSTM unit hidden dimension:64
FC hidden dimension:40

LSTM

Due to its complex nature as a voluminous data set, traffic
accident data necessitates multiple iterations for effective
feature acquisition by machine learning models to capture
both temporal and spatial characteristics along with sig-
nificant attributes associated with accidents. Nevertheless,
excessive iteration runs may lead to overfitting issues within
these models. Henceforth, each learning architecture under-
goes 100/200 iterative processes utilizing identical datasets
as a precautionary measure against incomplete execution of
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TABLE 5. Model prediction performance on a UK dataset.

Epoch=100 Epoch=200
Model MAE Precision Recall F1 Score MAE Precision Recall F1 Score
Classical HA 0.3397 0.6186 0.6521 0.6349 0.3153 0.6431 0.6724 0.6574
model SVM 0.3113 0.6618 0.6778 0.6697 0.3082 0.6721 0.6947 0.6832
BP 0.3049 0.6765 0.6913 0.6838 0.2924 0.6946 0.7016 0.6981
State-of- MLP 0.2973 0.7176 0.7478 0.7324 0.2774 0.6894 0.7614 0.7236
the-art GRU 0.2989 0.7267 0.7596 0.7428 0.2767 0.7380 0.7816 0.7592
SDAE 0.2752 0.7986 0.8328 0.8153 0.2498 0.7924 0.8477 0.8191
CNN 0.2897 0.7485 0.7913 0.7693 0.2717 0.7378 0.7924 0.7641
LSTM 0.2878 0.7707 0.7858 0.7782 0.2733 0.7683 0.8029 0.7852
I\/{’(;dtl_llar BiLSTM 0.2836 0.7889 0.8061 0.7974 0.2658 0.7749 0.8326 0.8027
ablation
CNN-BIiLSTM 0.2767 0.8003 0.8426 0.8209 0.2543 0.7958 0.8536 0.8237
CNN+B1LSTM+ Global 0.2721 0.8095 0.8511 0.8298 0.2513 0.8017 0.8641 0.8317
attention
Our model CNN-BiLSTM-Attention 0.2654 0.8148 0.8641 0.8387 0.2475 0.8191 0.8782 0.8476
TABLE 6. Model prediction performance on a USA dataset.
Epoch=100 Epoch=200
Model MAE Precision Recall F1 Score MAE Precision Recall F1 Score
Classical HA 0.3628 0.6048 0.6481 0.6257 0.3524 0.6138 0.6527 0.6327
model SVM 0.3425 0.6627 0.6628 0.6627 0.3386 0.6754 0.6754 0.6754
BP 0.3311 0.6824 0.6872 0.6848 0.3219 0.6928 0.6918 0.6923
State-of- MLP 0.3218 0.7021 0.7326 0.7170 0.3127 0.7104 0.7452 0.7274
the-art GRU 0.3201 0.7128 0.7425 0.7273 0.3057 0.7221 0.7526 0.7371
SDAE 0.2846 0.7483 0.8103 0.7781 0.2764 0.7612 0.8241 0.7914
CNN 0.3126 0.7325 0.7829 0.7569 0.2931 0.7415 0.7886 0.7643
LST™M 0.3108 0.7386 0.7814 0.7594 0.2917 0.7462 0.7901 0.7675
Nl[;{dtglar BiLSTM 0.3084 0.7417 0.8122 0.7754 0.2856 0.7538 0.8216 0.7862
ablation
CNN-BiLSTM 0.2957 0.7657 0.8236 0.7936 0.2754 0.7758 0.8452 0.8089
CNN+B1LSTM+ Global 0.2858 0.7741 0.8339 0.8029 0.2711 0.7861 0.8516 0.8175
attention
Our model CNN-BiLSTM-Attention 0.2784 0.7882 0.8403 0.8134 0.2683 0.7962 0.8679 0.8305

100 cycles. This approach enables comprehensive compari-
son and analysis by selecting two representative iterations.

noise; thus, it outperforms other algorithms in terms of indi-
cators.

The experimental results of each comparison model on
the UK traffic accident dataset are shown in Table 5. The
experimental results of each comparison model on the US
traffic accident data set are shown in Table 6.

Through comparative analysis of the models, it is evident
that classical machine learning algorithms such as HA, and
SVM exhibit relatively poor prediction performance, with
their various indicators being inferior to those of the new
model. Among these classical algorithms, SVM demonstrates
exceptional capability in selecting significant features associ-
ated with traffic accidents while remaining resilient to input
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The comparison of deep learning models reveals that the
performance slightly improves with 200 iterations compared
to 100 iterations. This highlights the capability of deep
architectures in effectively modeling complex relationships.
However, BP, MLP and GRU models exhibit better predic-
tion effects than the basic machine learning model but fall
short in terms of accuracy and precision when compared to
the combined model. This discrepancy may arise from their
limited focus on either spatial or temporal factors of traffic
accidents without considering their spatial-temporal correla-
tion. While SDAE performs closely to the combined model,
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TABLE 7. Main factors affecting traffic accidents of different severities.

Slight
Cﬁggﬁﬁi;{s LR RF GCV-LIME DeepSHAP
1 hour Day of Week Day of week hour
2 Day of Week Engine Capacity Speed limit Junction Control
3 Speed limit Age of Vehicle Latitude & Longitude Engine Capacity
4 Road Type Speed limit Road Type Latitude & Longitude
5 Number of Vehicles Latitude & Longitude Engine Capacity Speed limit
Serious
CE:;EE%];‘:S LR RF GCV-LIME DeepSHAP
1 Speed limit Engine Capacity Junction Control Speed limit
2 Day of Week Junction Control Latitude & Longitude Number of Vehicles
3 hour Latitude & Longitude Speed limit Engine Capacity
4 Latitude & Longitude Speed limit Day of Week hour
5 Number of Vehicles hour Number of Vehicles Latitude & Longitude
Fatal
cﬁggﬁ‘;ﬁgﬁg LR RF GCV-LIME DeepSHAP
1 Number of Vehicles hour Speed limit Speed limit
2 Speed limit Speed limit hour Number of Vehicles
3 Day of Week Latitude & Longitude Age of Vehicle Engine Capacity
4 Age of Vehicle Number of Vehicles Engine Capacity hour
5 hour Age of Vehicle Latitude & Longitude Latitude & Longitude

it is comparatively weaker due to its failure in accounting for
dynamic influences of temporal features [50].

The accuracy of prediction in the module analysis is
significantly diminished upon removal of the Attention
module, BILSTM module, and CNN module individually.
It can be observed that each structure contributes uniquely
to the model’s performance. The CNN module captures
spatial and related factors, the BILSTM module captures
temporal factors and retains them in memory, while the
Attention module captures intricate information details to
achieve optimal predictive efficacy. The prediction accuracy
of the spatial-temporal local attention mechanism is higher
compared to both the global attention mechanism and the
spatial-temporal local attention mechanism, owing to its spe-
cific ability to capture appropriate features. In summary,
CNN-BiLSTM-Attention surpasses all other methods across
evaluation metrics due to its well-designed spatial-temporal
information processing modules and utilization of attention
mechanism for noise elimination and semantic representation
learning from external information, rendering the model more
robust.

According to Table 6, it can be observed that the model’s
trend is roughly like that of the UK data set. Models incor-
porating both temporal and spatial features tend to exhibit
superior performance, and by incorporating spatial-temporal
local attention mechanisms, they can effectively enhance the
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accuracy of accident risk prediction. Additionally, there is
no evidence of overfitting, indicating that the inclusion of a
BN layer and other techniques contribute to the stability of
the model. However, due to fewer features in the US dataset
compared to the UK dataset, the predictive accuracy on the
US dataset is not as high as that on the UK dataset. Therefore,
for identifying key factors, we selected the UK dataset for
factor analysis.

D. MODEL EXPLANATION AND IDENTIFICATION OF KEY
FACTORS

To enhance the model’s predictive credibility and validate
its interpretability, this paper employs DeepSHAP for expli-
cating and analyzing the model, thereby yielding feature
importance rankings. By identifying pivotal factors, effec-
tive policies can be formulated to mitigate traffic accident
risk.

The DeepSHAP algorithm produces a feature score for
each input, with positive scores indicating a favorable impact
on the model’s prediction and the magnitude of the score
reflecting the extent of that impact. DeepSHAP is imple-
mented using Python’s SHAP library.The data set is divided
into three levels based on the risk of traffic accidents, as dif-
ferent influencing factors are associated with each level.
Subsequently, specific key factors are selected for each level
to accurately identify the significant determinants.
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The present study employed three methods, namely
logistic regression (LR), random forest (RF), and GCV-
LIME [51], to predict and analyze the same dataset, thereby
validating the reliability of the interpretation algorithm.
Comparative analysis was conducted by outputting feature
importance. Random forest explanations calculated fea-
ture importance, while logistic regression explanations were
based on feature coefficients. GCV-LIME is a text mining
technique utilized to obtain the frequency of occurrence of
accident factors through text mining and calculate scores for
each factor in order to identify key factors. The top five
factors with the highest impact on the three levels of predicted
traffic accidents are presented in Table 7 using four different
methods.

The results presented in Table 7 demonstrate that the pri-
mary influencing factors of minor accidents, as identified by
the four methods, are all temporally related. Furthermore,
intersection type and geographical location exert a significant
impact, indicating a higher prevalence of minor accidents at
intersections. Additionally, there is an observable correlation
between speed limits and minor accident occurrence. The
disparity in influencing factors between slight accidents and
other types of accidents is significant, while the distinction
between serious accidents and fatal accidents is minimal. The
primary determinants in serious and fatal accidents remain to
be vehicle speed limits, the number of vehicles, and Engine
Capacity. Consequently, it can be concluded that influential
factors for serious and fatal accidents often intertwine with
vehicular and road constraints.

From a methodological perspective, in the case of slight
accidents, RF and GCV-LIME identified the week in which
the accident occurred as the primary influencing factor, while
LR and DeepSHAP attributed importance to the time of day.
This is because RF prioritize specificity over time, making ita
key feature for them but less plausible as an influencing fac-
tor. Additionally, GCV-LIME’s text mining approach tends
to highlight the occurrence of weekdays more frequently,
leading to this issue. In serious and fatal accidents, LR also
identifies both weekday and time of day as significant factors
with an overrepresentation of temporal characteristics.

The features provided by random forest tend to have a high
incidence of missing values, rendering them less reliable.
These missing values are imputed using the mode, resulting in
a significant exacerbation of the problem. Consequently, the
explanations offered by random forests become nonsensical
when dealing with datasets containing substantial missing
values. The GCV-LIME method, however, tends to empha-
size the features of text occurrences and cross occurrences
more prominently. This discrepancy between key judgment
factors and model predictions makes it inappropriate to assess
accident key factors solely from a model perspective.

In contrast, DeepSHAP employs a model proposed in
this paper that effectively mitigates the impact of missing
values. Furthermore, compared to LR, RF and GCV-LIME,
DeepSHAP provides more extensive and detailed informa-
tion. Therefore, combining the DeepSHAP algorithm with
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the CNN-BiLSTM-Attention model presented in this study
yields a more rational and effective explanation and analysis.

The global contribution degree of influence factors is deter-
mined by integrating DeepSHAP with the proposed model,
and Figure 8 illustrates the contribution size of the top
15 influence factors along with their respective contribution
degrees.

0.20

0.15 1

0.10 A

Contribution

0.05

FIGURE 8. Degree of contribution of the top 15 influencing factors Degree
of contribution of the top 15 influencing factors.

According to the given contribution degree of influencing
factors, it can be observed that among the global factors,
speed limit, number of vehicles, time, and vehicle perfor-
mance exert the most significant impact on the risk level
of traffic accidents. This implies that higher speeds and
increased vehicular density are associated with a greater like-
lihood of traffic accidents occurring.

Additionally, both time and location play crucial roles
in determining accident risks. Enhancing safety measures
in high-risk locations and during critical time periods can
effectively mitigate the risk of traffic accidents. However,
factors such as vehicle type, road conditions, and weather
conditions contribute relatively less to the overall degree of
accident risk due to their lower occurrence probabilities.

The top 15 key factors at various levels are re-entered
into the model for predicting traffic accident risk, and the
robustness of both the model and the selected key factors is
validated. The results are shown in Table 8.

The results in Table 5 demonstrate that the selection of the
15 key factors for predicting traffic accident risk leads to a
slight decrease in all indicators, yet there is only a minimal
increase in MAE. This suggests that the accuracy of the
prediction remains largely unaffected.

The marginal impact on Precision, Recall, and F1 Score
is limited to a mere 5%, thereby substantiating that the
predictive accuracy remains largely unaffected even when
considering only the top 15 key factors. This underscores the
rationality and efficacy of utilizing these influential factors
for predicting traffic accident risks.
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TABLE 8. Predictive performance of models with selected key influencing
factors.

Deg_r cc of MAE Precision Recall F1 Score
risk
Slight 0.2524 0.8155 0.8584 0.8364
Serious 0.2563 0.8104 0.8428 0.8263
Fatal 0.2578 0.8102 0.8416 0.8256
Global 0.2517 0.8134 0.8629 0.8427
All factors 0.2475 0.8191 0.8782 0.8476

The findings in Table 8 reveal a greater reduction in the
indicators of severe accidents and fatal accidents. This can
be attributed to the limited amount of data available for seri-
ous and fatal accidents, which leads to decreased prediction
accuracy when input factors are also reduced. The accuracy of
model prediction remains largely unaffected, while the over-
all training time can be reduced by nearly one hour through
areduction in input features during the training process. This
enhancement enables us to expedite model training under the
same computational resources and significantly improves its
efficiency.

Therefore, by carefully selecting the key influencing fac-
tors, it is possible to achieve comparable accuracy results
within a shorter timeframe. This substantiates the rationality
and effectiveness of identifying key factors for predicting
traffic accident risks, thereby validating the model explana-
tion provided by DeepSHAP.

By identifying these influential factors, it becomes evi-
dent that effective measures to mitigate traffic accident risks
include enforcing vehicle speed limits, managing high-risk
areas prone to accidents, and deploying personnel for super-
vision during peak accident periods. Additionally, timely
vehicle inspections are crucial in reducing the likelihood of
traffic accidents.

V. CONCLUSION

The present study proposes an analytical framework to fore-
cast and identify crucial factors contributing to the risk of road
traffic accidents, thereby addressing the issue of fragmented
research. Within this framework, a CNN-BiLSTM-Attention
model is established to predict traffic accident risk, while
DeepSHAP is utilized to elucidate the model and identify the
crucial influencing factors of such risks

The proposed model integrates a combination of CNN and
BiLSTM to effectively capture both the temporal and spatial
characteristics of the features. Moreover, it incorporates the
spatial-temporal local attention mechanism to enhance model
performance by capturing intricate spatiotemporal informa-
tion and bolstering model robustness.

The UK’s actual traffic accident dataset is utilized for
prediction, and the efficacy and superiority of the traffic acci-
dent risk prediction model are validated through algorithmic
comparison experiments and module ablation experiments.
The model achieves an MAE of 0.2475, a Precision of 0.8191,
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a Recall of 0.8782, and an F1 Score of 0.8476, enabling
accurate anticipation of traffic accident risks. The model’s
applicability was further verified by comparing it with USA
data, which also yielded a high prediction accuracy, as evi-
denced by an MAE of 0.2683. This model can proactively
alert potential hazards in advance and assist individuals in
selecting safer travel routes.

After completing the prediction, DeepSHAP is utilized
to elucidate the model and generate the feature contribu-
tion degrees for three categories of traffic accident severity.
The top five features with the highest contribution degrees
are selected for analysis, and upon comparison with results
derived from logistic regression, random forest and GCV-
LIME, it is observed that DeepSHAP provides more reason-
able factors containing richer information.

Subsequently, the top 15 contributing features are
employed for prediction. The experimental results demon-
strate that the predictive performance of key factors remains
largely unchanged, while there is a significant reduction in
model iteration time. The identified key influencing factors
will aid in mitigating traffic accident risks through policy
adjustments and measures such as intersection modifications,
thereby ensuring personal and property safety of road users.
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