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ABSTRACT We test an approach tomodelling the car driver behaviour during simulated lane changing tasks,
aiming to obtain a sufficiently precise model in the simplest possible form, namely, with a small number of
parameters. Various applications of such models are available in the literature. Based on a recent review
of the research to date, the cybernetic single-loop transfer function models employing McRuer’s theory are
applied. The purpose of the presented method is to evaluate the optimal structure of the transfer function via
cross-validation as a technique known from machine learning. The experiments utilize a driving simulator
with in-house developed software; this configuration facilitates acquiring the data at the desired sampling
frequency and in a manner that ensures the repeatability of the test process scenarios. Using the cross-
validation results, we evaluate the second-order model with a derivative state and a reaction delay component
as an optimal structure for approximating the measured data, which originated from a set of measurements
on 92 active drivers. Even though more complex driving tasks could require high-order models, driver’s
control action during our specific experiment is described through only four parameters. The parameters are
jointly determined by the current driver’s mental state and the testing conditions defined in our scenario.
Since the parameters are related to his/her dynamical behaviour, they allow easier mutual comparison of the
drivers than complex models with many parameters. The results are verified via establishing a relationship to
the multi-loop model presented in the recent literature. The larger dataset enables evaluating the confidence
intervals of the drivers’ parameters which is inconvenient with 4 to 10 drivers commonly presented in the
relevant sources.

INDEX TERMS Cross-validation, driver behavior, identification, model, simulator, steering control.

I. INTRODUCTION
The mental and physiological performance of pilots and
drivers embodies a major transport safety-related problem
and, as such, has been subjected to multiple expert analyses,
simulations, and discussions. Previous research, including
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projects designed by the authors of this article, focused to
a great extent on military pilots, exposing procedures that
determine the condition and performance of a pilot by mon-
itoring their responses to pre-defined situations (scenarios)
and evaluating the obtained dynamic capabilities [1], [2].
Further investigation then showed that these capabilities are
sensitive to variations in relevant mental and physiological
factors, such as experience or tiredness [3], [4]. The findings
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were later applied to car drivers too, as is also obvious
from the issues examined herein. Our approach is based
on searching for and identifying an effective mathematical
model to define human driver behaviour during simulated
lane changing task.

The human behaviour and the modelling techniques in
general are set out in, for example, sources [5], [6], and an
insight into recent driver-oriented approaches is proposed in
articles [7], [8], [9]. According to these studies, the most
popular modelling methods can be classified into three main
categories:

• artificial neural networks (ANN),
• hidden Markov models (HMM),
• cybernetic approach (based on the feedback control
theory).

The current HMM and ANN models are aimed mainly at
predicting the driver’s future actions based on the present
states of the driver and the vehicle. This concept finds use in
assistance systems and driver training. Lee et al. [10] trained
two ANNs to predict the steering and pedal operation in
professional drivers; the predictions were then successfully
employed to guide less experienced drivers via haptic
assistance. Further, Cai et al. [9] reported that Bi-directional
Long Short-Term Memory (Bi-LSTM) ANNs outperform
the cybernetic models despite requiring measurement of the
driver’s future actions, a process that may be unavailable in
many applications.

In addition to the prediction capabilities, the cybernetic
approach enables a mathematical description and analysis
of the entire control loop, which comprises the vehicle
and the driver. Such a capacity then allows an offline
simulation and analysis of the feedback loop under user-
defined conditions [11], [12], [13], [14]. Perhaps the most
obvious advantage of the cybernetic approach lies in its
ability to analyse the control loop via methods well known
from system and automatic control theories.

Considering the previous research, longitudinal move-
ment control involving the speed or relative position
control of a car is usually represented by car-following
models. The Gipps’ kinematics-basedmodel andWiedemann
physiology-psychology model constituted perhaps the most
common modelling approaches in the long-term perspec-
tive [15], [16]. Later, models based on fuzzy logic, neural
networks, and machine learning were widely researched
and applied [17], [18]. A combination of the traditional
and machine learning-based approaches was recently stud-
ied and published in diverse papers and articles, such as [19].
The remaining set of researched and presented models
(including our approach) are focused on lateral movement
control.

Lateral control of the vehicle movement is, for instance,
applied by Zhang et al. [20], who uses simulation to assess
the stability of the loop under non-linear tyre charac-
teristics; similarly, Nash and Cole simulations facilitated
investigating the effects of a limited dynamical range of

human sensory dynamics [12], or the influence of the
longitudinal position of the centre of vehicle’s mass on
the human-vehicle dynamics [14]. Mathematical models of
human dynamics are necessary for design of human-machine
shared driving control, because incorrect driver model
could lead to conflicts between the human and automated
controller [21].

The cybernetic approach exploits a mathematical descrip-
tion of the human-machine interaction as a standard feedback
control loop and analyzes its dynamic properties. The
various cybernetic methods historically gave rise to different
human behavior modeling options involving linear and non-
linear streams. The non-linear techniques most often employ
model predictive control (MPC), which exhibits an improved
performance and accuracy [12]. The concept was applied
in various projects, such as that outlined in report [22],
whose authors discuss the output of a controller during an
aggressive, non-linear steering manoeuvre. Another example
is exposed in [23], here, an optimal linear preview control
with only modest excursions from the equilibrium state is
extended into the general large-lateral-motion area. All the
presented sources set out the benefits of employing non-linear
techniques in critical or strongly non-linear applications;
however, as reported in [24], identifying such a complex
non-linear model may involve cumbersome optimization
approaches that lack appreciable advantages over linear
transfer-function models when the vehicle operates in the
linear region. Another comparison centered on linear and
non-linear MPC is available in [20]. The article proposes
that non-linear MPC yields a smaller path tracking error
during high-speed lane change manoeuvres; the indicated
improvement, however, is only 7.66%. The application of a
linear quadratic regulator (LQR) and MPC methods in driver
steering control modeling is compared in [25]; the report
demonstrates that, for a driver model controlling a linear
time-invariant vehicle without constraints, the results of LQR
andMPC controllers are equivalent. In [26], by extension, the
non-linear vehicle model is linearized to allow calculating an
LQR for the equilibrium point. A further non-linear modeling
option lies in ANNs; the authors of [27] nevertrheless
conclude that a shallow ANN comprising a linear activation
function suffices to facilitate lane changing and double-lane
changing tasks. Such a model is then equivalent to a linear
feedback controller.

Although non-linear controllers are undoubtedly more
versatile than linear ones, they require relatively wide and
precise knowledge of the parameters of human perception
dynamics [11]; moreover, they expect the driver to know the
controlled vehicle in detail, are relatively complex, and their
decisions cannot be easily interpreted. Based on the above-
referenced literature, we can conclude that a linear model
should provide a sufficiently accurate approximation of the
driver’s control actions if less critical or well-linearizable
situations are investigated. Due to such reasons, this study
focuses on the linear models. In particular, numerous studies
are accessible that employ linear state feedback models with
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delay [27], [28], single-loop transfer-function models [29],
[30], or diverse combinations of these approaches [7], [31],
[32], [33], [34], [35].

Intending to maximize the interpretability of the model,
we decided to restrict our study to McRuer’s models based
on transfer functions [29] and state feedback models. The
approaches that employ transfer function models are built on
the principle referred to as Crossover law; see, for example,
articles [36], [37]. This law, formulated by D. T. McRuer,
embodies one of the most famous theories in the field; its
indisputable advantage lies in the simplicity and usability for
a wide spectrum of human activities [29].
The article presents a method for finding a suitable model

structure, namely, a transfer function, to describe the driver
behavior during specific tasks. The benefits of this study,
which adds to the literature, are set out as follows:

1) Model selection: Selecting the structure of the model
should be dictated by the data rather than by the
experimenter’s intuition [29]. Various structures are
objectively ranked utilizing the cross-validation tech-
nique [38], an approach that relies on a set of measured
data. The method selects the simplest model with a
minimal number of parameters, namely, an instrument
that delivers a sufficiently accurate approximation of
the human control actions during a particular scenario.
The actual simple character of the model facilitates an
easier interpretation of the results and a reduction of the
errors arising from the uncertainties of the established
parameters [38]; in contrast, increasing the complexity
does not necessarily improve the prediction accuracy
during our lane-changing task.

2) Sample size: The identification procedure optimizes
the model’s parameters from the data obtained via
testing the 92 drivers on a driving simulator and
evaluates the average model of a concrete driver during
our lane change scenario. The dataset is significantly
larger than the small datasets presented in the literature,
as these usually subsume 4–10 drivers, [13], [24],
[27], [34], [35], [39]. Thus, we can expect the results
presented herein, the histograms and the Gaussian
mixture model in particular, to better approximate the
true probability density functions of the drivers.

The article is organized as follows: The second and third
chapters discuss data acquisition via a car driving simulator;
chapter IV presents a method for selecting a single-loop
model structure to suit our use case (based on McRuer’s
theory), and relationship between the selected single-loop
model and the multi-loop model; and the final portion,
chapter V, focuses on statistical analysis.

II. CAR DRIVING SIMULATOR
The data that characterize a driver’s behaviour during
specific situations embody an integral part of the scientific
discipline that focuses on driver modelling. Acquiring the
data generated during vehicle driving can provide complex
information about the driver’s habits and learned routines.

Such data are nevertheless markedly influenced by the
environment and the current situation; all of the relevant
conditions need to be monitored (measured) and considered,
presenting a relatively challenging task. An alternative option
rests in using a car driving simulator. Simulators in general
comprise multiple scenarios that may be difficult to execute
in the real world, enabling us to create a safe test environment.
The importance of simulators is increasing, especially as
regards car driving and testing or flight training [40],
[41], [42]. In our experiments, the main advantages lie in
data acquisition at a sufficient sampling rate and in the
ability to simulate car driving under various pre-defined
conditions or situations, with an emphasis on realistic
interpretation. Naturally, the simulators are not capable of
simulating an absolutely accurate real-world model devoid
of side factors. This apparent drawback nevertheless facil-
itates excluding all undesirable effects and defining stable
measuring conditions to guarantee repeatability of the testing
process.

Driving simulators are often designed commercially;
however, to comply with industrial requirements, customized
simulators are available, and these devices then suit specific
research aims and objectives. To collect relevant data from
test subjects, commercial systems need to be additionally
equipped with external sensor technologies, which are rarely
integrated in the course of the manufacturing phase [43], [44],
[45].

Due to the above reasons, we developed an in-house
car driving simulator (CDS) software. The procedures were
performed in Unreal Engine 4 (UE4), a game engine that is
used primarily for developing computer or console games but
also embodies a convenient framework (based on C++) for
research applications, such as [46], [47], [48], and [49].

The features include, for instance, advanced graphics
to deliver high-level graphical realism, an implemented
advanced PhysX vehicle model, custom C++ functions
and plugins, multiple assets and object models, and VR
(virtual reality) development compatibility. The functional
block diagram of the car driving simulator (CDS) is shown
in Figure 1.
In addition to UE4 as the core of the simulator application,

several related elements and functions enable the simulator
to form an entire unit; such aspects include a PhysX-based
car model; the definition of the custom testing scenarios,
environment, and levels (base maps); and storing the
measured and virtual data in a .csv file.

The hardware is embodied in a stationary platform
(Figure 2). The literature research shows that researchers
often combine UE4 simulation environment with Logitech
G920 [50] or G29 [49], [51] steering wheel and pedals.
In accordance with these studies, the drivers in our study
control the car by means of a Logitech G920, which exhibits
a maximum rotation of 900◦, and the resolution corresponds
to about 0.1◦. The car driving control actions rely on
visual perception of the simulated scene, mediated by a 49’’
Samsung CHG90 QLED gaming display.
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FIGURE 1. The functional block diagram of the car driving simulator (CDS)
software.

FIGURE 2. The used simulator platform.

The simulation environment has been in the past enhanced
based on feedback of multiple experienced drivers. Taking
advantage of highly realistic model of vehicle dynamics,
combined with excellent physical model of interaction
between vehicle and environent models the resulting level
of realism is more than sufficient for the intended purposes.
Drivers with all levels of experience have confirmend
that adaptation to the simulated vehicle (adaptation to
pre-set steering wheel ratio, steering geometry and overal
steering feel using the Logitech platform) is fast and
easy.

More detailed information about the CDS software and the
technical parameters of the hardware can be found in [52].

III. MEASURING THE DRIVER’S RESPONSES
Measuring the responses to various stimuli under different
conditions is an indispensable step for state-of-the-art
approaches to human driver behaviour assessment, including
our scheme. Considering the above-described reasons, the
sufficient sampling rate for the data acquisition and the

FIGURE 3. The driver’s view in the step response scenario.

possibility of implementing the desired testing scenarios in
particular, we developed our CDS. Several scenarios are
available, such as calibration, step response, long-distance
drive, sudden obstacle, and Moose test. All of these options
allow us to acquire the driving data, involving the steering
wheel angle (drivers’ control actions), pedal depression rate,
car speed, distance from the centre of the lane, and time
stamp. Amore detailed discussion is presented in source [52].

The scenarios correspond to real-life situations but are
maximally simplified to exclude undesired side factors. Thus,
we can produce almost ideal testing conditions at a high
repeatability. This approach is limited in that the deduced
conclusions are valid only under ideal (simulated) conditions
and need to be validated in a real-world situation; choosing
such a solution, however, is fully justifiable through several
aspects. In this context, let us stress above all the fact that
the driver behaviour can be modelled using a simple control
loop without influencing disturbances, a capability which
then leads to easier designing of the behavioural model
and simpler identification of its parameters. Respecting the
laws of control theory, the obtained model structures are
presumably valid also in real-world situations, where the
influencing factors will act as disturbances or additional
feedback loop(s) (e.g., a haptic feedback) [7].

A. TESTING SCENARIO
For the purposes of the experiment, the results of the step
response scenario were considered. The task of the driver
rests in responding to the required changes of the driving
lane; the requirements are signalized by a green arrow in
front of the driver as well as by an implemented lane
assistant (Figure 3). From the cybernetics perspective, these
changes represent step variations of the input signal (the
desired value). All of the measurements are performed at a
pre-defined car speed, namely, 90 km/h in the case described
herein. The constant speed is maintained by the speed limiter;
thus, the driver is only expected to respond to lane changes
via the steering wheel. Due to the simplicity of the task,
most of the influencing factors can be ignored, and the
whole car-driver interaction is characterizable using a simple
single-loop feedback structure.
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FIGURE 4. An example of the measured data for the driver No. 1.

Step response embodies one of the most important
scenarios implemented herein because the measured data
enable the creation of a dynamic driver behavioural model
and allow us to identify its parameters. The parameters
provide broad and complex information about the driver’s
abilities and limitations, such as the reaction delay or control
dynamics. An example of the measured (acquired) data from
the step response scenario under the pre-defined conditions is
shown in Figure 4; the data are related to the steering wheel
rotation (the driver’s control actions), u(t), and the distance
from the centre of the desired lane (the resulting control error
involving the car’s response), e(t). The relevant subject is
driver No. 1. The detailed response patterns are exposed at
the bottom of the figure.

B. SAMPLING AND DATA ACQUISITION
Running the simulation under Windows 10 inevitably entails
non-uniformities in the time stamps. The sampling time
fluctuated during the measurements, typically attaining
values between 8ms and 11ms, as illustrated in the histogram
in Figure 5. Sampling period of 10 ms was also used, e.g.,
in [35].

FIGURE 5. The histogram of the evaluated sampling time. The sampling
period is much lower than the time constants of human dynamics.

Non-uniform sampling does not degrade signals when
performed properly. In this context, let us note that the well-
known Nyquist-Shannon-Kotelnikov theorem was expanded
to cover non-uniform sampling by Landau [53], who proved
that aliasing is avoided if the average sampling period T s is
linked to the maximal frequency fmax via the formula

T s <
1

2fmax
. (1)
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The constraint is, in fact, identical to that of uniform
sampling. Thus, the sole disadvantage of the non-uniformities
lies in the requirement for signal resampling. As our
paper presents an offline identification approach, and the
computational time does not constitute an important aspect,
the added computational burden is negligible.

We compared the reconstruction methods available, out-
lining a part of the results within a previously published
paper [54]. The band-limited reconstruction technique turned
out to be the most accurate. Subsequent experiments in
this direction revealed that the method of Cubic Smoothing
Splines (CSS) [55] yields nearly indistinguishable results
but requires a much smaller overhead than band-limited
reconstruction.

All applicable experiments and observations could be of
interest within the discussion, but their descriptionwould lead
us too far from the principal subject; therefore, we can merely
state that we utilized the Matlab function csaps to resample
the CSS [56]. In this manner, non-uniformly sampled signals
from the CDS are conveniently transformed into a uniformly
sampled time series suitable for the subsequent analyses via
the standard signal processing methods.

C. TESTING PROCEDURE AND TESTED GROUP OF
DRIVERS
The research was approved by the Ethical Committee for
Biomedical Research at the Faculty of Electrical Engineering
and Communication, Brno University of Technology, under
approval No. 04b/2020.

The measurement involved a group of 92 active drivers
that followed a structured testing procedure. In the initial
phase, each participant filled out a pre-measuring form with
questions concerning their age, driving experience (mileage),
subjective self-assessment of the current fatigue condition,
and other aspects. All the data were anonymous and are stored
together with unique IDs; thus, no personal information can
be retrieved, and reverse identification of the tested subject
is not feasible. A brief introduction containing indispensable
instructions is completed with the calibration scenario, the
aim being to adapt the user to the car dynamics and control
elements. This scenario lasts approximately 5 minutes, and
no data are logged. Subsequently, the main testing scenario
is launched. In the case of the step response scenario,
a predefined number of lane changes are applied. The overall
duration of the testing scenario is 8–9 minutes, and all of the
described data are recorded.

For the sake of clarity, the detailed discussion of the
identification methods and its results in Section IV are
presented for the first ten drivers; the information on this
subset is summarised in Table 1. Subsection V then analyses
the whole test group of 92 drivers.

IV. DYNAMICAL DRIVER BEHAVIOR MODELS
As presented in the Introduction, this article focuses on the
lane changing experiment and the description of acquired
data using the simplest single-loop models, which exhibit

TABLE 1. Information concerning the first ten tested drivers.

a minimal number of parameters. The models are based
on McRuer’s Crossover law [29]. According to this theory,
the human operator (at the control level, [57]) acts as a
biological feedback controller having a transfer function,
FR(s), and adapting his or her behaviour to the dynamics of
the controlled element, FC(s). Knowing the dynamic model,
FC(s), enables us to define the structure of the appropriate
model of the controller, FR(s), to satisfy the open-loop
transfer function, F0(s), in the form

F0(s) = FR(s)FC(s) =
KRKC

s
e−τ s, (2)

where s denotes the Laplace operator,KR andKC are the static
gains of the human controller and the controlled element,
respectively, and τ represents the reaction delay of the human
operator [29].

The defining equation (2) describes the manner in which
the human element adapts to the controlled dynamics. How-
ever, several experiments have proved that the prescription is
valid only in the area closest to the crossover region and does
not consider a broader frequency range, the dynamics of the
neuromuscular (NM) system, and other relevant factors [29].
Thus, more complex models must be utilized to provide a
sufficient approximation of the human behaviour [7], [29].
The complexity of the models can differ, respecting, above
all, the desired precision; further, no unambiguous rule (based
on a mathematical tool) is available to choose a suitable
structure.

Using linear system theory, the lateral motion of a car
driving at a constant speed can be approximated in a
simplified way (within the range considered) as a double
integrator having a certain gain, KC, reading

FC(s) =
Y (s)
U (s)

=
KC

s2
. (3)

Here theU (s) stands for the Laplace transform of the steering
wheel angle u(t), and the Y (s) denotes the Laplace transform
of the car lateral position y(t).

The model (3) roughly approximates an actual non-linear
model under small steering wheel angles, and becomes very
accurate for the fast drive on the highway. During our testing
scenario, where the constant speed of 90 km/h is held by the
cruise control, the heading angle varies in the range of ±10◦.
For this reason, the longitudinal velocity decreases by a very
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small factor of 1 – cos(10◦) which is approximately 1.5% or
1.4 km/h. The authors are aware of possible lags representing
the dynamics of the steering mechanism or delays caused by
the sampling, screen refresh rate (120 Hz), and other factors.
Presumably, however, the impact of the dynamics is virtually
negligible compared to that of the main dynamics (embodied
in the double integrator), especially in the middle-frequency
area. Thus, in the text below, the controlled element dynamics
are considered according to (3).

In order to comply with Crossover law see [29], the model
structure describing the dynamics of the human controller
needs to be a transfer function in the form of (4). We then
have

FR(s) =
U (s)
E(s)

= KR s e−τ s, (4)

where E(s) is the Laplace transform of the lateral control
error e(t), which is the lateral distance from the centre of the
desired lane. The model (4) describes the behaviour of the
human (driver) as a pure derivative controller with a gain KR
and a reaction delay τ . This structure compensates a pole in
the controlled element. Such a derivative system, however,
would predict a Dirac impulse in the driver’s response to a
step change of the input signal. This type of response cannot
be physically realized and is therefore not observable in the
measured data (Figure 4).
Although model (4) agrees with the fundamental theory,

it is only a theoretical formula valid in the middle-frequency
regions or in the area adjacent to the crossover frequency.
In a model reflecting a broader frequency range, the base
formula must be extended with further dynamics, and the
resulting formula must involve one or more poles. Such
pole(s) would account for the NM dynamics, then the
dynamics of the steering wheel, and those of other related
factors or components. Although there are instances when
the number of poles is determined according to the author’s
experience [31], [58], McRuer suggests that the selection
of the model structure should not be dictated by the
experimenter’s intuition but by the data [29].
Embodying suitable forms to approximate the measured

drivers’ responses, the following four model structures were
investigated:

FR(s) =
KRs
Ts+ 1

e−sτ , (5a)

FR(s) =
KRs

T 2s2 + 2ξTs+ 1
e−sτ , (5b)

FR(s) =
KRs

(T 2s2 + 2ξTs+ 1)(T2s+ 1)
e−sτ , (5c)

FR(s) =
KRs(T3s+ 1)

(T 2s2 + 2ξTs+ 1)(T2s+ 1)
e−sτ . (5d)

These transfer functions describe the dynamical relation-
ship between the drivers’ inputs (the distance from the centre
of the desired lane), e(t), and their control actions, namely, the
angle of the steering wheel with respect to its idle position,
u(t). The angle is expressed in relative values between

FIGURE 6. Approximating the selected driver’s control action with the
models in (5).

−1 and 1, correspondingly to the endpoints of the rotation
(see Section II). Each of the models includes at least one
derivative component-related zero and the reaction delay, τ .
Thus, the complexity of the models differs especially in the
number of poles or, possibly, in using two zeros in the case of
the model (5d).

Approximating one selected driver’s control action via
the models specified in (5) is illustrated in Figure 6. The
proposed comparison of the outputs and the measured
transient response is associated with the data indicated in the
bottom part of Figure 4. The presented models were obtained
using the tfest function described in Section IV-B.

A. CROSS-VALIDATION METHOD
Choosing the right complexity of a model embodies one
of the problems of statistical learning; this issue, however,
can be resolved via various common and convenient model
selection methods [38], [59]. Our research relies on the leave-
one-out cross-validation procedure. The approach, despite
being routinely employed in statistics, is rather scarce in the
literature concerned with human driver modelling; Nash and
Cole [13], for example, use the last 30 seconds from each
experiment to run hold-out validation. As already mentioned
above, a recorded drive consists of K -step responses, and
we therefore split the signal into segments containing the
individual responses. With this type of data, cross-validation
may be performed in the manner outlined below.

We set the first response aside to facilitate the validation,
and all the remaining K − 1 responses are utilized in
identifying the first model, whose quality is then assessed
using the validation step response as described in the
following parts of the text. At the next stage, the second
response is set aside, and the other K − 1 responses are
employed to identify a new model. The process continues
until each response has been used for the validation.

In each model structure (5), we will identify a set of
K models denoted by {FR k (s)}Kk=1. To define the process
exactly, we introduce the notation below. The output of a
model is related to its input via the formula

ûl,k (t) = L−1
{FR k (s)L{el(t)}}, k, l = 1, 2, . . . ,K ,

(6)
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where the L and L−1 denote the forward and inverse Laplace
transform, respectively; the index l signifies that the system
responds to lth input signal el(t); and the index k refers to the
kth model.

To train (identify) the kth model, we leave out one (kth)
experiment for validation. The remaining K − 1 responses
then define training mean squared error (MSE)

Et, k =
1

N (K − 1))

K∑
l=1
l ̸=k

N−1∑
n=0

[
ul(nTs) − ûl,k (nTs)

]2
, (7)

and the validation MSE

Ev, k =
1
N

N−1∑
n=0

[uk (nTs) − ûk,k (nTs)]2. (8)

Equations (7) and (8) conceal the fact that the modelled
output ul,k (nTs), and therefore the errors, are functions of
the free parameters T , KR, τ and possibly also ξ , T2, T3,
depending on the model structure selected from (5).
The training MSE, Et, k , is necessary for obtaining the

parameters through the optimization procedure involved in
the identification methods. The training MSE, Et, k , tends
to decrease whenever we increase the model complexity;
however, the validation MSE, Ev, k , may rise once the model
order has reached too high. Thus, the training MSE, Et, k ,
does not embody a good measure for selecting the model
complexity [38].

B. IDENTIFYING THE MODEL PARAMETERS
The parameter identification is enabled by diverse approaches.
Our research relies primarily on the tfest function in the
Matlab System Identification Toolbox. The tfest, in the
first phase, roughly estimates the model via the Instrumental
Variable (IV) method and then refines its parameters through
non-linear minimisation of the squared error of the output
error (OE) model [60].

Nonlinear minimisation, however, may entail multiple
local minima, and the algorithm may yield a sub-optimal
solution. This condition occurred in the second- and third-
order models (5). We sought the transport delay, τ , by calling
the tfest for all the integer multiples of the sampling
period, Ts, between 0 and 1.2 seconds. The entire identifica-
tionwas repeated from the starting values of T = ξ = 0.3 and
K = 0.01, allowing us to alleviate the problem at the cost of
time.

The input (measured) data for each driver include several
requirements for a step change of the lane to induce relevant
driver responses (Figure 4), thereby suggesting several ways
of applying the identification function, namely:

• global minimisation of the error (7),
• obtaining parameters from each response individually,
• various modifications of these approaches.
In the global approach, the tfest seeks the minimum of

the training error (7). The K−1 training responses are passed
to the function as a multi-experiment iddata structure,

FIGURE 7. The cross-validation MSE of models obtained via global
minimisation (plain bars) and using parameter averaging (hatched).

as described in the documentation [60]. The process is
repeated K times to deliver a model for each cross-validation
fold. The whole dataset facilitates the identification process;
in such a case, however, the reaction delay differences in the
individual responses cannot be fully accounted for by one
model. A considerable variance is observable in the measured
data, making the authors concerned that this phenomenon
might affect the estimation of the parameters. Identifying one
model from each response appears to be a suitable solution to
the issue because it allows the model delay adjustment for
each step response. Thus, K − 1 individual delays τ , gains
KR, time constants T , damping ξ , and other parameters are
obtained. As we aim to create one model for each driver,
constituting all K − 1 training responses, the individual
models need to be merged; this is accomplished by averaging
where the arithmetic mean of each model parameter is
computed.

The third alternative lies in using FFT-based techniques
to compute the model output in (7). This option enabled
us to construct custom cost functions to verify the multiple
hypotheses that certain parameters should be shared by all
the training responses while others should vary for each
response, similarly to the situation in parameter averaging.
The cost function was minimised via standard iterative
optimisation methods. The Quasi-Newton method with
Levenberg-Marquardt damping was evaluated as preferable
due to its fast convergence and high accuracy [61], [62]. Dif-
ferent propositions as to which parameters are independent
or common for all the training folds were tested, involving,
for instance, a recipe where all parameters were common
but the transport delay varied with the responses. However,
we did not reveal appreciable improvement in the prediction
accuracy (the rates often differed by fractions of per cent).
The conclusion lies in that all model parameters should be
common for all the training responses; therefore, the tfest
estimation using global minimisation appears to be the best
option in terms of themodel accuracy and the simplicity of the
practical implementation. A slightly more detailed discussion
is provided in the next subsection.

C. CROSS-VALIDATION RESULTS
As there are K models validated on K responses, the overall
cross-validation error embodies the mean of validation errors
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from individual folds:

Ev =
1
K

K∑
k=1

Ev, k . (9)

MSE are shown in Fig. 7, and can be used to compare the
quality of different models for the same driver. However,
MSE also depends on the amplitude of the measured driver’s
responses, and therefore when we compare models between
individual drivers it is more convenient to adopt as the
measure of model quality a relative measure, such as model
efficiency (ME) or variance accounted for (VAF). The cross-
validation ME is defined by the formula

ME = 1 −

∑K
k=1

∑N−1
n=0 [uk (nTs) − ûk,k (nTs)]2∑K

k=1
∑N−1

n=0 [uk (nTs) − uk ]2
. (10)

with

uk =
1
N

N−1∑
n=0

uk (nTs) (11)

being the mean value of measured steering wheel angle in
kth data fold. Since the experiment takes place on a straight
motorway, all means uk are virtually nil; otherwise, its second
integral would grow until the car would exit the motorway.
Hence ME will tally with VAF, which was adopted by [11],
[12], [24],

VAF = 1 −

∑K
k=1

∑N−1
n=0 [uk (nTs) − ûk,k (nTs)]2∑K
k=1

∑N−1
n=0 u

2
k (nTs)

. (12)

The values obtained through these equations depend
on the structure of the model and reflect the structure’s
generalisation power. The cross-validation ME may be
employed to objectively guide the experimenter in selecting
a proper model. The ME of a model being trained always
increases as the model order rises. It might be less known in
human drivermodelling that the cross-validationME does not
always increase with the model order and carries a potential
to rise when the order reaches excessively high. In machine
learning, this scenario is commonly referred to as over-fitting,
where the model fits the training data with an excellent
precision but lacks the prediction capability with unobserved
or new data [38].
Models with increasing complexity are compared in

Figure 8. The hatched bars correspond to models obtained by
averaging the parameters from the individual responses, and
the plain bars denote models identified by means of global
minimisation; both methods were presented in Section IV-B.
This usage applies to any bar figure in the article.

The first-order model (5a) is evidently too simple to
account for human actions, being outperformed by more
complex models in terms of the ME. Furthermore, it is
assumed that the dynamical model of the human operator
contains a direct feed-through signal path, as illustrated by
the instantaneous step rise (Figure 6, blue). This results in
the driver’s ability to transmit infinitely large frequencies
with a gain, KR/T ; such a capacity, however, is not realistic.

FIGURE 8. The cross-validation ME of models obtained via global
minimisation (plain bars) and using parameter averaging (hatched). The
model involving two zeros yields a negative ME for driver No. 8 when
identified with parameter averaging.

Nevertheless, the model ensures a decent approximation of
the human actions, with the ME values close to those of the
more complex models.

The second-order model (5b) appears to maximise the
cross-validation MEs, suggesting that the model exhibits
the highest prediction accuracy. Our data invariably yield
ξ < 1, a model with a damped oscillatory character (Figure 6,
yellow). The model will be described in detail in the sections
below.

The first third-order model (5c) expands the previous
model by filtering its input (or output) through a low pass
filter with the time constant T2. We will not attempt to
infer whether such an assumption is justified, physically
or otherwise; the importance of this time constant may be
conveniently assessed by the prediction error. As suggested
by the MEs in Figure 8, introducing the constant does
not have an appreciable effect. The response in Figure 6
(yellow) also documents that the model is essentially
the same as model (5b) because the added pole always
exhibits a very small time constant (not illustrated in the
figure).

To assure the reader that a further increase in the
complexity will not enhance the overall benefit, we test
model (5d), obtained frommodel (5c) by adding another zero.
As illustrated in Figure 8 (magenta), there is no appreciable
improvement in the cross-validation error; it then follows that
the second-order model (5b) has the optimal number of poles
and zeros. In the remaining part of the article, model (5b) will
be referred to whenever we write FR.

Based on the results presented in Figure 8, we can also
conclude that parameter averaging performs best with simple
models (first order) and that its applicability deteriorates
as the model complexity increases. The effect is prominent
in Figure 8 (hatched bars), where both third-order models
often provide clearly worse predictions than the second-order
ones. This rise in the error rate can be fully attributed to the
averaging method because the effect does not occur when
the custom functional is used (plain bars). The parameter
averaging impairs the resulting model, presumably due to
the large variance in the model parameters induced when
identifying a complex model from a sole step response. This
is especially pronounced in both of the third-order models.
In contrast, differences in the cross-validation errors are less
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FIGURE 9. Comparing the identified parameters of model (5b) in ten
individual drivers, obtained via global minimisation (plain bars) and using
the averaging of parameters (hatched).

pronounced in the first- and second-order models. Since the
model averaging seldom produces models more accurate than
the global application of thetfest, we find the lattermethod
preferable.

D. IDENTIFIED PARAMETERS OF THE TRANSFER
FUNCTION MODEL
The parameters of the transfer functions in the form
of (5b) were identified using the aforementioned tfest-
based procedures: global minimisation (multi-experiment)
and model averaging. The results from the first ten drivers
are summarised in Figure 9. Broader analysis of the results
from more drivers is in Section V.
While the model structure respects the control laws and

is thus common for the individual drivers, the values of the
identified parameters define the differences in the dynamic
behaviour and are individual to some extent. The parameters
therefore have a direct impact on the resulting control action.
The impact of the parameters on the dynamic behaviour
of a driver is usually demonstrated through the frequency
response (Bode diagram).

The open-loop frequency response (corresponding to (2))
of the individual drivers, associated with the controlled
element according to (3), is presented in Figure 10 (blue
lines). The gain of the controlled element, KC, was identified
from the measured data (KC = 85).
Most of the frequency responses are very similar and

approach the evaluated average (red line). The average
crossover frequency is about 0.5–0.6 rad/s; however, two (or
three) more pronounced deviations are observable.

The first outlier, the dashed blue line, relates to the
youngest participant, driver No.2. We can observe the highest
resonance peak as well as the highest crossover frequency
(around 0.7 rad/s), both of which affect the ability to deliver
a fast response to sudden changes. This characteristic also
relates to the values of the identified parameters, namely, the

FIGURE 10. The open-loop frequency responses F0(jω) in the individual
drivers, associated with the controlled element according to (3), where
KC = 85.

highest value of the gain KR and the low values of the time
constant T and damping ξ . Conversely, the driver’s reaction
delay, τ , is objectively the highest. Similar behaviour can
be identified in driver No.1, the second youngest driver of
the tested group; the similarity lies in a higher value of the
gain, KR, and the low value of the time constant, T . However,
in contrast to driver No.2, the damping value ξ ranges among
the highest ones.

The second case, the dotted blue line, represents the
frequency response of a sixty-year-old driver (No. 6). The
characteristics contain an almost nonexistent resonance peak,
and the crossover frequency is very low (about 0.3 rad/s)
in contrast to those of the other drivers, driver No. 2 in
particular. In this behavioural pattern, the responses of driver
No. 6 are very slow but, at the same time, no overshoots are
present.

E. RELATION TO MULTI-LOOP MODEL
In order to clarify the relationship between our model and
multi-loop control, we provide a possible transformation of
the transfer functions obtained in the previous section. The
comparison will be accomplished via decomposing themodel
in (5b) into a multi-loop model which is most commonmodel
in the recent literature [28], [34], [63], [64]. In a multi-loop
model, it is typically assumed that a human driver is capable
of perceiving the vehicle’s lateral position, y(t), and heading
angle, ψ(t). Assuming a constant velocity v0, kept by the
speed limiter in this testing scenario, the relation between the
vehicle’s lateral position, y(t), and heading angle,ψ(t), can be
evaluated as (the approximate equality applies to small values
of ψ(t)) [65]

dy(t)
dt

= v0 sinψ(t) ≈ v0ψ(t). (13)

with v0 = 25 m/s (90 km/s) in our experiments. Thus,
there are two feedback loops in the first block diagram,
Figure 11 (a).
Rearranging the inner feedback loop, as shown in

Figure 11 (a), and applying block algebra will yield, through
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FIGURE 11. The multi-loop model (a) and its modification into a
single-loop model (c) through (b) using block algebra rules.

Figure 11 (b), the single-loop model exposed in the last
diagram, Figure 11 (c). The dynamics of the single-loop
model FR(s) are determined by the feedback R1(s) and R2(s)
of the multi-loop model. In the diagram, the input of the R1(s)
is the lateral distance e(t) from the centre of the desired lane,
and its output is the required lateral velocity. The deviation
from the required lateral velocity enters the second controller,
R2(s), whose output is the steering wheel angle u(t). The
transfer functions of these feedback paths, however, cannot
be uniquely determined if only the FR(s) is known. Multiple
solutions to the inverse problem are outlined below. As an
example, we provide the following three different admissible
options:

R1(s) =
KRKCe−τ s

v0(TAs+ 1)
, R2(s) =

v0
TBKC

; (14)

R1(s) =
KRKCe−τ s

v0(TBs+ 1)
, R2(s) =

v0
TAKC

; (15)

R1(s) = KR1e−τ s
=
KRKC

v0
e−τ s ,

R2(s) =
KR2

TR2s+ 1
=

v0

2ξKCT
(
T
2ξ s+ 1

) . (16)

Here, TA and TB stand for the time constants of the
single-loop human controller

FR(s) =
KRse−τ s

(TAs+ 1)(TBs+ 1)
, (17)

if the controller is overdamped, i.e. when ξ > 1.
We may, of course, construct other pairs, R1(s) and R2(s),
but these would entail more poles and zeros. Regardless
of the shortcomings, we selected the simplest possible
decomposition of the FR(s), as direct identification of the
R1(s) and R2(s) with the scenario employed in this study is
not practicable. Furthermore, the analysis of the experimental
data excludes models (14) and (15) because all instances of
the model FR(s) identifi ed herein yielded ξ < 1. Thus, (16)

FIGURE 12. Comparing the identified parameters of model (16) in ten
individual drivers, obtained via global minimisation (plain bars) and using
parameter averaging (hatched).

FIGURE 13. The cross-validation model efficiency obtained via global
minimisation. The first order model has the lowest efficiency. All second-
and third order models exhibit virtually the same prediction capabilities.

is the only valid solution from the aforementioned three pairs.
This model structure is very similar to the model advanced by
Schnelle et al. [34]. The evaluated parameters of theR1(s) and
R2(s) structures according to (16) are presented for ten drivers
in Figure 12 and results from more drivers are presented in
Section V.

V. STATISTICAL ANALYSIS
The presented procedure was then verified by being applied
to a statistically more significant group of drivers. This group
included 92 active drivers (10 drivers from the previous
subsections and 82 other participants), encompassing a
relatively large spectrum of participants, namely, men and
women aged between 18 and 60 that cover various mileages
per year.

A. ANALYSIS OF THE TRANSFER FUNCTION MODEL
The cross-validation model efficiency (ME) obtained via
global minimisation is presented using histograms, Fig. 13.
It is obvious from the graphs that the conclusions drawn from
10 participants also translate to the above-mentioned larger
group comprising 92 persons. The first-order model yields on
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TABLE 2. The centres and covariance matrices of the two components of
the GMM.

average efficiency of 54 %, while the others offer 69 %; this
observation confirms that the second-order model is optimal
even for a larger group of participants. The third-order option
does not improve the cross-validation accuracy and entails a
higher complexity, a property which then hinders the actual
intepretability, as we employ more parameters to describe the
same behaviour.

Once it has been established that our dataset can be best
characterised via the second-order model, we launch an
analysis of its parameters. These are presented in Fig. 14,
where we utilize histograms to visualise extensive data
groups in a better manner than otherwise possible with bar
graphs.

Yet even the histograms capture only the distribution
for the individual parameters, and their interactions remain
concealed. Thus, to improve recording the distribution of the
drivers’ parameters, we trained a Gaussian mixture model
(GMM) [66]. Apparently, the drivers are separated into
two clusters, and we therefore model the probability of the
parameters x = [KR τ T ξ ] as a mixture of two normal
distributions:

p(x) = 0.34N (x|µ1,61) + 0.66N (x|µ2,62). (18)

One thousand GMMs were trained, starting from different
initialisation values, using theMatlab fitgmdist function;
the model with the highest likelihood is presented. Their
values’ means, µ, and covariance matrices, 6, are listed in
Table 2. The probability density functions (PDFs) of the
individual variables are scaled and shownwith the histograms
in Figure 14. The GMM (18) can find use in the future
research activities, such as the Monte Carlo simulation of
drivers, where dynamical models of drivers are randomly
generable based on this distribution.

The evaluated parameters have a direct impact on
the dynamical behaviour of a driver; this effect can be
demonstrated through the open-loop frequency response
(corresponding to (2)). The gain KR influences the value of
the cross-over frequency related to time to reach the desired
value. The ξ component corresponds with the damping of
the oscillations in the controller. The reaction delay, τ ,
embodies the standard metrics related to human information

FIGURE 14. Histograms of the identified parameters of the transfer
function model (5b) obtained via global error minimisation on 92 drivers.
The red line displays the PDF of the GMM (scaled to outline the same
area as the histograms).

processing and control and is responsible for the phase shift
in the frequency response. In general, its presence degrades
the dynamical properties of the control loop. The graph
in Fig. 15 exposes the frequency responses of the control
loop for the statistical set of drivers controlling the same
system defined as (3) with KC = 85. The dispersion
of the characteristics corresponds with the histograms in
Fig. 14. This effect follows the main advantage of the simple
model form, when only 4 parameters can fully represent
the dynamical properties of the human behaviour during a
defined control task, i.e. they have the same informative
value as the frequency responses and can be then simply
processed by machine-learning or statistical tools. Such a
capability stands in contrast to more advanced structures
which find application in more complex tasks. To provide
an example, the red curve represents the control functions
of an average driver (the mean of the frequency responses).
Then, the abilities of the other drivers can be relatively
compared within the statistical group or to the average driver.
This step could embody an easy path to evaluating the
driver performance and may be utilized in, for instance,
deciding about the driving competences; such an application,
however, still needs to be subjected to an in-depth and precise
research.

B. ANALYSIS OF THE MULTI-LOOP MODEL
Provided that we adopt the transformation of the single-loop
model FR(s) into a multi-loop one, as discussed in
Section IV-E, the time constant of the inner feedback loop
R2(s) is uniquely determined by the original transfer-function
model FR(s). The evaluated parameters of the R1(s) and R2(s)
structures according to (16) are presented for 92 drivers using
histograms in Figure 16.

The time constant TR2 attains values in a broader
range, with 95 % confidence TR2 ∈ ⟨0.32 s, 1.51 s⟩.
Schnelle et al. [34] performed tests on 10 drivers but report
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FIGURE 15. The open-loop frequency responses F0(jω) for the statistical
group of 92 drivers, associated with the controlled element according
to (3), where KC = 85.

FIGURE 16. Histograms of the identified parameters of the multi-loop
model (16) from 92 drivers, obtained via global error minimisation.

only four values of this constant. Only one of their values lies
outside our confidence interval.

The obtained interval suggests that the time constant is
not directly related to the so-called NM constant discussed
in articles [29], [31], [58], [63] and that its interpretation is
markedly hypothetical. Presumably, the quantity corresponds
to the time constant of a system comprising both the steering
wheel and the NM system, involving the driver’s arms.
Similar ambiguity in the identification of the NM constant
was reported by Nash and Cole [13], Pick and Cole [67],
and through an extensive review of human pilots’ dynamics
proposed by Xu et al. [6].
The transport delay of τ = 0.15 s suggested by Hess et al.

[58] or Nash and Cole [13] appears to be manifestly smaller
than our values, and lies outside our 95 % confidence
interval τ ∈ ⟨0.20 s, 0.61 s⟩. This discrepancy, in fact,
may be true, as the setting of the referenced experiments
differs from ours, especially as regards the forcing function.

In our study, the drivers responded to step changes, but the
respondents in the research by Hess et al. focused on the
curvature of the road; Nash and Cole project, by extension,
employed forcing functions and disturbances in the form
of low-pass coloured noise. In both of the studies, the
drivers could predict further changes in the required lateral
position, thus exhibiting smaller delays. The low-pass forcing
functions used in the two reports are simpler to predict by
means of band-limited extrapolation: An unobserved part of
a band-limited signal may be predicted in a small future
interval, whose length increases when the band-limit or
the signal noise level decrease [68], [69]. Furthermore, the
employment of the fixed-based simulator induces higher
delays in the drivers’ responses, in accordance with the
conclusions outlined in [24].

VI. CONCLUSION
The aim of the research was to identify an efficient model
to accurately approximate the driver responses during the
simulated experiments, thus facilitating comparison between
the drivers within the test group.

According to the researched literature, the complex, non-
linear models find wide use in critical applications, including
modelling the reactions during racing scenarios where a
wheel slip occurs. In contrast, our testing setup focuses on
step response experiments in the form of a lane changing task
during a simulated highway drive under precisely defined
conditions. Thus, based on the literature, we focused on linear
models, which involve transfer functions or state feedback
controllers.

Utilizing the cross-validation method, we successfully
determined that, in our setting, a non-complex cybernetic
model is suitable for observing and analyzing the driver
reactions. The second-order transfer-function model pro-
vides the best prediction capability in terms of the ME
and characterises human actions in standard lane-changing
situations more effectively than the higher-order models.
Such a capability is then potentially very beneficial in reduc-
ing the computational burden, allowing markedly simpler
interpretation of the four relevant parameters that have a
definite impact on the drivers’ frequency responses. The order
is markedly lower than those specified in the literature; the
discrepancy arose probably due to different experimental
setups and forcing functions.

The transfer function controller is closely related to the
state feedback controller. The parameters of the former can
be transformed into the time constants and state feedback
gains of the two states (or outputs) of the vehicle: the lateral
displacement and its derivative proportional to the vehicle
heading angle. Such an interpretation ensures an easier
comparison with the recent literature; however, due to the
mathematical equivalence in our settings, these two models
predict the same approximation of the steering wheel angle.

The identified parameters of the driver-related transfer
functions are summarised in Figures 9 and 10, explaining
the dynamic properties of ten randomly selected drivers. The
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parameters of the whole dataset comprising 92 drivers are
displayed in Figure 14. Referring to the relevant figures,
according to the global identification procedure, the reaction
delay lies in the interval τ ∈ ⟨0.20 s, 0.61 s⟩ with a
95 % confidence. In our study, each driver model involves
an oscillatory component having the damping ratio ξ ∈

⟨0.18, 0.63⟩, time constant T ∈ ⟨0.26 s, 1.00 s⟩, and gain
K ∈ ⟨2.8 · 10−3, 8.1 · 10−3

⟩. The credibility of the presented
confidence intervals is supported by the fact that we analysed
92 drivers, a dataset significantly broader than those in
several recent studies on control-theory steering models. The
authors, as mentioned in the introduction, typically reduce
their analyses to only five drivers, a number that precludes
a reasonable statistical analysis.

Moreover, strong interactions are at play between some
of the above-mentioned parameters, whose covariance is
captured by the two-component GMM. The parameters’
variance may be caused by the different attributes of the indi-
vidual participants, such as the control attitude, experience,
and current mental state. Thus, our further research could
examine, via machine learning methods, the relationship
between the four parameters and the drivers’ mileage,
age, mental state, and other factors recorded in the pre-
measurement questionnaire. The machine learning methods
will potentially gain in efficiency with the reduced set of
strong features proposed herein than by using multiple weak
features extracted from high-order models with a lower ME.
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