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ABSTRACT In queuing systems, the dynamics of the excluded volume effect, which describes themovement
of objects with a physical volume, are generally not considered. Recent studies have presented a theoretical
formulation that incorporates the excluded volume effect to describe the delayed dynamics inM/M/1 queuing
systems. We attempted to extend these results to the GI/G/1 queuing systems. Although the GI/G/1 queuing
model is a stochastic process that cannot be completely described by a Markov chain, recent studies have
indicated that it can be solved numerically using matrix geometry methods in discrete time under certain
conditions. We propose a theoretical and analytical methodology in addition to approximation formulas for
a discrete-time GI/G/1 queuing model that incorporates the excluded volume effect by utilizing the matrix-
geometric method. The approximation methods were validated under single-server conditions for practical
applications. Furthermore, using a theoretical perspective based on the aggregation method, we conducted
numerical experiments on multiple servers to evaluate the performance of the discrete-time GI/PH/c queuing
model. This approach adapted the excluded volume effect to the geometric matrix method. After testing it
with a hyper-gamma distribution, we observed practical agreement, albeit to a limited extent.

INDEX TERMS Aggregation, ASEP, excluded volume effect, GI/G/1, GI/PH/c, matrix-geometric method.

I. INTRODUCTION
Since its discovery, the asymmetric simple exclusion process
(ASEP) model has been associated with various phenomena
in the physical and chemical sciences [1], [2], [3]. It is amulti-
particle systemmoving in a one-dimensional (1D) lattice with
an excluded volume rule, such as the congestion of ribosomes
on messenger ribonucleic acids. ASEP was first introduced
in 1968 to explain protein synthesis [4]. This yields exact
solutions for these systems [3], [5], [6], [7], [8], [9], [10].
However, the queuing theory does not consider the excluded
volume effect. The ASEP is more likely to occur when the
waiting situation is prominent in a queuing system [6], [11].
The divergence of the system in ASEP is characterized when
the utilization rates of the input and output are less than one,
whereas the collapse of the system in the queuing theory
occurs when the utilization rate reaches one. Some studies
have shown that the characteristics of this behavior in M/M/1
queuing models can be explained by discrete time, update,
and excluded volume effects in the discrete lattice space
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[3], [6]. ASEP has been extended to traffic flow modeling,
and the production network is one of its applications [12].
In this study, ASEP theory can be extended to an open GI/G/1
queuing model as a novel approach. We also propose for-
mulas for approximations adapted to a limited region of the
queuing model using the excluded volume effect. Ordinary
queuing theory does not consider the concept of volume
formation in the queue; therefore, it is inadequate for some
problems in which the size of the objects has an effect.

The ASEP model, which incorporates the excluded vol-
ume effect, is more prone to congestion than the normal
queuing model [6], [11]. The ratio of the probability of n
particles entering a system to that of a particle leaving the
system is known as the density ρ (n), and the extremely high
congestion in queuing theory does not require the concept
of volume. This is known as a critical point, occurring at
ρ = 1 in ordinary queues, where the volume of the objects is
not considered. Some studies are also underway to incorpo-
rate the excluded volume effect into queuing theory. This is
expected to provide a result that more accurately represents
the behavior of physical systems. Yanagisawa et al. intro-
duced the excluded volume effect into an M/M/1 queuing
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model that derived exact solutions from the master equation
and demonstrated that the critical point was lowered [3], [5]
[10]. However, this model is currently limited by the scope of
M/M/1 and has a limited range of applications.

Several queuing theories have been published in which
the probability distributions of arrivals and departures are
extended to general distributions. However, owing to the
complexity of theories and difficulty in calculation, approx-
imation methods have been developed to predict reasonable
results [11], [13], [14], [15]. Among the numerous ideas, the
formula proposed by Sakasegawa [16], which can be applied
to GI/G/1 and GI/G/s, has been evaluated as being practical.
The formula in [16] that has been used in this study has been
reported as a good fit in the region

{
c2a, c

2
s
}

≤ 1.02 [17]. The
matrix geometric method (MGM) uses the M/M/1 queuing
model. The MGMwas developed using Markov chain analy-
sis. Later, Evance et al. proposed an algorithm for verification
and contributed to the study of the extension of the types
for the queuing model types. Wallace et al. developed an
MGM by employing a Markov chain in a traditional M/M/1.
This model features a continuous-parameter Markov chain
with block Jacobi generators similar to the GI/M/1 type. The
stability conditions within the MGM were established by
Neuts et al. (1975). This also involves a continuous-parameter
Markov chain with block Jacobi generators resembling the
GI/M/1 type [18]. Moreover, this condition uses the proper-
ties of a Markov chain with an infinite block structure of the
quasi-birth–death process and continuous parameters with
transition matrices to enable us to obtain the precise analy-
sis of GI/M/1 and M/G/1. This method employed the same
stability conditions as the evaluation indicator. Subsequently,
Alfa and Li. proposed a method capable of calculating
GI/G/1 using the same calculation method as the discrete-
time PH/PH/1; hereinafter, this model is described as the Alfa
model [19], [20], [21]. In this study, we propose using this
method to extend the adaptation range of the excluded volume
effect to the approximation method proposed by Sakasegawa,
and then apply the Alfa model [22]. We also extend the
model by adapting the behavior of the totally asymmetric
simple exclusion process (TASEP) to the GI/G/1. In addition,
we associated the aggregation method [22] with the Alfa
model (hereinafter referred to as the aggregated Alfa model)
and evaluated the performance of the TASEP when adapted
to GI/PH/c with a hyper-gamma distribution.

II. THEORETICAL PREPARATION AND APPLICATIONS
A. QUEUE LENGTH Lq IN THE QUEUING THEORY
Queuing theory defines the events of arrival and processing
in a system as the average time interval (expected value)
represented by the inverse of the average value of the time
intervals λ and µ, respectively (Fig. 1). Taking the M/M/1
queuing model as an example, because the time intervals of
arrival and processing are stochastic variables X and Y , they
should follow an exponential distribution whose probabil-
ity density function is given by p (x) = λexp (−λx) and

p (y) = µ exp (−µy). The mean values of these random
variables were E (X) = 1

/
λ and E (Y ) = 1

/
µ, respectively.

The number of particles remaining in the system, excluding
those processed in the server, is known as the queue length
Lq = ρ2

/
(1 − ρ), as ρ = λ

/
µ. The denominator of this

equation is zero at ρ = 1; therefore, Lq diverges at ρ = 1.
This implies that when the inverse of the mean of the arrival
time intervals λ is equal to the inverse of the mean of the pro-
cessing time intervals µ, it exceeds the processing capacity
of the system, which is known as the critical point [23], [24].

FIGURE 1. Relation between the waiting room and the queue length Lq in
the queuing theory.

B. ASEP MODEL AND EXCLUDED VOLUME EFFECT
The ASEP model strictly regulates the events at the critical
point of the excluded volume effect. The model incorporates
the concept of transition probabilities into the deterministic
cellular automaton model and is a system with the behav-
ioral property of transitioning with probability p (0 ≤ p ≤ 1),
when the front space is vacant. The transition probability for
returning is denoted by q (0 ≤ q ≤ 1). In particular, when
both probabilities become p = 1 and q = 0, this corresponds
to Rule 184 of the cellular automaton, which is equivalent to
the TASEP system. The particles moving in the 1D discrete
lattice of the TASEP system are shown in Fig. 2. The figure
shows that the excluded volume effect restricted the flow rate
of the particles.

Inflows and outflows in the queuing model are defined as
the inverse of the mean of the time interval λ for inflows and
µ for outflows. The inflow and outflow events in the TASEP
model are specified as one of the boundary conditions; that is,
when the first site on the left-hand side of the open space is
empty, it enters with a probability α from the first site on the
left-hand side. In addition, when the first leftmost site was
occupied by another particle, no new particles could enter.
In other words, the ASEP model is a call-loss system, with γ

corresponding to its rate. If the neighboring site is empty, the
particle jumps to the right or left site with a certain probability
p or q. If the particle eventually moves to the rightmost site,
it exits the system with a probability β. The particle may
not be able to exit if an obstacle is present outside the exit
when it attempts to move forward with probability δ. The
model in this study employed an open TASEP system and
assumed that q = γ = δ = 0. When either the transition
probability p or q is zero, it is referred to as TASEP. Fig. 2
shows the excluded volume effect in the case of TASEP
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with p = 1, where the backward particle cannot jump if
the forward neighboring site is occupied, and the ‘‘excluded
volume effect’’ is marked with ‘‘×.’’ In the same figure, the
middle image illustrates an event without an excluded volume
effect. We consider a 1D discrete lattice of a discrete-time
systemwith inflow probability α, transition probability p, and
outflow probability β corresponding to the excluded volume
effect.

FIGURE 2. (p = 1, q = 0) Diagram of the TASEP and queuing theory.

Although several options exist for the update method,
we select the rule of parallel updates for discrete-time sys-
tems [3], [5] [25] [26]. In a queue in steady state, no more
than two free lattice spaces can occur (hereinafter denoted as
the 2n state) [3]. The particle behaviors of the state transition
in the single-receptor TASEP model is defined as follows:
Time, t:{t0, · · · , tn} , n ∈ N0
Cells, Cell:{cell0, · · · , celln} , n ∈ N0
cell0 : System entrance cell with excluded volume effect
celln : System exits and receptor cell with excluded volume

effect
Particles, P:{p0, · · · , pn} , n ∈ N0
States with behavioral rules: moving, waiting, processing,

arriving / leaving 1D discrete lattice space, where:
ps = Particle which is arriving at the cell, cell0
pm = Particle which can move from the cell, cell1 to
celln−1 in the time, t + t1 with probability 1
pw = Particle which can wait on a cell, cell1 to celln−1
ppro = Particle which is processing in the cell, celln
pd = Particle which is leaving from the cell, celln
The detailed dynamics of the particles in a 1D discrete

lattice are shown in Fig. 2. For a detailed description of this
method, refer to [2]. The relationship between the flow rate J
and the density layer of the open TASEP model in the phase
diagram is presented as follows:

J (α, β, p)

=


α
p− α

p− α2 · · · LD(Lower − Density) regime,

β
p− β

p− β2 · · ·HD(High− Density) regime,

1 −
√
1 − p
2

· · ·MC(Maximal − Current) regime.

Fig. 4 shows the curve representing the critical point of the
M/M/1 queuing model with the excluded volume effect. This
demonstrates the dynamics of the boundary line between the
lower-density (LD) and high-density (HD) phases, along with
the region between the maximal current (MC) and LD (orMC
and HD) phases, when the state of the critical point is plotted

FIGURE 3.
(
p = 1

)
Phase diagram of open TASEP.

FIGURE 4.
(
p = 1

)
Comparison between the critical point state in the

M/M/1 model incorporating the excluded volume effect and the M/M/1
queuing model: (The curve is the critical point of the M/M/1 model with
the excluded volume effect, plotted by (1), and the line is the critical
point of the queuing theory, plotted by ρ = λ/µ. The region around the
upper left of the figure corresponds to the ‘‘Convergence’’ events that
occur around the critical line of each model, and the region around the
lower right of the figure corresponds to the ‘‘Divergence’’ events.).

with α = 1 and 0 ≤ β ≤ 1 in Fig. 3. The boundary between
the LD and HD phases corresponds to the shockwave line,
which exhibits dynamics of random-walk dynamics [2].

III. INTEGRATION OF QUEUING THEORY
AND ASEP MODEL
A. COMPARISON OF THE CRITICAL POINT STATE IN THE
M/M/1 MODEL INCORPORATING THE EXCLUDED
VOLUME EFFECT AND M/M/1 QUEUING MODEL
In recent years, the same model has been used for rigorous
analysis of traffic congestion phenomena, such as pedes-
trians and vehicles as self-driving particles [3], [10]. The
concepts of distance, acceleration and deceleration events,
and spaces between pedestrians are rigorously understood.
Subsequently, the congestion events due to their delays were
quantitatively analyzed as flow rates to clarify behavioral
dynamics. In [3], the limit of the master equation was
derived from a combination of M/M/1 queuing theory and the
excluded volume effect. A remarkable result was that Lq =

ρ̃
/

(1 − ρ̃), where ρ̃ = λ
/
(1 − λ) µ. This outcome leads to

the critical point shown in (1), which can be interpreted as the
critical point reached when ρ̃< 1. This also indicates that the
excluded volume effect of the TASEP shifts the critical point
toward a lower arrival probability.
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The derivation of (1) is presented in the Appendix. For the
discrete-time open M/M/1 queuing model, µ and λ in (1) are
treated as probabilities. However, µ and λ in this study were
interpreted as the inverse of the mean of the time intervals in
discrete time, with tN = 1.

λcr =
µ

1 + µ
. (λcr > λ = µ) (1)

A plot comparing the critical point state (curve) from (1)
with that (straight line) from the conventionalM/M/1 queuing
model is shown in Fig. 4, which has the same dynamics as
in [5].

B. SAKASEGAWA APPROXIMATION
We now consider an extension of the GI/G/1 queuing
model and discuss the approximation formula presented by
Sakasegawa [16]. This formula is an extension of that derived
in an earlier study by Page [17]. Sakasegawa also provided
approximation formulas for both the GI/G/1 and GI/G/s mod-
els. It was devised by a numerical method utilizing simulation
without numerical tables, and it inherits the approximation
formula that fits well in the region of

{
c2a, c

2
s
}

≤ 1.02 [17].
The GI/G/1 queuing model adopted in this approximation
assumes that the distribution of the inverse of the mean of the
arrival and service time intervals with infinite queues is an
exponential distribution of the no-memory processes. If the
packet arrivals follow a stationary Poisson process, and the
service times follow independent and identical exponential
distributions, the single-server model agrees well with the
M/M/1 queuing model. Here, we introduce (2) and (3) as
approximations of [16]: Lq(GI/G/1) denotes the average queue
length in GI/G/1, and

{
c2a, c

2
s
}
are the coefficients of variation

(square of the variance divided by the mean) of the arrival and
processing random variables, respectively. The critical point
of this equation is when ρ = 1, because the excluded vol-
ume effect is not considered. However, factor

(
c2a + c2s

) /
2 is

assumed to represent the specific behavior of the general
distribution, which is consistent with the M/M/1 results,
as expected when

{
c2a, c

2
s
}

= 1.02.

Lq(GI/G/1)
∼=
c2a + c2s

2
·

ρ2

1 − ρ
. (2)

E
(
WGI/G/1

)
∼=
c2a + c2s

2
·

ρ

1 − ρ
τ. (3)

E
(
WGI/G/1

)
denotes the expected value of the waiting time

obtained from the approximation formula in GI/G/1 and τ is
the processing time of a node with the same meaning as 1

/
µ.

The utilization rate ρ in the queuing system in (2) and (3) is
defined as ρ = λ

/
µ.

IV. NEW INTERPRETATION OF THE EXCLUDED VOLUME
EFFECT IN THE TASEP MODEL
A. FLOW AND VELOCITY IN STEADY STATE
We adapted the critical point relation ρ̄ of the TASEP sys-
tem, which excludes the volume effect of (4), to ρ in the
same equation. In previous studies, [3], [10] proposed a

combination of TASEP theory with M/M/1 and used ρ̂ =

λ (1 + µ)
/
µ. This implies that the excluded volume effect

is related to the relation of modification, µ → µ
/

(1 + µ).
However, as µ → µ

/
(1 + µ), it does not include the condi-

tion that c2a, c
2
s ̸=1.02; Thus, adapting it to the distribution of

GI/G/1 is not appropriate. Instead, we consider the physical
implications of the TASEP and incorporate the excluded
volume effect because it causes a delay as the reciprocal of
the average processing time intervals. In other words, the
expected value of the processing time interval is ‘‘µ → µ

(the probability of a particle moving forward)’’ with the
excluded volume effect adapted to the GI/G/1 queuingmodel.
The probability of a particle moving forward is estimated
from the velocity in the TASEP model. The same equation
also corresponds to a change in the critical point owing to a
change in the mean value by the coefficient of variation to
accommodate a general distribution, which also includes the
excluded volume effect of the TASEP. This implies that the
probability of a particle being present in a given cell n in a
1D discrete lattice is obtained by the density ρ (n) [2]. The
probability that no particle exists in cell n+1 can be expressed
as 1 − ρ (n+ 1). If the transition probability is phop and the
total number of particles in the 1D discrete lattice is N , the
flow rate is obtained as follows:

Q =
(
1
/
N

) N−1∑
n=0

phopρ (n) {1 − ρ (n+ 1)}

where the first term
(
1
/
N

)
can be interpreted as the total

number of particles N because it is a constant ρmean indepen-
dent of the probability of particles remaining in n-th cell in
a steady state [2]. In other words, the flow rate Qconst. under
steady-state conditions is Qconst. = phopρmean (1 − ρmean).
If the average velocity of particle transition in a 1D lat-
tice is vmean, and from Qconst. = ρmeanvmean, we obtain the
following:

vmean = phop (1 − ρmean) .

B. INTERPRETATION OF VELOCITY AS PROBABILITY OF
PARTICLE ADVANCEMENT IN THE SYSTEM
The TASEP system in the discrete model is dimensionless,
because the smallest unit of a cell is 1. This spatial definition
is not described in units of velocity [m/s], as in hydrodynam-
ics. However, the system checks the state of the cell ahead of
each epoch and determines whether or not to proceed based
on the transition probability. An event that moves forward
by one cell per unit of time has one as the velocity. In the
TASEP model, vmean = phop (1 − ρmean) is the only event
that advances because of the excluded volume effect. Velocity
vmean is an event in which the forward cell of a particle in
a 1D lattice is vacant, and the next cell is not vacant. This
velocity is essentially the probability that the forward cell
of a particle is free and that an event occurs in which the
particle transitions the next time. This event indicates a delay
in velocity owing to the excluded volume effect, which is
expressed as a probability. This probability is defined as pe
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to be verified using the MGM. In addition, this probability is
applied to the inverse of the mean value of the time interval
of the processing time of the queuing model µ. The inverse
of the mean of the processing time interval after adapting pe
is defined as µ′, which is expressed in (4) as follows.

ρ̄ =
λc2a
µ′c2s

.(
µ′

= µpe, pe = phop (1 − ρmean)
)
. (4)

When the transition probabilities were phop = 1, q =

0, and ρmean = 0.5, the equivalent amount was pe = 0.5.
The steady-state TASEP system with forward probability
phop = 1 and q = 0 comprises 2L number of cells, where
the number of empty cells and that of particles in system L
are exactly half each. This is based on the configurational
characteristics of the particles in a 1D lattice, with the relation
J =

(
α − Jout

)
= ρv. The relation Qconst. = ρmeanvmean

represents the dynamics of the total system flow in the 1D
discrete lattice of the TASEP. J is expressed as the difference
in the outgoing flow Jout from the inverse of the mean value
of the intrusion time intervalα, which is the ‘‘net flow.’’When
the left-hand side is zero, the arrival and departure are equal,
implying v = 0 and α → αc (critical point) in a 1D lattice.
From (21) in [7], v = α −β +αβ becomes v = 2α − 1 when
β = 1, and v = 0 becomes a critical point when α =

1
/
2 and α = Jout . In this study, these physical quantities

in a 1D discrete lattice space were extended to the GI/G/1
queuing model; therefore, a gamma distribution was used for
the mean values of the time intervals between arrivals and
departures. For the gamma distribution, when the mean of the
time interval between arrivals 1

/
λc2a and departures 1

/
µc2s

was equal,
{
c2a, c

2
s
}

= 1.02 and ρ̄ = λc2a
/
µc2s = 1 was

the equivalent critical point. By replacing the inverse of the
average time interval on the processing side of the queuing
theory, µ with µ′

= µpe, we provide the queue length and
waiting time as (5) and (6). This is an approximation of the
GI/G/1 queuing model that adapts the relationship in (4),
including the excluded volume effect.

Lq(GI/G/1)ASEP
∼=
c2a + c2s

2
·

ρ̄2

1 − ρ̄
. (5)

E
(
WGI/G/1

)
ASEP

∼=
c2a + c2s

2
·

ρ̄

1 − ρ̄
τ. (6)

These are the new approximations proposed in this study.
All the phenomena in which objects of real physical size
move contain an excluded volume effect. Therefore, the pro-
posed approximation formula is expected to be useful for a
more realistic understanding of object behavior.

V. INTRODUCTION OF EXCLUDED VOLUME EFFECT INTO
THE ALFA MODEL
We extended the residual time vector of the processing time
interval of the Alfa model [22] using MGM by adapting
a delay probability corresponding to the excluded volume
effect. In addition, a model that adapted the aggregation

method to the same model was used. An overview of the
MGM and aggregation method is provided in the Appendix
(MGM and Alfa model) in this paper. This is discussed in
detail below.

A. MODIFIED MATRIX S
To assess the validity of our proposed approximation,
we introduce the excluded volume effect as the forward prob-
ability of a particle into the Alfa model, in which the forward
direction of a particle on the processing side is represented by
the matrix S. If the matrix S before the operation is identified
as S0 and the matrix after the operation as S, appropriate
modifications are performed, as shown in (7). Matrix PS is
a time transition matrix operating on a row vector β j =[
β1, β2,· · ·, βns

]
, which represents the time remaining time

until the particle departs from the system.
Probability pe expresses the amount of delay in the transi-

tion of the TASEP system with the excluded volume effect.
In general, the unit matrix I has infinite dimensions, that is,
I = I∞×∞. Matrix S0 must operate before probability pe.
This probability is the same as pe in (4).

S = peS0 + (1 − pe) I ,

PS =

[
1 0
s S

]
,

S0 =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


. (7)

The quantity at this critical point is known from previous
studies to be pe = 0.5 when the coefficients of variation{
c2a, c

2
s
}

= 1.02 and the transition probability is 1. When
pe = 0, the state transition probability indicates that the
process has not proceeded. However, when pe = 1, the result
was consistent with that of the Alfa model. Adapting (7) to
the second equation of matrix S as the transition probability
vector s, which represents the state change in the remaining
processing time, it can be transformed as follows, resulting
in (8).

s = 1 − S1

= (I − S)1

= {I − peS0 − (1 − pe) I }1

= (−peS0 + peI )1

= pe (I − S0)1. (8)

Vector 1 in (8) is a vector whose elements are all 1’s, and
the number of elements is the same as the number of columns
in matrix S, therefore, product S1 is the sum of all the column
vectors of matrix S and represents the sum of the probabilities
of all state changes represented bymatrix S; Thus, subtracting
it from 1 represents the probability of a state change not
represented by S. In other words, vector s represents the
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probability of all changes in state other than those represented
by S. When matrix S, representing the change in the state of
the remaining processing time of a particle, is changed by
pe = 0.5, the probability element pe of the longitudinal vector
element s of the transition matrix PS moves to a state with
less waiting time and a probability 0.5. Probability 1 − pe
of the same longitudinal vector element remains unchanged
with probability 1−(0.5), indicating that the overall transition
probability is reduced by a factor of pe. The modification of
the processing-time evolution introduces an effect such that
the time progress after arrival becomes pe times (or 1

/
pe

times) relative to the entire period.
The above equations were adapted to the MGM algorithm

to compute the model evaluation as follows:
i. Initialization
ii. Service and arrival distribution settings
iii. Build state transition matrices S, T
iv. Iterate and determine convergence of matrix R
v. Eigenvalue analysis of the transition matrix P that is

stationary
vi. Obtaining the steady state vector
vii. Evaluating system performance (e.g., computing Lq)

VI. NUMERICAL VARIDATIONS AND LIMITATION
In this section, we summarize the validation results used to
evaluate the approximation proposed in (5). The Alfa model,
adapted to the excluded volume effect, was used for the
validation. Sakasegawa’s approximation (2) for parameters{
c2a, c

2
s
}
less than 1.02 is comprehensively fitted with GI/G/1

and exhibits high agreement [16]. It is also known to con-
sider the dynamics as an M/M/1 queuing system when the
parameters

{
c2a, c

2
s
}
in approximation (2) are equal to 1.02.

The dynamics of the M/M/1 queuing system adapting to the
excluded volume effect have also been understood in previous
studies [3]. Thus, we verified the above properties using
the proposed approximation (5). Additionally, the GI/PH/c
queuing model was tested using the aggregation method with
a hyper-gamma distribution. Practical results are obtained for
the GI/G/1 queuing system by adapting it to the excluded
volume effect.

A. VALIDATION WITH M/M/1 QUEUING SYSTEM WITH
EXCLUDED VOLUME EFFECT
Fig. 5 shows the validation results of the M/M/1 queuing
system with the excluded volume effect and the Alfa model
with the adapted excluded volume effect.

These results exhibit a high level of agreement between the
proposed approximation formula (5) and the Alfa model with
the adapted excluded volume effect under the condition of{
c2a, c

2
s
}

= 1.02. The mean absolute value of the percentage
of the overall difference was 4.70360%.

B. DETAILED VERIFICATION BY GI/G/1 QUEUING SYSTEM
WITH / WITHOUT EXCLUDED VOLUME EFFECT
We plot the results of the validation under limited conditions
and the calculation of the proposed approximation (5) for

FIGURE 5. Comparison of Lq(M/M/1)ASEP between the approximation (5)
and Alfa model with the adapted excluded volume effect under the
conditions

{
c2
a,c2

s

}
= 1.02,dt = 0.1, pe = 0.5 (Vertical axis:

Lq(M/M/1)ASEP, horizontal axis: ρ, solid curve: from (5), square dots: Alfa
model with the adapted excluded volume effect).

FIGURE 6. Comparison of Lq(GI/G/1)ASEP between the proposed
approximation formula (5) and the Alfa model under the conditions{

c2
a , c2

s
}

<1.02, pe = 0.5. (From left figure to right: (c2
s = 0.32

ρ = 0.16),
(

c2
s = 0.62ρ = 0.25

)
, and

(
c2
s = 0.82ρ = 0.42

)
, respectively.

Vertical axis: Lq(GI/G/1)ASEP, horizontal axis: c2
a , both variables, solid

curve: from (5), square dots: Alfa model).

the Alfa model adapted to the excluded volume effect in
Fig. 6. For comparison with existing models, the perfor-
mance evaluation against Sakasegawa’s approximation (2)
for the Alfa model without adaptation to the excluded volume
effect (inthiscase :pe = 1.0) is also listed in Table 3 in the
Appendix. Note that some of the results of the performance
evaluation of the Alfa model without the excluded volume
effect using Sakasegawa’s approximation (2) have been in
published [22], [27]. All the detailed results are summa-
rized in the Appendix of this paper in Table 3 Performance
Evaluations of (2) and (5) (case:

{
c2a, c

2
s
}

≤ 1.02, pe =

{0.5, 1.0} , dt = 0.1).

1) CASE:
{
c2
a , c2

s

}
< 1.02, pe = 0.5 USING ALFA MODEL

The critical point shifted as the coefficient of variation
changed. However, as shown in Fig. 6, for

{
c2a, c

2
s
}

<

1.02, pe = 0.5, the positions of the critical points and
the values of Lq(GI/G/1)ASEP were consistent between the
approximate formula and extended Alfa model, with a dif-
ference of 0.18 [%]. Although the degree of agreement
varies depending on the input parameter regions

{
c2a, c

2
s
}
,

this confirms that the model closely aligns with the results
calculated under the single-server conditions in (5) and (6),
even when the excluded volume effect is applied to the Alfa
model.
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TABLE 1. GI/PH/c queuing system with excluded volume effect.

2) CASE:
{
c2
a , c2

s

}
≤ 1.22, pe = 0.5 using Alfa model

For
{
c2a, c

2
s
}

≤ 1.22, the gamma distribution has an excep-
tionally long slope because the mean value is smaller and the
coefficient of variation is larger. This is considered to be an
issue of computational resources and results in good agree-
ment with the approximation formula that can be obtained if
the numerical calculations retain sufficient accuracy. Because
an exceptionally large array size is required to accurately
represent such a distribution, the limited range of

{
c2a, c

2
s
}

≤

1.22 is presented here for validation. As shown in Fig. 7, the
dependence of Lq(GI/G/1)ASEP on

{
c2a, c

2
s
}
was qualitatively

well reproduced.

FIGURE 7. When c2
a =

{
0.52 ∼ 1.22

}
, c2

s = 1.02, ρ = 0.25, dt =
{
0.1, 1

}
,

andpe = 0.5: Comparison of Lq(GI/G/1)ASEP between (5) and the Alfa
model (Vertical axis: Lq(GI/G/1)ASEP, horizontal axis: c2

a , solid curve:
from (5), dots: from Alfa model).

C. VALIDATION WITH GI/PH/C QUEUING SYSTEM WITH
EXCLUDED VOLUME EFFECT
Table 1 summarizes the results of the experimental model
verification in which the excluded volume effect was adapted
to the aggregated Alfa model. Under conditions with small
values of c2a, c

2
s , and ρ, as the number of servers increases,

the array size tends to increase, and the diff% also tends to
increase.

FIGURE 8. Required array sizes dt =
{
0.01, 0.1, 1

}
with each{

c2
a , c2

s
}

≤ 22 and ρ ≤ 1. x-axis: c2
a , c2

s , Y-axis: Riemann sum, Z-axis:
array size. Left dt = 0.01, center dt = 0.1, and right dt = 1.

D. DISCUSSIONS: LIMITATIONS AND ASSUMPTIONS
As summarized in Table 1, diff%∗∗ (% conversion of the abso-
lute difference between (5) and the Alfa model) is strongly
influenced by the number of arrays, squared value of the
coefficient of variation, and number of servers. In particular,
the array size tends to increase under small values of the
coefficient of variation and small values of ρ. Furthermore,
when the number of servers increases, the array size must be
increased proportionally, following the relation (number of
servers) × (array size). The typical cloud computing envi-
ronment we have contracted with supports of approximately
600 - 700 array sizes. At this time, validating beyond this is
impractical.

Figure 8 shows the required array sizes for
{
c2a, c

2
s
}

≤ 2,
and ρ ≤ 1, with dt = {0.01, 0.1, 1}. The optimal array size
is predicted using the array size, where the Riemann sum is
equals to one for the gamma distribution. Most cases in which
the Riemann sum equals 1 occur with dt = 0.01, where array
sizes often exceed 700. Therefore, dt = 0.1 is selected for
practical verification.

VII. RESULTS AND CONCLUSION
In this study, we propose the Alfa model, which integrates
the excluded volume effect in the TASEP model into the
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TABLE 2. List of state transitions with master equations.

numerical calculations for a discrete-time GI/G/1 system
based on the MGM. This model was devised by interpreting
the delay in the progression of the matrix as probabil-
ity. This was subsequently incorporated into the numerical
calculations for the GI/G/1 queue. In addition, we derive
an approximation formula (5) to express the queue length
Lq(GI/G/1)ASEP. For validation, we performed numerical cal-
culations for the queue length Lq(GI/G/1)ASEP in the GI/G/1
model with the excluded volume effect for

{
c2a, c

2
s
}

≤ 1.22.
The results of the proposed approximation formula and the
extended Alfa model exhibited good agreement within a
limited range of

{
c2a, c

2
s
}

values and their combinations.
Moreover, the verification of GI/PH/c using the aggregation
method with the Alfa model revealed high validity ratings,
although within a limited range of s ≤ 4. Verification across
multiple servers is challenging because of insufficient com-
puting resources. However, because the MGM uses the same
algorithm, the validity of the calculated results can be veri-
fied. The extended Alfa model is a highly versatile numerical
method suitable for detailed analyses across a broad range
of systems. The proposed method for handling the excluded
volume effect is considered effective in introducing this effect
into general GI/G/1 systems.

The proposed approximation formula presented herein,
along with the use of the Alfa model adapted to the excluded
volume effect are expected to be applicable to models
that incorporate physical concepts. The approximation for-
mula is based on the lag between dynamic phenomena and
generally distributed stochastic events. This implies that
it is possible to model mixed physical phenomena. For
instance, we consider complex phenomena that combine
multiple processes and factors (e.g., multiphase fluid flow,
mass transport in cells, diffusion of particles in liquids,
and arrival time intervals of entire systems with random
inputs from different sources). An approach employing a
general distribution should generate realistic predictions.
We expect that this will advance the elucidation of physical

phenomena that cannot be represented using conventional
models.

APPENDIX
A. DETAILS OF THE CALCULATION FOR (1)
From the literature [3], [10], to derive (1), it is necessary to
determine the state transitions, as listed in Table 2, and obtain
the recurrence equation.
PA (1): State A is the probability of a stationary state with

the receptor occupied by one particle.
PA (n): State A is the probability of stationary states with

the receptor occupied by one particle and n particles in queue.
(n ≥ 2)
PB (1): State B is the probability of stationary states with

a vacant receptor, and a state in which one particle occupies
one cell before the receptor.
PB (n): State B is the probability of a stationary state with

a vacant receptor and n particles in queue. (n ≥ 1)
P (0): Zero-state is the probability of a stationary state with

no particles in the queue.
PB (0): State B is the probability of stationary states with a

vacant receptor equivalent to PB (0) = P (0).
n: Number of particles in the deterministic movement in

the queue; two vacant cells in the queue never appear in the
stationary state. Thus, 2n states were defined with n particles
in the queue.

The recurrence formula was derived and rearranged to
obtain probability distributions P (0) ,PA (n) , and PB (n)
(See Appendix 5. D.1 in [10] for derivation). ρ = λ

/
µ.

PA (n) =

{
1 − µ + λµ

(1 − λ)2
ρ

}n−1
λ

(1 − λ) µ
P (0) . (n ≥ 1)

PB (n) =

{
1 − µ + λµ

(1 − λ)2
ρ

}n−1
λ2

(1 − λ)2 µ
P (0) . (n ≥ 1)

P (0) = 1 −
ρ

1 − λ
.
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In that study, the probability distribution PL (ℓ)with queue
length ℓ was defined as follows:

ρ̃ = λ
/
µ̃,

µ̃ = (1 − λ) µ,

PL (ℓ) = (1 − ρ̃) ρ̃ℓ. (ℓ ≥ 0)

Referring to [10, formula means Lq (5.66) and (5.20),
respectively] and obtain the following:

Ls =

∑∞

l=0
ℓPL (ℓ) ,

and,

PL (ℓ) = (1 − ρ̃) ρ̃ℓ. (l ≥ 0)

Apply PL (ℓ) to Lq as follows:

Lq =

∞∑
l=0

(ℓ − 1)PL (l)

=

∞∑
l=0

(ℓ − 1) (1 − ρ̃) ρ̃l .

Apply ℓ = 0 to ∞, and subtract recurrences.
Then,

Lq = (1 − ρ̃) ρ̃2 d
d ρ̃

∞∑
l=0

ρ̃ℓ−1

=
ρ̃2

1 − ρ̃
.

Check the denominator in Lq. The critical line is 1− ρ̃ = 0
and then,

ρ̃ =
λ

µ̃

=
λ

(1 − λ) µ

= 1.

Obtaining (1), where λcr is the critical value of λ. This
satisfies the λcr > λ relationship when the stationary state
of the queue is under an excluded volume effect with parallel
update states. In this regard, this relationship is important.

λcr =
µ

1 + µ
.

(λcr < µ for 0 < µ ≤ 1)

B. MGM [19] AND ALFA MODEL [22]
The Alfa model is a geometric matrix for discrete-time
GI/G/1 queuing systems. The state of the system at time n is
{Ln,Kn, Jn} or components (i, k, j), which are a combination
of the number of particles in system Ln at the time remaining
until the next particle arrives Kn and the time remaining until
the particle currently being processed exits Jn. The set of
states considered by the system is as follows:

1={(i, k, j) ;i=0, 1, 2, · · ·, k=1, 2, · · ·, nt , j=1, 2, · · ·, ns}

(when i = 0, j = 0) .

The state of the system at time n is defined as the row vector
x = [x0, x1, x2,· · ·] ,(i = {0, 1, 2, · · ·}). Let the state of the
system at time n be the number of particles in system Ln,
the time remaining until the next particle arrives Kn, the time
remaining until the particle currently being processed leaves
Jn, and let xi be the state vector. The state components (i, k, j)
of each particle represent the probability that the particle will
take the state defined by the component, where i = L denotes
the number of particles in the system, k = αk denotes the state
probability of the remaining time until the particle arrives,
and j = β j denotes the remaining processing time. For the
transition matrix PA representing the time evolution of state
vector xi, representing the state change of the arrival time of
the particle, row vectorα =

[
α1, α2,· · ·, αnt

]
representing the

arrival time interval distribution representing the remaining
time until the particle arrives, and matrix T representing
the time-state transition, the arrival can be represented as
follows (the process side has the same structure but different
parameters):

T =

[
0nt−1 0
Int−1 0Tnt−1

]

=


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

 ,

t = 1 − T1,

PA =

[
1 0
t T

]

=


1 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

 .

The vector representing the state of the system is defined as
x[0]A = [0 0 0 1 0], where each component (i, k, j) represents
the probability of being in state (i, k, j) and the time evolution
of the system is determined as x[1]A = x[0]A PA. Vector π

represents the steady state, satisfies π = πP, and its state
is computed following the MGM computation rules. The
transition matrix P representing the change in state x of the
system is expressed as follows:

P =



B C 0 0 · · ·

E A1 A0 0 · · ·

0 A2 A1 A0
. . .

0 0 A2 A1
. . .

...
...

. . .
. . .

. . .


,

where,

B = T ,
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C = β⊗ (tα) ,

E = s⊗T ,

A0 = S⊗ (tα) ,

A1 = (sβ) ⊗ (tα) + S⊗T ,

A2 = (s⊗β) ⊗T .

By dividing vector π into blocks by the number of particles
in the system, π = [π0, π1, π2, π3,· · ·], and introducing it
into the rate matrix R (see below), we obtain the following:

R = A0 + RA1 + R2A2 (∀π i) ,

R =


R1 R2 · · · Rnt
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 .

Given the following relation:

π i = π i−1A0 + π iA1 + π i+1A2
(i ≥ 2, i = {0, 1 · · ·})

π i+1 = π iR,

(i ≥ 1,R = constant)

We can write as follows:

π i−1R = π i−1A0 + π i−1RA1 + π i−1R2A2.

Here, by computing matrix R, we can write as follows:

R1 = a1S + a1R1 (sβ) + R2S + R1R2 (sβ) ,

· · · ,

Rnt = antS + antR1 (sβ) .

Acting on vector π = [π0, π1, π2, π3,· · ·] by matrix R,
we obtain the following:

π2 = π1R,

π0 = π0B+ π1E,

π1 = π0C + π1 (A1 + RA2) ,

[π0π1] = [π0π1]
[
B C
E A1 + RA2

]
,

(standardized condition:π1 = 1)

Then,

1 = π1

=

∑∞

i=0
π i1

= π01 + π1 (I − R)−1 1,

π i+1 = π iR.

(t ≥ 1,R = constant)

The obtained vector π = [π0, π1, π2, π3,· · ·] is adapted to
the following: µL =

∑
∞

k=0 kπk1

= π1 (1 − R)−2 1.

The average queue length is µL [21].

C. AGGREGATION METHOD IN MGM [22]
The Alfa model [22] defines the time interval for processing
GI/G/s queuing systems by superimposing all independent
distributions of multiple servers in the processing system of
the model using the aggregation method (hereinafter it is
described as the aggregated Alfa model). This model can be
interpreted as a hyper-Erlang distribution if the shape param-
eter α of the entire processing distribution superimposed by
the aggregation method is an integer value (α ∈ Z), and as a
hyper-exponential distribution if α = 1. This distribution is
known to be a distribution that can comprehensively repro-
duce the dynamics of the superimposed gamma distribution
(hereinafter referred to as the hyper-Gamma distribution)
[22]. Hereinafter, the probability density function (PDF) with
shape parameter α and parameter λ is denoted as g (x;α, λ)

and can be described as a distribution in which multiple PDFs
are superimposed with the weight of probability pi of taking
each distribution, where i denotes the i-th receptor in the
aggregation model (i ∈ Z+).

fg (x) =

n∑
i=1

pig (x; αi, λi) ,

g (x; α, λ) =
λαxα−1

0 (α)
e−λx ,

0 (α) =

∫
∞

0
e−xxα−1dx,

0 (n) = (n− 1)!, (α = n ∈ Z+) .

The entire system can be interpreted as a model that
adopts a time interval according to a single distribution,
by aggregating the distributions of each server. In a previous
study [23], the coefficient of variation of the processing time
of a G/G/1 queue was calculated as follows: c2s = σ 2

s µ2. σs
denotes the variance in the distribution of the processing time
intervals. This relationship was adapted for superposition of
the processing-side variation coefficient values of the aggre-
gated Alfa model. The calculation system for queue length
Lq(GI/PH/c) in the aggregation model is as follows:

Lq(GI/PH/c) =

∞∑
k=1

(k − 1) πk1

= 0π11 + 1π21 + 2π31 + · · ·

= π1R
(
I + 2R+ 3R3 + · · ·

)
1

= π1R (I − R)−2 1,

and

Lq(GI/PH/c) =

∑∞

k=s
(k − sρ) πk1

= π1Rsρ (I − R)−2 1.

The Lq(GI/PH/c) calculation system in the aggregated Alfa
model considers the dependence of traffic intensity in the
queuing system and estimates the average number of par-
ticles processed at the receptors by sρ [15]. The term Rsρ
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TABLE 3. Performance evaluations of (2) and (5) (case:
{

c2
a, c2

s

}
≤ 1.02, pe =

{
0.5, 1.0

}
, dt = 0.1) [22], [27].

in the same equation yields complex results. As a coun-
termeasure, for a server number s, the following equation
Lq(m) =

∑
∞

k=s (k − m) πk1 = π1Rm (I − R)−2 1 is solved
for each integer valuem in the neighborhood, and the number
of particles present Lq(GI/PH/c) is obtained by interpolating
both.
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