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ABSTRACT Scene graph generation (SGG) aims to detect the relationships of objects in an image. Recently,
it has been extended to open-set SGG, which also considers unknown objects unseen in a training phase
and thereby enables various applications in complex real-world scenes. However, previous research on
open-set SGG addressed unknown object detection simply by thresholding confidence scores from object
classification trained only for known objects. In reality, these scores become low for both unknown objects
and failure detections of the background since they look different from known objects. Therefore, the
current state of the art of open-set SGG cannot distinguish unknown objects from backgrounds, thereby
overlooking their relationships. In this paper, we propose a novel relationship-aware unknown detection
technique. Our main idea is to exploit the fact that only foreground regions containing objects can have
relationships with other regions. To this end, we define a Bayesian model on objects and relationships
and derive an algorithm of variational inference, which propagates foregroundness between regions and
region pairs to assign foreground regions that have more related objects and relationships. As the results of
extensive experiments using a public benchmark for open-set SGG, the proposed technique outperformed
previous methods, including the state-of-the-art thresholding technique, in the standard OSGDet metrics
regardless of the SGG models with which the proposed technique was combined (e.g., +0.61 improvement
in OSGDet@100 with the VCTree model).

INDEX TERMS Open-set, object detection, scene graph generation.

I. INTRODUCTION
Scene graph generation (SGG) is a problem of detecting the
relationships of objects in an image. It enables a detailed
understanding of complex scenes and has a wide range
of applications, such as image retrieval, visual question
answering, and robot control [1]. Recently, it has been
extended to a new problem called open-set SGG [2], which
also aims to detect relationships involving unknown objects
whose instances are absent in training images. Owing to
the consideration of unknown objects, open-set SGG is
more robust than conventional closed-set SGG in complex
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real-world scenes and thus important for practical SGG
applications.

The previous research on open-set SGG only examined
baseline methods that detect unknown objects by simple
thresholding of confidence scores from object classification,
which is trained only for known objects [2]. In reality,
these scores become low for image regions that contain not
only unknown objects but also failure detections from the
background without any objects since both of them tend to
have different image features from known objects. Therefore,
the current state of the art of open-set SGG cannot distinguish
unknown objects and backgrounds, thereby failing to detect
the relationships involving the unknown objects.

In this paper, we propose a novel relationship-aware
unknown detection technique, which fully makes use of
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SGG-specific relationship information. Our key observation
is that backgrounds cannot have relationships; thus, our idea
is to accept regions that are more probably related to other
regions as foregrounds and reject others as failure detections
from the background. Specifically, we build a Bayesian
model that describes the mutual dependencies of objects
and relationships in each image and derive a majorization-
minimization (MM) algorithm of variational inference. This
algorithm iteratively refines the probabilities of known
classes produced by an arbitrary closed-set SGG model to
separate known and unknown objects in foregrounds while
assigning regions with more related objects and relationships
to foregrounds. This principle enables the distinction of
unknown objects from failure detections of the background,
and thereby, the correct detection of their relationships.
The results of our extensive experiments using various
SGG models confirm the effectiveness of the proposed
unknown detection technique, which can detect relationships
involving unknown objects that previous techniques cannot.
The proposed technique is also model-agnostic, i.e., in
principle it can be combined with an arbitrary closed-set SGG
model, thereby converting the model into an effective open-
set method, as demonstrated by our experimental results.

The major contributions of this work are as follows:
• We present the first relationships-aware methodol-
ogy for unknown object detection, which we derive
by making full use of the mathematically-principled
methodology of variational Bayesian inference.

• On the basis of this methodology, we develop the novel
technique for open-set SGG, which is model-agnostic
(combinable with any SGG models in principle) and
more effective than previous techniques in detecting
relationships of unknown objects, being able to distin-
guish unknown objects from backgrounds, as verified by
our extensive experiments.

• From a practical perspective, the proposed technique can
detect the relationships of unknown objects (in particu-
lar, objects dissimilar to known objects) that could not
be detected previously, as will be exemplified in the
experiments. This benefits various applications based
on open-set SGG that require detailed understanding of
complex scenes in the real world, where the presence of
unknown objects are inevitable.

The rest of this paper is organized as follows. First,
in Section II, we review related studies on closed- and
open-set SGG (Section II-A), as well as other open-set
problems (Section II-B). Then, in Section III, we describe
the problem formulation (Section III-A) and the proposed
technique for open-set SGG, which consists of a Bayesian
model (Section III-B) and an iterative algorithm of variational
inference on the model (Section III-C). In Section IV, we
present the setting (Section IV-A) and results (Section IV-B)
of our extensive experiments on open-set SGG, where
we evaluated the proposed technique in comparison with
previous techniques combined with various SGG models,
along with an ablation study to analyze the details of the

proposed technique (Section IV-C). Finally, we summarize
this paper with perspectives on future work in Section V.

II. RELATED WORK
In the following, we first review existing studies on SGG
in Section II-A. Specifically, we begin with studies on
closed-set SGG, e.g., variousmodels and learning techniques.
Then, we continue to discuss its extension to open-set SGG,
focusing on its standard evaluation protocol and previous
methodology, upon which we build this study. Furthermore,
we review studies on similar open-set problems, e.g., open-set
object detection in Section II-B, clarifying their differences
from open-set SGG addressed in this paper.

A. SCENE GRAPH GENERATION
SGG is an extension of image recognition (image-wise clas-
sification) and object detection (localization of object regions
followed by region-wise classification). Various SGGmodels
based on deep neural networks have been proposed [3], [4],
[5], [6], [7], [8], [9], [10] to detect relationships along with
objects. SGG-specific learning techniques such as special
losses and unbiasing strategies [7], [11], [12], [13], [14], [15],
along with techniques that enhances the labels in training
datasets themselves [16], have also been developed. In this
study, we focus on unknown objects in open-set SGG and
apply the proposed unknown detection technique to various
representative SGG models; thereby, we show the generality
of our model-agnostic unknown detection technique, while
in principle it is applicable to any models, including those
not considered in this paper. Meanwhile, the SGG-specific
learning techniques mainly focus on relationships only, thus
being orthogonal to this study. Since the proposed technique
only modifies the outputs from an already-trained SGG
model, it would be straightforward to combine many such
learning techniques, although it is out of the scope of this
study.

The only previous study on open-set SGG [2] focused
on formulating the new open-set problem, proposing an
evaluation protocol, and presenting initial experimental
results. Consequently, it compared baseline methods built by
combining closed-set SGG models with a simple unknown
detection technique based on thresholding of output prob-
abilities from object classification. While such a technique
has extensively been used in open-set classification problems
as a strong baseline [17], we must accept foregrounds
only and reject backgrounds in SGG. Consequently, the
effectiveness of the previous technique is limited since it
tends to confuse unknown objects and backgrounds due to
their visual difference from known objects. In this paper,
we propose a novel SGG-specific relationship-aware tech-
nique for unknown object detection, which also uses output
probabilities from relationship classification. To the best of
our knowledge, this is the first technique that can exploit rich
information from the relationship classification for unknown
object detection. By making full use of relationships along
with objects, the proposed inference technique is able to
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distinguish unknown objects from backgrounds and thereby
outperform the previous thresholding technique that can
make use of objects only. In addition, we perform extensive
experiments using various SGG models, including but not
limited to all those considered in the previous study. Note
that open-set SGG is not to be confusedwith open-vocabulary
SGG [18], which involves classifying objects into individual
unseen classes and thus requires additional information to
associate them with seen classes, as in zero-shot learning.

B. OPEN-SET DETECTION
Open-set classification has recently been extended to
open-set object detection [19], [20], which assumes multiple
objects in each image. Technically, unknown detection in
open-set object detection only considers objects but not
their relationships, thus being simpler than the proposed
relationship-aware technique.

Overall, the state-of-the-art methods for open-set tasks
(including open-set SGG [2]) lack the ability to detect
unknown objects by exploiting the rich context information
in their relationships. To fill this gap, we propose a
relationship-aware technique of unknown object detection
for the first time, thereby realizing effective detection of
relationships involving unknown objects.

III. RELATIONSHIP-AWARE UNKNOWN OBJECT
DETECTION
A. OPEN-SET SCENE GRAPH GENERATION
We first review the problem setting of open-set SGG [2].
For each image, we localize each image region i ∈ J that
may contain an object and classify it into an object class in
K ∪ {u, b}, where J = {1, . . . , n} is the set of the indices
for n regions, K is the set of known object classes, u is an
unknown object class, and b is a background class, which
indicates the absence of any object in the region. We also
classify each region pair ij ∈ P into a relationship class
in F ∪ {b}, where P = {ij}i,j∈J s.t. i̸=j is the set of the
indices for n(n − 1) region pairs, F is the set of foreground
relationship classes, and the background class b indicates the
absence of any relationship in the pair. Since relationships
are represented by subject-predicate-object word triplets [3],
we distinguish the bidirectional combinations of two regions
as different pairs (ij and ji) but ignore the self-loop pair of the
same region (ii or jj), hence the definition of P .
To solve this problem, we utilize a closed-set SGG model

that takes the image and returns the probabilities of the
object classes for each region i and those of the relationship
classes for each region pair ij. In particular, we use the known
object and foreground relationship probabilities, denoted by
Poi and Prij, respectively, where o ∈ K and r ∈ F .
In addition, the model selects one known object class ci ∈ K
and one foreground relationship class cij ∈ F , which are
basically the maximum-score classes after resolving region
overlapping [6], thereby enabling classification. However, the
unknown object class u is not included in these object classes.

FIGURE 1. Graphical-model representation of the Bayesian model of the
proposed inference. Gray and white circles denote the observed and
hidden variables. Oi ∈ {k, b} and oi ∈ {k, u, b} are object classes input
from a model and output of the inference, respectively, and rij ∈ {f , b} is
the relationship class from the model, where k , u, f , and b are the known,
unknown, foreground, and background classes, respectively; n and
n(n − 1) are the numbers of regions and their pairs, respectively.

This is because the model cannot see unknown objects in
training by the definition of the open-set problem [17] and
thus cannot tell if each region belongs to the unknown
class. To realize the open-set SGG, we invoke an unknown
detection technique, whose input from the SGG model is
both of the known object and foreground relationship class
probabilities for each region and region pair, along with the
selected known object class for each region, while the output
is a known or unknown class and its foregroundness ]core
for each region. As with typical open-set techniques [17],
this unknown detection is performed in testing only, thereby
being training-free except for hyperparameter tuning by
validation. Note that the training-free nature of the proposed
technique also eliminate the risk of overfitting to training
data. In addition, the hyperparameter tuning does not overfit
to the types of relationships in validation data since the
proposed technique does not distinguish between individual
foreground relationship classes in F but only considers
whether each pair is foreground or background, owing to our
model design in Section III-B.
In the rest of this section, we present the proposed

inference-based unknown detection technique, which can
distinguish whether each region belongs to the unknown
object or background class, unlike the previous thresholding
technique [2].

B. MODEL
We build a Bayesian model to describe the mutual depen-
dencies of the objects and relationships in the image while
constraining background regions without objects not to have
relationships with other regions. We embed this relationship
constraint as a distribution in our Bayesian model, which
makes known and unknown object probabilities higher for
regions with more related objects and relationships, thereby
accepting foregrounds and rejecting backgrounds. Note that
this Bayesian model is different from those used in the
previous Bayesian approaches to closed-set SGG, which did
not consider unknown objects but had other purposes such as
model design [5] and unbiasing [12]. We depict this model
graphically in Fig. 1.

1) OBSERVED DISTRIBUTIONS
a: OBSERVED OBJECT DISTRIBUTION
To reduce the amount of information to be estimated, we
do not distinguish individual known object classes in K and

VOLUME 12, 2024 122515



M. Sonogashira et al.: Relationship-Aware Unknown Object Detection for Open-Set SGG

merge them into single known-objects class k . Note that
we use this class only in the proposed inference and will
restore individual known classes in the finalization described
in Section III-C2. Let O\u

= {k, b} be the set of the
object classes other than the unknown u, whose probability
is not provided by the closed-set SGG model since it can
classify objects into known and background classes only.
After summing the input probabilities over K into the single
probability of k , we have the observed object distribution
p(Oi) for each region i, where Oi ∈ O\u, p(Oi = k) =∑

o∈K P
o
i , and p(Oi = b) = 1 − p(Oi = k). We assume

the independence between regions, i.e., p(Oij) = p(Oi)p(Oj),
where we have introduced shorthand notation for paired
classes Oij = {Oi,Oj}.

b: OBSERVED RELATIONSHIP DISTRIBUTION
Similarly to the known object classes, we do not distinguish
individual foreground relationship classes in F and merge
them into single foreground class f . Let R = {f , b} be
the set of the relationship classes. After summing the input
probabilities over F into the single probability of f , we have
the observed relationship distribution p(rij) for each region
pair ij, where rij ∈ R, p(rij = f ) =

∑
r∈F P

r
ij, and

p(rij = b) = 1 − p(rij = f ).

2) LATENT DISTRIBUTIONS
a: LATENT OBJECT DISTRIBUTION
Let O = {k, u, b} be the set of all object classes, including
the unknown u. To obtain the separate probabilities of these
classes, we estimate latent object distribution q(oi) for each
region i, where oi ∈ O. As with the observed distributions,
we assume the independence between regions, i.e., q(oij) =

q(oi)q(oj), where oij = {oi, oj}.

b: CONDITIONAL OBJECT DISTRIBUTION
To associate the observed Oi and the latent object class oi,
we also define conditional object distribution q(Oi|oi) for
each region i. Again, we assume the independence between
regions, i.e., q(Oij|oij) = q(Oi|oi)q(Oj|oj).

c: LATENT RELATIONSHIP DISTRIBUTION
To associate objects with relationships and impose the
relationship constraint, we introduce conditional relationship
distribution q(rij|oij) for each region pair ij, which is
conditioned on the latent object classes of regions i and j,
defined as follows:

q(rij|oij) =

{
qf (rij) if oi, oj ∈ Of ,

[rij = b] otherwise,
(1)

where rij ∈ R as in the observed distribution, qf (rij) is
the latent relationship distribution that is activated when
both objects are foreground, Of

= {k, u} is the set of
the foreground object classes, and brackets [·] denotes the
logical function whose value is one if its argument is true and
zero otherwise. This definition states that the pair is always

background with probability one if one or both of the two
regions are background. Thus, this distribution represents our
constraint that non-object regions never have relationships
in a Bayesian way. Meanwhile, since we have no prior
knowledge on the case where both regions are foreground,
we estimate qf (rij).

C. INFERENCE
To estimate the latent distributions, we consider to minimize
the Kullback–Leibler (KL) divergence [21] between the
observed and latent marginal relationship distributions, i.e.,
Lorig =

∑
ij∈P KL

(
q(rij)

∥∥p(rij)), where we consider the
divergence for each region pair and take their sum over all
region pairs.While wemay obtain the latent distribution q(rij)
by marginalizing the product of the latent distributions in
our model, it is not obvious how to optimize the nonlinear
objective function efficiently. Furthermore, this divergence
contains no observed distributions in our model other than
the relationship distribution p(rij), preventing us frommaking
use of the observed object distribution p(Oij).

Instead of directly minimizing the original KL divergence,
we derive its upper bound as follows:

Lorig =

∑
ij∈P

Eq(rij)

[
ln
q(rij)
p(rij)

]

=

∑
ij∈P

Eq(rij,Oij,oij)

[
ln
q(rij)
p(rij)

]
(2)

=

∑
ij∈P

Eq(rij,Oij,oij)

[
ln

q(rij,Oij, oij)
p(rij)p(Oij, oij|rij)

− ln
q(rij,Oij, oij)

q(rij)p(Oij, oij|rij)

]
(3)

≤

∑
ij∈P

KL
(
q(rij,Oij, oij)

∥∥p(rij,Oij, oij)) = L, (4)

where E · [· · · ] denotes the expectation with respect to the
distribution in its subscript. Here, we have applied Gibbs’
inequality (i.e., the nonnegativity of the KL divergence) [21]
to the second term in Eq. (3) and also defined the observed
joint distribution in Eq. (4) as the product of the observed
distributions in our model and auxiliary object distribution
p(oij|Oij, rij):

p(rij,Oij, oij) = p(rij)p(Oij)p(oij|Oij, rij). (5)

Then, we ensure that the bound is tight, i.e., close to the
original KL divergence, by optimizing the bound with respect
to the auxiliary distribution. Meanwhile, the latent joint
distribution is simply the product of all latent distributions
in our model:

q(rij,Oij, oij) = q(rij|oij)q(Oij|oij)q(oij), (6)

where we assume that the relationship class rij is condition-
ally independent from the observed object classes Oij given
the corresponding latent object classes oij. This can be seen
as a MM algorithm [22], which optimizes a parameterized
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surrogate function, although the general methodology ofMM
algorithms does not assume a specific problem. Specifically,
we newly designed the Bayesian model (Section III-B),
the original objective function (Eq. (2)) and the auxiliary
distributions (Eq. (3)) for our problem of open-set SGG;
hence, the resulting objective (Eq. (4)) and their solutions are
also novel. In the following, we present the optimal solution
for each distribution.

a: AUXILIARY OBJECT DISTRIBUTION
To tighten the bound L, we minimize it with respect to
the auxiliary distribution p(oij|rij,Oij) for each ij. This is
achieved when the corresponding KL term in Eq. (4) is zero,
which holds if its arguments are equal [21]. Equating the
right-hand sides of Eqs. (5) and (6), we obtain the following
proportionality:

p(oij|rij,Oij) ∝ q(rij|oij)q(Oij|oij)q(oij), (7)

where we have ignored constant factors with respect to oij.
By normalizing the right-hand side with respect to oij (either
numerically or analytically), we obtain the optimal solution
of p(oij|Oij, rij).

b: LATENT RELATIONSHIP DISTRIBUTION
For each ij, we extract the terms depending on qf (rij) in the
right-hand side of Eq. (4) after substituting Eqs. (5) and (6):

L =

∑
oi,oj∈Of

q(oij) Eqf (rij)q(Oij|oij)

×

[
ln

qf (rij)
p(rij)p(oij|rij,Oij)

]
+ const. (8)

=

∑
oi,oj∈Of

q(oij) Eqf (rij)

[
ln

qf (rij)
p(rij)v(rij)

]
+ const., (9)

where

v(rij) = exp
(
Eq(Oij|oij)

[
ln p(oij|rij,Oij)

])
, (10)

and in the sum of Eq. (8) we have used Eq. (1), which states
that qf (rij) appears only when oi, oj ∈ Of . Noticing that
the log-expectation term is a KL divergence except for the
unnormalized denominator, we can minimize the right-hand
side of Eq. (9) by making the numerator and denominator
proportional:

qf (rij) ∝ p(rij)v(rij). (11)

By normalizing the right-hand side with respect to rij, we
obtain the optimal solution of qf (rij).

c: LATENT OBJECT DISTRIBUTIONS
For each i, we optimize L with respect to q(oi) and q(Oi|oi)
simultaneously. First, we extract the terms depending on them
in the right-hand side of Eq. (4) after substituting Eqs. (5)
and (6):

L = Eq(Oi|oi)q(oi)

[ ∑
j∈J\i

Eq(Oj|oj)q(oj)

[ ∑
kl∈Pij

Eq(rkl |okl )

×

[
ln

q(rkl |okl)q(Oi|oi)q(oi)
p(rkl)p(Oi)p(okl |Okl, rkl)

]]]
+ const. (12)

= 2(n− 1)Eq(Oi|oi)q(oi)

×

[
ln

q(Oi|oi)q(oi)
p(Oi)w(Oi, oi)

]
+ const., (13)

where

[b]w(Oi, oi)

= exp
(

1
2(n− 1)

∑
j∈J\i

Eq(Oj|oj)q(oj)

×

[ ∑
kl∈Pij

Eq(rkl |okl )

[
ln
p(rkl)p(okl |Okl, rkl)

q(rkl |okl)

]])
, (14)

J\i = J \ {i} is the set of all region indices other than i,
Pij = {ij, ji} is the set of the two pair indices involving
regions i and j, and in Eq. (12) we have decomposed the
distributions of paired object classes Oij and oij. Similarly
to the latent relationship distribution, we can minimize the
right-hand side of Eq. (13) by making the numerator and
denominator proportional:

q(Oi|oi)q(oi) ∝ p(Oi)w(Oi, oi). (15)

By normalizing the right-hand side with respect to Oi and oi,
we obtain the optimal solution of q(Oi|oi)q(oi). Then, we can
simply obtain q(oi) by marginalizing out Oi numerically, i.e.,
by computing

∑
Oi∈O\u q(Oi|oi)q(oi).

While the normalized explicit solution would be compli-
cated, we can better interpret the inference by considering a
simplified version. Assume that the auxiliary and conditional
object distributions are unconditional, i.e., p(oij|Oij, rij) =

p(oij) and q(Oi|oi) = q(Oi). Then, the optimal auxiliary
distribution becomes p(oij) = q(oij) = q(oi)q(oj) since
L = KL(q(oij)∥p(oij))+const.with respect to the distribution
q(oij) (with which q(rij|oij) is also constant) from Eq. (4).
Also, the optimal relationship distribution becomes qf (rij) =

p(rij) since the right-hand side of Eq. (10) is constant with
respect to rij. With these distributions, the log-expectation
term inside the second sum in Eq. (14) is as simple as
ln q(oi)q(oj) + (1 − [oi, oj ∈ Of ]) ln bkl since ln p(rkl )

q(rkl |okl )
is

equal to zero if ok , ol ∈ Of and ln bkl otherwise due to the
relationship constraint in Eq. (1). After taking its expectation
with respect to q(Oj|oj)q(oj) and ignoring the constant terms
Eq(oj)[ln q(oj)] + ln bkl with respect to oi, we substitute the
resulting w(Oi, oj) into Eq. (15) and marginalize out Oij;
thereby, we obtain the following simplified optimal object
distribution:

q(oi) ∝ q̄(oi) exp
(
[oi ∈ Of ]
2(n− 1)

∑
j∈J\i

fj
(
− ln bijbji

))
, (16)

where fj = q(oj ∈ Of ) =
∑

oj∈Of q(oj), bij = p(rij =

b), bji = p(rji = b), and overbar ·̄ on q denotes the
current estimate, which have resulted from the substituted
auxiliary distribution. Note that the negative log factor is
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increasing with respect to fij = 1−bij and fji = 1−

bji. We observe that the optimal solution is basically its
current estimate updated with an exponential factor, which
increases the foreground probabilities of region i when
each paired region j or their pairs ij and ji have higher
foreground probabilities. Therefore, as intended, we can
accept the regions that have many relationships as foreground
while rejecting the others as background. Meanwhile, since
the probabilities of all foreground classes are uniformly
updated, the ratio between the known and unknown object
probabilities does not change. This limitation is alleviated in
the full version in Eq. (15) owing to the use of the observed
object class Oi, which does not appear in Eq. (16) due to
the simplifying assumptions, as will be seen experimentally
in Section IV-C.
Since the optimal solutions depend on each other, we ini-

tialize the latent distributions and iteratively update them
one by one, i.e., fixing the other distributions than the
one being currently updated. Here, to facilitate efficient
parallel computation, we update the object distributions for
all regions simultaneously, thereby performing fixed-point
iteration, where each distribution depends on the current
estimates of the others. Similarly, we simultaneously update
the relationship distributions for all region pairs, which do not
depend on each other. Before updating each set of distribu-
tions, we substitute the current auxiliary distribution in Eq. (7)
into its optimal solution to tighten the bound and also simplify
computation.

Algorithm 1 summarizes the algorithm of the pro-
posed inference-based unknown detection. Intuitively, this
algorithm propagates the foregroundness between regions
and pairs so that each region becomes foreground if it is
involved with more foreground regions in more foreground
pairs. This is realized by the model (Section III-B) that
describes the dependency of object and relationship classes
between regions and pairs under the constraint (q(rij|oij)
in Eq. (1)) that only foreground regions (objects) can
constitute foreground pairs (relationships) while adding the
unknown class to the known and background object classes
predicted by the SGG model (extending object class Oi to
oi). More specifically, at each iteration, the latent object
distributions q(Oi|oi)q(oi) of each regions are updated using
other distributions, i.e., the observed object and relationship
distributions p(Oi) and p(rij) from the SGG model and
the current estimates of the latent relationship distributions
qf (rij), focusing on how likely the other regions paired
with this region and the pairs themselves are foreground.
For example, if the region has many relationships (i.e.,
foreground pairs, which necessarily involves foreground
regions due to the constraint), its foreground probability is
increased (as seen in the simplified version in Eq. (16)).
Similarly, the latent relationship distribution qf (rij) of each
pair is updated using the observed distributions and the
current estimate of the object distributions, focusing on how
likely the regions involved in the pair are foreground, e.g.,
if the two regions involved in the pair are likely to be

Algorithm 1Algorithm of variational-Bayesian inference for
relationship-aware unknown object detection.
In the rest of this section, we describe the initialization and
finalization parts of this algorithm.
Input: Object classes and probabilities {ci, {Poi }o∈K}i∈J and

relationship probabilities {{Prij}r∈F }ij∈P from a SGG
model

1: Sum up the input probabilities to obtain observed
distributions {p(Oi)}i∈J and {p(rij)}ij∈P according to
Section III-B1.

2: Initialize latent distributions {q(Oj|oi), q(oi)}i∈J and
{qf (rij)}ij∈P according to Section III-C1.

3: repeat
4: Update the latent object distributions {q(Oj|oi),

q(oi)}i∈J by Eq. (15) while substituting Eq. (7).
5: Update the latent relationship distributions

{qf (rij)}ij∈P by Eq. (11) while substituting Eq.
(7).

6: until the number of iterations is reached.
7: Finalize the classes and scores according to

Section III-C2.
Output: Object classes and their scores {c′i, s

′
i}i∈J

foreground, the pair itself is more likely to be foreground (i.e.,
has a relationship). This will further reinforces the confidence
that the involved regions are foreground in the next iteration.
Substitution of the currently-optimal estimate of the auxiliary
distribution p(oij|rij,Oij) (Eq. (7)) in each update ensures that
the upper bound of the KL objective function (Eq. (4)) is as
tight as possible, i.e., the bound approximates the original KL
divergence well. We will discuss the number of iterations in
Section IV-A.

1) INITIALIZATION
Before the inference, we initialize each latent object distribu-
tion using two scalar hyperparameters, i.e., foreground and
unknown scales a, t ∈ [0, 1] ⊂ R, whose values are constant
among images and regions, as follows:

q(oi = k) =
aKi
Ki + t

,

q(oi = u) =
at

Ki + t
,

q(oi = b) = 1 − a, (17)

where Ki = p(Oi = k). Here, a determines the initial
foreground probability, and t supplements the unknown
probability missing in the observed distribution p(Oi).
Meanwhile, to initialize each conditional object distri-

bution q(Oi|oi), we use the uniform distribution except
when oi = k , in which case we use the observed
distribution p(Oi) to ensure that the first update takes account
of the difference with respect to oi. To initialize each
relationship distribution qf (rij), we simply use the uniform
distribution.
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2) FINALIZATION
After the inference, we set the class and score of each region
by using the updated latent probabilities of the known and
unknown object classes, denoted by ki = q(oi = k) and ui =

q(oi = u), respectively. Since ki is the sum over individual
known classes, we split it into individual known probabilities
using the original known probabilities from the SGG model
before summed into Ki. Combining them with ui, we obtain
updated class-wise probability Qoi , which is equal to ki

Ki
Poi if

o ∈ K and ui if o = u.
Then, we set the updated class c′i of the region to the

unknown class u if its updated probability Qui is larger
than that of the original class Qcii ; otherwise, we keep the
original known class ci selected by the SGG model. Since
Qui : Qcii = t : Pcii at the initial state in Eq. (17),
the proposed technique with no iterative updates assigns
the same regions to the unknown class as the previous
thresholding technique [2] with threshold t , which facilitates
their comparison in Section IV-C.
Finally, we set the score s′i of the region to the scaled

probability of its updated class (Ki + t)Q
c′i
i , where we

multiply the normalizing denominators of the initial values
in Eq. (17) to restore the score variations among regions
when t is small. This score reflects the relationship-based
foregroundness and thereby better distinguishes backgrounds
than the original score si = Pcii , which closed-set SGG
without unknown detection or the thresholding technique [2]
would assign to the region. Note that we do not modify
the original foreground relationship class cij of each region
pair and its score sij = P

cij
ij since the updated latent

relationship distribution qf (rij) is conditioned by foreground
object classes, while SGG metrics expect unconditional
classes and scores [2].

IV. EXPERIMENTS
A. SETTING
We evaluated the effectiveness of the proposed inference-
based unknown detection technique for open-set SGG in
comparison with previous techniques. For fair comparison,
we followed the evaluation protocol of the previous study
on open-set SGG [2]. Specifically, we employed its open-set
SGG dataset, which is a version of Visual Genome [1], the
most widely-used SGG dataset, augmented with unknown
objects. This dataset contains various natural images, typi-
cally featuring multiple objects with indoor or outdoor back-
grounds, as exemplified in Fig. 2. The numbers of images
are 46707, 11131, and 33135 for the training, validation,
and testing splits, respectively, while on average each image
contains 11.5 known objects, plus 10.7 unknown objects in
the validation and testing splits only. As an evaluation metric,
we employed open-set SGDet (OSGDet) [2], an unknown-
aware extension of a standard close-set recall metric [3],
which counts ground-truth region pairs that are correctly
detected. As in the previous study [2], we considered multiple
versions of the metric, i.e., OSGDet@20, @50, and @100,

FIGURE 2. Examples of (a) training, (b) validation, and (c) testing images.
Each image depicts a scene with multiple objects of various classes,
which may have relationships with each other. Meanwhile, the training
images do not contain the objects of the unknown class.

where each number denotes the number of predictions per
image. Here, the predicted pairs in each image are ranked by
their scores, each of which is the product of one relationship
score sij and two object scores s′i, s

′
j, and only the specified

number of the highest-score pairs are used.
To construct each open-set SGG method, we combined a

closed-set SGG model and an unknown detection technique.
Here, we used one of three unknown detection technique:
the dummy technique with no unknown detection (i.e., con-
ventional closed-set SGG), the previous thresholding tech-
nique [2], and the proposed inference technique. Meanwhile,
to prove the model-agnostic effectiveness of the proposed
technique, we employed multiple SGG models compared
in the previous open-set SGG study [2] along with others.
To evaluate different SGG models in a consistent manner,
we employed two publicly-available implementations for
closed-set SGG, denoted by Implementation 1 [11] and 2 [5],
respectively, and extended them to the open-set setting by
adding unknown detection.

After training each model on the training images, we com-
bined it with each technique and tuned its hyperparameters
by optimizing OSGDet@100 over the validation images,
following the open-set protocol [2]. While the thresholding
technique has a threshold parameter only, the inference tech-
nique has two scale parameters and the number of iterations.
To enable efficient tuning, we first fixed the foreground scale
to uniform 0.5 and the number of iterations to 100 and tuned
the unknown scale by coarse-to-fine grid search with stride
0.1 and then 0.01 in the value range [0, 1]. Then, fixing the
unknown scale at its best value, we tuned the foreground
scale in the same manner. Finally, fixing both scales, we fine-
tuned the number of iterations by iteratively doubling and
halving the current value until no improvement was observed.
Note that these three hyperparameters are the only parameters
of the proposed technique that affect the behavior of its
algorithm; the other parameters, i.e., the probabilities of the
discrete latent distributions on the object and relationship
classes, are automatically determined thorough iterative
optimization for each testing image. Furthermore, while these
hyperparameters are determined on validation data before
testing, their actual values do not influence the performance
of the proposed technique so much; for example, the
validation OSGDet@100 values of the VCTree model during
the coarse-to-fine tuning were 15.95, 15.98, and 16.00 after
determining the unknown, foreground scale, and the number
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TABLE 1. Average evaluation metrics in the testing data for the
combinations of unknown detection techniques and models in two
implementations.

of iterations, respectively, which indicates consistent but
moderate improvement at each stage and thereby the stability
of the proposed algorithm with respect to hyperparameters.

B. RESULTS
Table 1 summarizes the resulting metric values averaged
over the testing images. Note that we do not compare
the performances of different models but of the unknown
detection techniques for each model. From these results,
we can see that the proposed inference technique always
outperformed no unknown detection (denoted by None)
and the thresholding technique, regardless of the model
and the number of predictions. Thus, we can conclude
that the proposed technique is more effective than the
existing techniques in a model-agnostic manner, being able
to turn any closed-set SGG models into an open-set method.
We note that newer models did not necessarily achieve
higher metric values due to their different design goals.
For example, VCTree [8] was more focused on dealing
with the effect of biased class distributions, which is not
reflected in the standard metrics. Still, we can easily combine
such models with the proposed technique for better open-
set performance, as exemplified here. We also note that
Implementation 1 had the tendency to yield higher metric
values than Implementation 2, although we evaluated them
under the same open-set protocol [2]. This can be attributed
to the differences in their implementation details, and the
effectiveness of the proposed technique for each model were
consistent.

Regarding computational efficiency, the previous thresh-
olding [2] and proposed inference techniques took 0.013 and
0.392 seconds, respectively, per testing image on average
using an Intel Core i9-10980XE CPU and a NVIDIA

FIGURE 3. Testing images where inference successfully detected
unknown objects that thresholding could not. In each image, the
proposed inference technique correctly detected an unknown object
related to another object, not confusing them with backgrounds.

Tesla V100 GPU. The additional computational time of
the proposed technique is due to the iterative nature of its
algorithm in Algorithm 1, which can be regarded as the cost
of its increased effectiveness shown in Table 1. Note that
the number of iteration in this experiment is the optimal
value determined by hyperparameter tuning for each model.
In practice, if speed is a matter of concern, we can reduce
the number of iterations without sacrificing the effectiveness
so much, This is because the proposed method already
outperforms the previous method at its initial state (i.e., with
zero iteration) owing to its initialization scheme, as will be
seen from the ablation study in Section IV-C.

To better analyze the results of the proposed technique,
we found out predicted region pairs that actually contributed
to the improvement in OSGDet@100, i.e., pairs that newly
became top-100 high-score predictions by the inference tech-
nique and also increased the number of correctly-detected
ground truths. In summary, we had such pairs in 13 percent
of the testing images in the case of VCTree (the newest
model in Implementation 1). We visualize some of these
images in Fig. 3, marking the predicted region pairs of
interest. In Fig. 3(a), the inference successfully detected an
unknown object, which was textureless and thus confused
with backgrounds by the other techniques, on a desk.
In Fig. 3(b), it detected an unknown object, which looked like
an object but whose class could not be learned in training,
on a kitchen counter. In Fig. 3(c), it could detect an unknown
object, which was out of view and whose class was not
obvious, on a bed. These results demonstrate the importance
of relationships in robust unknown object detection and prove
the ability of the proposed technique to distinguish unknown
objects from backgrounds, which is our main aim and also
one of the main contributions in this study, while being more
effective than the previous techniques in terms of the standard
metrics as show in Table 1.
We also visualize failure cases of the proposed technique

combined with VCTree in Fig. 4. In Fig. 4(a), this method
wrongly detected a cup on a shelf as an unknown, seemingly
because it looked differently from typical cups seen in
training. In Fig. 4(b), the method regarded an unknown object
(headset) on a table as a glass, which would be the closest
known class in terms of appearance. The proposed inference
technique, whose main aim is to separate unknown objects
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FIGURE 4. Testing images where inference failed in detection. In each
image, the proposed inference technique wrongly detected an known
object as unknown or an unknown object as known.

from backgrounds, does not impose any prior knowledge on
object classes and thus cannot distinguish between known and
unknown classes well. Possible solutions include improving
the class separation with additional training losses [19], or
introducing trainable parameters into the Bayesian model to
explicitly learn the different relationship statistics of known
and unknown classes.

In addition to the above-mentioned models, we evaluated
state-of-the-art closed-set SGG methods in the open-set set-
ting. Note that the current state of the art of open-set SGG is
the thresholding technique [2], and these closed-set methods
were not intended for open-set SGG. Nevertheless, for the
sake of completeness, we evaluate these methods under
the open-set SGG protocol for the first time. Specifically,
we evaluated Relationformer [23] and RelTR [24], which
reportedly outperform other state-of-the-art methods [9].
These closed-set methods do not consider unknown objects
and thus always treat them as known or background. We used
their publicly-available implementations with default hyper-
parameters, while matching Relationformer’s evaluation to
the open-set benchmark [2]. As the result, Relationformer
and RelTR scored 9.67 and 8.92 in testing OSGDet@100,
respectively, underperforming most of the other models with-
out unknown detection techniques (“None”) in Table 1. These
low open-set performances can be attributed to the one-stage
design of the recent models, which tends to miss unknown
objects [19], unlike two-stage models (e.g., VCTree) that first
detect all objects using class-agnostic region proposal. These
results reveals inherent limitation of the closed-set methods,
which cannot detect unknown objects nor their relationships.
Moreover, such recent transformer-based models with many
parameters typically require more computational resource,
thereby being less scalable with respect to the training dataset
size than traditional SGG models evaluated in Table 1.
In contrast, the proposed testing-time-only technique does not
incur additional training cost while achieving higher open-set
performance when combined with the scalable traditional
models.

While the thresholding is a common technique for
unknown detection in open-set tasks [17] not limited to SGG,
we compared the proposed technique with another open-
set technique [19], which uses an energy function as an
alternative unknown-class score.We combined this technique
with VCTree and tuned its threshold parameter using the

validation data. As the result, it scored 13.27 in testing
OSGDet@100, underperforming the thresholding [17] and
the proposed technique in Table 1 and thereby indicating its
unsuitability for SGG.

To summarize, the proposed technique outperformed
the previous techniques both quantitatively (Table 1) and
qualitatively (Fig. 3) regardless of combined models. These
findings indicate that our inference-based approach greatly
helps detect the relationships of unknown objects, including
those the previous techniques could not detect, using general
object and relationship classification results of SGG models
to discover unknown objects without relying on their specific
architecture and implementation details. We attribute this
superiority of the proposed technique to its ability to con-
sider relationships in distinguishing unknown objects from
backgrounds, which the previous thresholding technique
that consider only object classification scores is unable
to do. In particular, the information on the existence of
relationships, which we explicitly utilize in our algorithm via
the specific Bayesian model with the relationship constraint
in Section III-B, is effective in distinguishing unknown
objects that are not similar to typical known objects,
as exemplified in Fig. 3(a). This leads to the robustness of
open-set SGG methods based on the proposed technique
in complex scenes, which contrasts sharply with closed-set
methods that easily fail in the presence of unknown objects
by confusing them with known objects or ignoring as
backgrounds.While the proposed technique has such strength
in distinguishing unknown objects from backgrounds, as seen
from the successful cases in Fig. 3, it also has weakness in
distinguishing the unknown objects from known objects, as
exemplified by the failure cases in Fig. 4. This is because our
algorithm does not incorporate any prior knowledge on the
difference between unknown and known objects in the model
in Section III-B but infers their statistics only via image-wise
iterative optimization, although this prior-free design also
enables the proposed inference to deal with a wide range of
scenes regardless of object types.

C. ABLATION STUDY
To further investigate the performance improvements
achieved by the proposed technique, we compared three
versions of the inference-based unknown detection: (1) The
initial version, which directly uses the initial values of known
and unknown probabilities in Eq. (17) without iterative
updates. As mentioned in Section III-C2, the resulting
classes are the same as the thresholding technique [2]
(with a different threshold value after tuning) while the
scores of the regions assigned to the unknown class are
updated to a constant value proportional to the threshold.
(2) The simple version, which uses the simplified object
distribution in Eq. (16). The classes are still the same as
the thresholding since the known-unknown score ratios are
invariant between updates, but the scores are updated to
reflect relationship-based foreground probabilities. (3) The
full version, which uses the object distribution in Eq. (15) with
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TABLE 2. Ablation study results comparing different versions of the
proposed inference-based unknown detection technique.

no simplifications, thereby being able to update both classes
and scores. In this experiment, we used the OSGDet@100
metric and the VCTree model.

Table 2 summarizes the results. The initial version was
already better than the thresholding technique (shown in
Table 1) by uniformly increasing the scores of all low-known-
score regions to a constant value, but unable to distinguish
unknowns and backgrounds. The simplified version made
a further improvement by producing foreground-aware
scores, but still no difference in classes. The full version
outperformed the other versions, indicating that the proposed
inference could make improvements in both classes and
scores.

V. CONCLUSION
Open-set SGG, which detects the relationships of both known
and unknown objects, is more practical than closed-set SGG.
However, unknown detection in open-set SGG has ignored
relationships and could not distinguish unknown objects
from backgrounds, which has been a problem in detecting
relationships of unknown objects. In this paper, on the basis
of the idea that foreground regions cannot have relationships,
we proposed relationship-aware unknown detection.Method-
ologically, we realized this by deriving an iterative algorithm
of variational-Bayesian inference based on a Bayesianmodel,
which increases the foregroundness of regions with more
related objects and relationships. As demonstrated by the
results of our extensive experiments, the proposed technique
can consistently outperform previous techniques regardless
of the model. These contributions of this study, i.e., the
first relationships-aware methodology for unknown object
discovery and the novel model-agnostic technique for open-
set SGG, benefit various applications in complex real-world
scenes.

As indicated by the experimental results, there are several
pros and cons of the proposed method. The proposed
inference approach can deal with various scenes, whether
they are indoor or outdoor, since its Bayesian model does
not assume specific image properties. One of the resulting
advantages is that it can handle as many objects as the
combined SGG model can find, since the Bayesian model
has no predefined number of known or unknown objects,
and the variational inference can naturally normalize the
increased number of object distributions. Another advantage
is that it can fix typical mistakes by the SGG model
(e.g., mis-detected backgrounds with vivid color or complex
texture, or undetected human-made objects that look different
from natural objects) by adjusting their foregroundness
according to relationships rather than appearances, on which

the Bayesian model does not impose any prior knowledge.
On the other hand, the main limitation of this study is
that the proposed technique does not explicitly distinguish
between known and unknown objects, as observed in
Section IV, due to its prior-free nature. This limitation may
be alleviated by introducing trainable components in the
inference as a future improvement.

This study is the first attempt to develop a practically-
effective method specialized to open-set SGG, taking account
of both unknown objects and relationships. Therefore,
various promising directions exist for future work. For
additional performance boost, the most naive approach is to
combine the proposed technique with newer SGG models or
various learning techniques, both of which are orthogonal to
unknown detection. A more complex but promising approach
would be to integrate unknown object detection into a
SGG model itself, which realizes unknown-object-aware
relationship detection that can fully exploit the different
statistics of known and unknown objects. Finally, extension
to the open-world setting [19], i.e., iterative learning for
distinguishing individual unknown classes as new known
ones, will further enhance the real-world applicability of
open-set SGG.
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