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ABSTRACT Manufacturing and supply chain management are becoming increasingly important in the
semiconductor industry. Cluster tools are essential equipment in semiconductor production and are used for
microscopic operations, such as the surface treatment of wafers. In particular, the operational parameters of
cluster tools directly affect productivity, and various efforts are underway to optimize them at manufacturing
sites. However, there are still many challenges in this process. In this study, we propose a framework
for optimizing the operational parameters of cluster tools in semiconductor manufacturing using digital
twin technology to address these challenges. The framework predicts productivity through manufacturing
simulations based on operational parameters in a digital twin environment, analyzes the factors affecting
productivity, and determines the optimal operational parameters. The study demonstrates that the cycle time
of cluster tools in wafer fabrication can be significantly reduced through the proposed approach based on
digital twins. The application of this framework is expected to contribute to cost reduction, productivity
improvement, and enhancement of industrial competitiveness at semiconductor manufacturing sites.

INDEX TERMS Cluster tool, digital twin, finite state machine, hill climbing algorithm, semiconductor
manufacturing.

I. INTRODUCTION
Semiconductors are essential components of various elec-
tronic devices that play crucial roles in information pro-
cessing and communication. Especially in the era of the
Fourth Industrial Revolution, with technologies such as 5G,
autonomous vehicles, artificial intelligence, and the Internet
of Things (IoT), semiconductor devices are indispensable,
and their shortage affects not only individual industries,
but also national security [1]. Therefore, the semiconductor
industry is making various efforts to meet demand by making
efficient decisions in the process of semiconductor product
production and supply chain management, and investing in
R&D and facilities [2]. Cluster tools are advanced automation
equipment used in wafer fabrication in semiconductor
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manufacturing processes and are essential equipment in the
modern semiconductor industry that requires highly sophis-
ticated and precise process conditions. Therefore, research
on the efficient utilization of cluster tools has become an
important challenge contributing to the advancement of the
modern semiconductor industry.

Wafer manufacturing processes using cluster tools face
several challenges. Cluster tools use various types of gases
and chemicals during wafer processing [3], and because these
raw materials can be hazardous to the health of the operators,
careful process management is required [4]. Additionally,
semiconductor products are highly susceptible to quality
defects due to microscopic factors, such as the inflow of fine
particles due to airflow changes during the process [5] or
patterns being affected by specific wavelengths of light [6],
necessitating many operational procedures and quality ver-
ifications in managing cluster tools on the manufacturing
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floor. In particular, the operational parameters of cluster tools
directly affect product quality and productivity. However,
owing to the complex structure of cluster tools, various
models, and differences in target processes, standardized
management criteria for these operational parameters are
often lacking. Although manufacturing execution system
(MES) can be utilized to manage equipment operations,
process control, and semiconductor manufacturing processes
more efficiently [7], understanding the entire manufacturing
process and operational expertise is essential for effective
utilization becausemost of the data provided by these systems
do not clearly indicate the causality of various problems
occurring during cluster tool operation and manufacturing
processes. For these reasons, there is a growing need for
systems to predict productivity through the operational
parameters of cluster tools and to analyze and optimize
factors affecting productivity to improve the productivity of
cluster tools.

Research on enhancing the productivity of semiconductor
manufacturing processes has been previously conducted.
In particular, to enhance the productivity at the wafer fabrica-
tion (FAB) level, research has been conducted on managing
FAB shipments [8], predicting FAB cycle times [9], and
scheduling FAB logistics [10], [11]. Research has also
been conducted to enhance the productivity of cluster tools,
focusing on the number of process recipes or combinations
of process recipes [12], [13], wafer productivity under
simplified conditions [14], and module-level productivity
of cluster tools [15], [16]; however, the detailed operating
units of the entire cluster tool have not been considered.
Furthermore, research has been conducted to improve the
fundamental scheduling methods of cluster tools [17], [18]
and optimize process flows [19]; however, it is difficult
to apply these methods to existing cluster tools in mass
production. Considering these limitations, this study aims to
explore new approaches to improve the productivity of cluster
tools and expand their industrial applicability.

Digital twin technology has been proposed as an alternative
for solving various problems in semiconductor manufactur-
ing. A digital twin is defined as a digital replica of a physical
object, such as a product, facility, or process. It is a virtual
model that reflects the real-world situation of the target object
elements, such as their properties and status, in a digital space
and depicts their characteristics so that they can be monitored
during design and operation throughout their lifecycle [20].
Additionally, it provides the ability to collect and analyze data
from real-world systems in real time, thereby enabling the
simulation and optimization of a series of operations based
on these data [21]. Thus, digital twins are gaining attention
as innovative solutions not only in the semiconductor industry
but also in various industrial fields to enhance the efficiency
of production processes and prevent defects.

This study proposes the design and application of a
digital twin framework to determine the optimal operational
parameters of semiconductor manufacturing cluster tools.
Through this framework,manufacturing simulations based on

the operational parameters of cluster tools were performed in
a digital twin environment to predict productivity, and factors
affecting productivity owing to operational parameters in
the wafer manufacturing process were analyzed. Heuristic
algorithms are utilized to iteratively explore the operational
parameters to enhance the productivity of the cluster tools.
The proposed method derives optimal operational parameters
by considering various variables and complex interactions
occurring in the semiconductor manufacturing process. Addi-
tionally, it presents technical solutions for minimizing trial
and error in actual manufacturing sites, reducing the costs and
time associated with process modification and improvement,
enhancing the efficiency of the manufacturing process,
and optimizing wafer productivity, thereby strengthening
the competitiveness of cluster tools in the semiconductor
manufacturing industry.

The structure of this paper is organized as follows:
Section II offers a comprehensive overview of semiconductor
manufacturing, cluster tools, equipment engineering systems,
and digital twins. Section III elaborates on the research
methodology, with a focus on the digital twin application
framework, digital twin modules, and optimization modules.
Section IV discusses the scenarios and practical applications
of the digital twin framework, including its implementation
and the results obtained. Finally, Section V synthesizes the
research findings and presents the conclusions derived from
the study.

II. RESEARCH BACKGROUND
A. SEMICONDUCTOR MANUFACTURING AND CLUSTER
TOOLS
A semiconductor manufacturing facility is commonly
referred to as a FAB. In the FAB, semiconductor products
are produced by forming integrated circuits using patterns
on the surfaces of bare silicon wafers, as shown in Fig. 1.
Typically, silicon wafers are extremely thin, fragile to impact,
and vulnerable to defects caused by fine particles. Therefore,
the interiors of FABs are designed as cleanrooms with
very high cleanliness levels, maintaining airborne particle
concentrations below a certain level and managing internal
temperature and humidity consistently [22]. Additionally,
special containers, such as a front opening unified pod
(FOUP), are used to safely store and transport wafers via
overhead hoist transport (OHT) configured on top of the
FAB to minimize physical impact and quality risks [23].
Most semiconductor manufacturing processes are automated
for quality assurance and process efficiency, and various
unit processes are repeated using multiple cluster tools in a
predetermined order.

Cluster tools refer to automated equipment used in
semiconductor manufacturing processes, attaching two or
more modularized chambers to one or more wafer transfer
robots to perform process steps in parallel, representing
multichamber processing manufacturing equipment [24].
This concept of multichamber processing has long been
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FIGURE 1. Common semiconductor product manufacturing processes using wafers.

FIGURE 2. Cluster tool with engineers (a) and example configuration for the cluster tool (b).

used in the semiconductor industry, and the technological
requirements for cluster tools to meet the miniaturization of
circuit patterns owing to continuous advancements in design
technology have also increased. Fig. 2 shows a photograph
of a cluster tool and a diagram describing its typical
configuration, which consists of a cassette module (A),
transport module (B), and process module (C) [25]. The roles
of these modules are as follows:

• Cassette module: This module is responsible for the
input and output of wafers. It opens and closes the door
of the FOUP transported through the OHT, transfers
wafers stored in the FOUP to the cluster tool using a
wafer transfer robot, or transfers processed wafers back
to the FOUP.

• Transport module: This module is responsible for trans-
ferring wafers between the cassette and process modules
using wafer transfer robots. Appropriate operational
parameter settings are required because the performance
and stability of wafer transfer robots significantly affect
the productivity of cluster tools.

• Process module: This module is where the actual wafer
processing takes place. It consists of spray nozzles for
spraying chemicals or gases and a chuck table for fixing
and rotating the wafers.

Fig. 3 [24] illustrates the wafer transfer model between
cluster modules. The wafers that are initially input through
the cassette module are transported by the transport module
to the process module. The process module then per-
forms the sequential steps defined in the process recipe.

FIGURE 3. Wafer transfer model between cluster modules.

After the completion of the process, the wafers are
transferred back to the cassette module via the transport
module. Once this transfer process is completed for all the

122080 VOLUME 12, 2024



J. Hwang, S. D. Noh: Digital Twin-Based Optimization of Operational Parameters for Cluster Tools

wafers, the manufacturing sequence of the single-cluster
tool ends.

Various studies have been conducted to understand and
model the complex operations of cluster tool systems in
semiconductor manufacturing. Some of the early work
was performed using Petri nets, which are well suited
for modeling parallel and distributed systems of cluster
tools. In this context, Zuberek implemented the steady-
state behavior of cluster tools using an iterative chamber
revisiting scheduling [26], and Kim et al. studied scheduling
methods within time constraints for cluster tools with dual
arms [18]. Lee et al. conducted research on scheduling
issues when multiple jobs were performed using batch wafer
equipment [27].

However, Petri nets have difficulty analyzing factors
that hinder the productivity of increasingly detailed cluster
tools; therefore, studies have been conducted using finite
state machines, a branch of automata theory. Lee and Lee
modeled wafer scheduling techniques considering system
time constraints using finite state machines [28], and Sun
and Han built a simulation model based on finite state
machines to measure the wafer throughput per unit time [29].
Hong and Lee conducted research to improve scheduling by
avoiding unnecessary behaviors of the equipment front-end
module (EFEM) using finite state machines and tick-based
simulations [30].

Studies have also utilized simulations to predict the
productivity of cluster tools. Hung and Leachman studied
methods to evaluate the productivity of wafer manufacturing
equipment in simplified simulation environments [14], and
LeBaron and Pool implemented a simulator to predict the
productivity of cluster tools using AutoMod [15]. Watanabe
implemented a wafer transfer simulator based on spreadsheet
applications [16], and Kohn and Rose conducted research to
predict cluster tool processing times based on specific recipe
combinations and parallel processing methods [13]. In addi-
tion, Tu built a productivity prediction model for cluster tools
using multiple regression analysis and established regression
equations based on the number of process recipes [12].
Previous studies on the productivity of cluster tools have

been limited to module-level simulations rather than the
detailed operating units of the cluster tool, or have focused on
the impact of process recipes. In addition, research focusing
on improving the schedulingmethods of wafer transfer robots
is not applicable to equipment that already operates using
existing methods. Thus, existing studies are limited in that
they only focus on certain elements of wafer processing using
cluster tools rather than comprehensively considering the
entire process.

Considering these limitations, this study aims to systemat-
ically analyze the factors that hinder productivity throughout
the wafer manufacturing process using a deterministic
finite state machine methodology and improve the related
operational parameters. This approach not only focuses
on specific modules or wafer transfer methods, but also
comprehensively considers all operating units of cluster

tools, providing insights into the complex causality occurring
in the manufacturing process and contributing to overall
productivity improvement.

B. EQUIPMENT ENGINEERING SYSTEM
The operational parameters of semiconductor manufacturing
cluster tools consist of various factors from different perspec-
tives, which are mainly distinguished into aspects concerning
quality and those that enhance productivity. In terms of
quality, factors that have a decisive impact on the final
yield of wafers are relevant, such as the temperature of the
operating units and the flow rate of raw materials. In terms
of productivity, the set values of operating units, such as the
speed of the cylinders and the torque of the motors, are the
key components of the equipment. Proper control of these
components is essential to optimize the performance of each
module during wafer transfer and process progression, and to
increase wafer productivity.

Operational parameters are usually detected in real time
by sensors located at the end of the equipment or determined
by preset values in hardware drivers. These data are reflected
in the operational parameters set in the system through
a communication module, which assists users in detecting
and responding to abnormal situations by defining threshold
values for individual items.

To eliminate causes of equipment failure and enhance
overall equipment efficiency, an equipment engineering
system (EES), one of several MESs, is utilized. The EES
consists of various subapplications and provides various
functionalities depending on user requirements and the
environment. The main subapplications and their roles are as
follows [31]:

• Fault detection and classification (FDC): Real time
monitoring of equipment operational parameters to
detect and control anomalies.

• Recipe management module (RMM): Monitors and
manages process recipes.

• Alarm management module (ALM): Monitors and
manages errors occurring in equipment.

• Equipment constant module (ECM): Manages the initial
values set on the equipment.

With advances in semiconductor manufacturing technol-
ogy, various studies have been conducted on systems to man-
age these manufacturing processes efficiently. Chien et al.
presented an FDC framework for the anomaly detection
and classification of semiconductors to monitor and analyze
FAB profiles to reduce defects and unnecessary yield
reduction [32]. Yasuda et al. studied FDC indicators that
could detect abnormal conditions in equipment without
chambers or process recipes [33]. Tsuda et al. analyzed
the parameter data related to the product yield using FAB-
wide systems [34]. Kim conducted research to improve the
processing efficiency owing to increased data volume [35],
and Kim et al. conducted research to build an equipment-
level FDC system capable of analyzing anomalies on its
own [36]. Zhang et al. conducted research to optimize
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production planning based on data from a MES [37]; they
utilized manufacturing- and logistics-related data rather than
cluster tool data. These studies mainly focused on monitoring
functions or data processing methods.

Considering these limitations, this study aims to per-
form manufacturing simulations and determine the optimal
operational parameters based on a cluster tool implemented
in a digital twin environment by utilizing the operational
parameters and process recipe data of the cluster tool stored
in the EES. The utilization of data from legacy systems
is expected to enhance the reliability of the simulation
results, ultimately aiming to provide suitable solutions for
actual retrofitting and the improvement of cluster tools at
manufacturing sites.

C. DIGITAL TWIN
The concept of a digital twin was initially introduced by
Grieves in 2003 [38] and has garnered significant attention in
both academia and industry, leading to continuous research
efforts [39], [40], [41]. Grieves and Vickers defines a digital
twin as a set of virtual information constructs that perfectly
describe a real-world physical entity [20], and the terms
‘‘digital twin’’ and ‘‘model’’ are used distinctly depending on
the presence of the actual physical entity [42]. Digital twins
can be used to build real physical systems or processes in a
digital space, monitor and analyze the status of real systems in
real time through IoT [21], and solve problems in the product
lifecycle by using data and simulations of real products and
systems to predict and analyze their behaviors [43]. Thus,
digital twins are expected to significantly impact the future
of manufacturing by enabling a shift from analyzing the past
to predicting the future.

Digital twin technology is already being utilized in various
industries and various studies have been conducted to apply it
in the semiconductor industry. Haddod and Dingli researched
the implementation of digital twins in semiconductor FABs
and the synchronization between actual production lines
and developed digital twins [44]. Deenen et al. conducted
research based on simulations using digital twins to resolve
bottlenecks in wafer manufacturing [45]. Sivasubrama-
nian et al. implemented a digital twin-based discrete-event
simulation model to address reticle management issues in the
photolithography process [46]. However, these studies either
focused on production lines rather than individual equipment
units or were driven by specific process data, making it
difficult to extend them for application to all cluster tool
models.

Research has also been conducted on the implementation
of the operating units of cluster tools in virtual environments.
Bratovanov developed a wafer pick-and-place robot simula-
tor using SolidWorks and Visual Basic.NET, which simulates
wafer handling by setting parameters such as the valve
open/closed states of the end-effector/pre-aligner during the
process [47]. Nicolescu et al. implemented a robot in a virtual
environment using CATIA and DMU Kinematics, allowing

the teaching of wafer transfer robots by setting parameters
such as movement and velocity/acceleration of each axis of
the robot via a teaching pad [48]. However, these studies
mainly focused on implementing wafer transfer robots and
did not reflect all the components of the entire equipment or
were not based on actual manufacturing site data, resulting in
insufficient simulation reliability.

Considering the limitations of the existing research, this
study aims to model cluster tools in a virtual space using
digital twins and perform manufacturing simulations in
the same sequence as the actual processes. By visually
representing the manufacturing simulation process in a
three-dimensional (3D) environment using a base model
implemented in a digital twin, we aim to enable users to
identify and respond more effectively to potential risks that
may occur during the process. Through this, we propose a
new approach to cluster tool management at manufacturing
sites and contribute to the digitalization and automation of
manufacturing.

Table 1 presents a comparison of the objectives, method-
ologies, and tools used in previous studies, which were
discussed in the research background and are closely related
to this study.

III. RESEARCH METHODOLOGY
A. DIGITAL TWIN APPLICATION FRAMEWORK
The framework of existing MES is designed to collect
data from manufacturing equipment via communication
based on the SEMI equipment communications standard
(SECS)/generic equipment model (GEM) protocol, process
it, and present the results in visual forms such as tables
and charts, enabling users to monitor and analyze data
on equipment operational parameters in real time [49],
[50]. However, these frameworks are limited to simply
displaying data visually and do not provide advanced
features, such as predictive analytics and optimization, which
can limit the ability to increase the efficiency of manufac-
turing processes and proactively anticipate and respond to
problems.

Therefore, based on the existing framework, the framework
of the proposed digital twin application was designed as
shown in Fig. 4. Digital twin applications utilize operational
parameters and process recipe data stored in legacy systems
to iteratively perform simulations and optimizations in a
digital twin environment, and explore the optimal operational
parameters to enhance the productivity of cluster tools. The
data generated in this process are stored in the MES and
utilized by users to improve the actual cluster tool.

The framework of the digital twin application proposed
in this study consists of a digital twin module and an
optimization module, where the digital twin module consists
of a base model and a simulation engine, and the optimization
module consists of an optimization engine and an interface.
First, the base model is implemented in the digital twin
environment as a representation of the cluster tool based on
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TABLE 1. Literature review.

data, such as equipment specifications, operation sequences,
and operational parameters. The simulation engine performs
actual manufacturing simulations by automating detailed
state transitions based on the base model, event handling
based on operational logic, and scenario execution using

automation settings. The optimization engine utilizes the data
generated by the simulation engine to create neighborhoods
for multiple models based on metaheuristic algorithms,
iteratively exploring and improving the operational param-
eters. While running these applications, visualization of the
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FIGURE 4. Framework of digital twin application.

FIGURE 5. Operational sequence of digital twin applications.
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manufacturing simulation and the input and output of the data
are performed through interfaces.

Fig. 5 illustrates the operational sequence of this digital
twin application. Initially, the operational parameter data
of the cluster tool stored in the MES and the target
process recipe data are processed and set as initial input
values for the simulation to drive the base model. The
simulation engine synchronizes these data, assigns them as
the parameters of the subobjects that constitute the base
model, and performs the simulation. During the simulation,
users can observe virtual manufacturing activities in a digital
twin environment from various perspectives through the
interface. Upon completion of the simulation, the resulting
data are output, and the optimization engine utilizes them
to perform optimization tasks on the operational parameters.
Once the optimization is completed, the simulation engine
is initialized, and the optimized operational parameters are
reassigned to the base model for simulation. This process
is defined as an episode that is repeated as many times as
the user sets during the application run. Upon reaching the
specified count, the application operation is terminated, and
the final resulting data is processed and stored in the MES.
Subsequently, users can use these data for real-world business
purposes.

B. DIGITAL TWIN MODULE
1) BASE MODEL
In the base model constituting the digital twin module, the
cluster tool is implemented in the digital twin environment
through an inheritance hierarchy structure, which is a hier-
archical combination of modeled component-level objects.
The inheritance hierarchy is a concept used in object-oriented
programming to represent hierarchical relationships between
parent and child objects [51]. A parent object has one or more
child objects, and the child objects have one parent object.
This hierarchical structure enables the representation of
relationships such as inheritance, composition, and grouping
among objects.

The hierarchical structure of this base model offers
several advantages for effectively performing manufactur-
ing simulations based on finite state machines. Firstly,
the hierarchical structure allows for a clear definition of
interactions between objects, enabling detailed modeling
of the complex systems and state transitions within a
cluster tool. This facilitates the implementation of realistic
semiconductor manufacturing processes, thereby enhancing
the accuracy and reliability of the simulations. Additionally,
the hierarchical structure permits the independent definition
and management of the state and behavior of each component
within the cluster tool. This capability minimizes the impact
on other components when a specific issue arises, enabling
rapid identification and resolution of problems. Lastly, the
hierarchical structure provides flexibility when adding new
components or functions to the cluster tool. This flexibility
allows for the expansion and modification of functionalities

using the existing hierarchy, thereby enhancing the scalability
and reusability of the simulation environment.

FIGURE 6. Example of the hierarchy of objects and the components
assigned to them.

Fig. 6 illustrates the hierarchical structure of the objects
constituting the cluster tool and examples of the assigned
components. This hierarchy is organized into three levels:
equipment, module, and unit, which are described as follows:

• Equipment level: Objects representing the cluster tool
units that constitute the FAB are assigned. Objects at
the equipment level control objects at the module level
sequentially perform the processes from start to end
of the manufacturing simulation. Multiple objects were
deployed at the equipment level to enable the simulation
of multiple operational parameters simultaneously.

• Module level: Objects representing the cassette, trans-
port, and process modules constituting the cluster tool
are assigned. The objects at the module level control
multiple subunit-level objects to perform a series of
operations, enabling each module to fulfill its role.

• Unit level: Assign component-level objects that con-
stitute each module, perform actual operations, and
distinguish between parent and child objects by assign-
ing a sequence of orders. The operational parameters
input to equipment-level objects are assigned to the
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lowest unit-level objects, enabling the execution of
operations based on the state transitions of objects
during the manufacturing simulation.

Each object constituting this hierarchical structure was
endowed with appropriate attributes through component-
based software engineering (CBSE). CBSE is a methodology
for building software systems by assembling reusable com-
ponents [52], enhancing development productivity and main-
tainability through software modularization, and increasing
code reusability to improve system flexibility and scalabil-
ity [53]. Utilizing CBSE in digital twin applications can
significantly enhance development productivity, maintain-
ability, and system flexibility. Firstly, reusable components
of the base model can be consistently applied across various
simulation scenarios. Additionally, components can be easily
updated and replaced independently, making maintenance
easier. Lastly, the system’s flexibility is augmented as
new components can be added or modified in the base
model without extensive redesign. These components define
the characteristics and functionalities of the objects and
coordinate the interactions between them to configure
the operation of the entire system. Descriptions of each
component assigned to the base model are as follows:

• Coordinate Setting: X, Y, and Z coordinates, along with
rotation values, are configured to determine the position
and orientation of objects within the 3D space. For
instance, this ensures that specific modules of the cluster
tool or wafers are accurately positioned and correctly
oriented for operation.

• Physical Engine Setting: Physical properties such as
collision, reaction, motion, and rotation are configured
to simulate interactions between objects. For example,
during the wafer transfer process, the actions of the
cluster tool modules are simulated considering various
physical factors affecting the wafer to achieve realistic
simulations.

• Visualization Setting: Mesh rendering is used to deter-
mine how objects are displayed on the screen, improving
the visual representation of objects within the simulation
environment. For instance, each module of the cluster
tool is configured to appear with textures and materials
similar to the real ones.

• Scripting: Logic to control the behavior and state of
objects is defined, programming the interactions and
actions among objects. For example, the operational
sequences of the objects comprising the cluster tool are
implemented to ensure that the defined states transition
appropriately during interactions.

2) SIMULATION ENGINE
Cluster tools for semiconductor manufacturing involve
complex interactions between multiple process steps and
equipment components. To effectively manage this com-
plexity and implement the operational flow of the system,
a finite statemachinewas utilized as the coremethodology for
designing the simulation engine. A finite state machine is a

modeling technique that allows a system to transition between
multiple states and perform specific behaviors in each state.
This can be useful for tracing the operational flow of a system,
identifying and solving problems by representing all possible
situations, and determining how the system reaches these
situations [54]. Moreover, finite state machines are highly
scalable, and existing states and transitions can be extended
to reflect the requirements as new sequences or components
are added. In particular, deterministic finite state machines
are finite state machines in which the next state is uniquely
determined given discrete states and inputs, making them
ideal for expressing the behavior of a system simply and
clearly [55]. The elements constituting such deterministic
finite state machines are defined by 5-tuples, as follows:

M = (Q, 6, δ, q0,F) (1)

The M stands for machine, where Q is the set of all
possible states of a finite state machine, expressed as Q =

{q0, q1, q2, . . .}, and Σ is the set of all possible input values
that a finite state machine can recognize. δ : Q × Σ→Q is
a state transition function, which determines the next state
based on the current state and inputs. q0 ∈ Q is the initial
state, the first state existing when the finite state machine
starts, and F ⊆ Q is the set of final states.

To model the cluster tool and the wafer to be manufactured
in the simulation engine, five components of the deterministic
finite state machine were defined as listed in Table 2. The
operating unit of the cluster tool defines all the states in which
it can act and performs wafer fabrication by changing its
operational state in a prescribed sequence and considering
the current state of the wafers. The wafers also define all the
states that occur during the manufacturing process, transition
through the wafer states based on the current position of
the wafers and the behavior of the operating units, and the
simulation ends when all wafers have transitioned to the end
state. Fig. 7 illustrates an example of the state transition
process between the operating units of the cluster tool and
the wafers with each other’s states as input.

The primary functions of the modeled simulation engine
can be categorized into state transitions of each object,
the execution of operating logic for modules and units
comprising the equipment, and the automation of these
processes through defined scenarios. The scenario is con-
figured as the top-level class of the simulation engine,
controlling subordinate classes to ensure that data input
and output, manufacturing simulation, and optimization
of operational parameters are executed automatically in
a sequential manner. Under the control of this top-level
scenario class, during the execution of a series of man-
ufacturing simulations, the subordinate classes that make
up the simulation engine perform their functions through
scripting components assigned to each object of the base
model. This process enables state transitions according to the
defined operating logic and generates simulation data. Fig. 8
depicts the scope of implementing the main functions of the
simulation engine based on the base model.
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TABLE 2. Definition of deterministic finite state machine elements for modeling.

FIGURE 7. Example of state transitions between operating units and wafers.

During the simulation, the time required by each wafer in
every state of the manufacturing process was measured and
stored. The time required for each state is calculated based
on the coordinates setting assigned to the object on the wafer,
dividing the time for the object to move and the time for the
object to rotate according to the state. First, to calculate the
time for the object to move, the 3D vector of the i-th wafer in
the j-th state is expressed as:

Pij = (xij, yij, zij) (2)

Based on this, the Euclidean distance the i-th wafer travels
from the j-th state to the (j+ 1)-th state is calculated as:

dij =

√
(xi,j+1 − xij)2 + (yi,j+1 − yij)2 + (zi,j+1 − zij)2 (3)

The driving speed of the actuator when the i-th wafer is in the
j-th state is defined as vij, and the time taken for the i-th wafer
to move in the j-th state is calculated as:

tij =
dij
vij

=

√
(xi,j+1 − xij)2 + (yi,j+1 − yij)2 + (zi,j+1 − zij)2

vij
(4)

To calculate the time for the object to rotate, the rotational
Euler angles for each axis of the i-th wafer in the j-th state are
expressed as:

Rij = (θxij , θ
y
ij, θ

z
ij) (5)

Based on this, the change in the rotational angle for each axis
from the j-th state to the (j + 1)-th state of the i-th wafer is
calculated as:

1θxij =

∣∣∣θxi,j+1 − θxij

∣∣∣ (6)

1θ
y
ij =

∣∣∣θyi,j+1 − θ
y
ij

∣∣∣ (7)

1θ zij =

∣∣∣θ zi,j+1 − θ zij

∣∣∣ (8)

The rotational speed of the actuator when the i-th wafer is in
the j-th state is defined as ωij, and the rotational time for each
axis is calculated as:

txij =
1θxij

ωij
(9)

tyij =
1θ

y
ij

ωij
(10)
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FIGURE 8. Scope of implementing the main functions of the simulation engine based on the base model.

tzij =
1θ zij

ωij
(11)

Based on the rotational time for each axis, the time taken
for the i-th wafer to rotate in the j-th state is calculated by
distinguishing between the cases where the rotations of the
three axes occur simultaneously and sequentially:

tij =

{
max(txij, t

y
ij, t

z
ij) if in simultaneous rotation

txij + tyij + tzij if in sequential rotation
(12)

To output these state-specific times as data, assume that a
FOUP containing a total of n wafers is docked in the cluster
tool and that each wafer goes through a total of m states
before being processed and undocked. Through this process,
all calculated wafer status times during the manufacturing of
one FOUP by the cluster tool can be represented as an n row
by m column matrix, as:

Wafer State Times =


t11 t12 t13 · · · t1m
t21 t22 t23 · · · t2m
t31 t32 t33 · · · t3m
...

...
...

. . .
...

tn1 tn2 tn3 · · · tnm

 (13)

Let CT i denote the time it takes for the i-th wafer to be fed
into the cluster tool and complete manufacturing. This time
is calculated to determine the duration of the manufacturing

process for each wafer as:

CT i =

∑m

j=1
tij (14)

The time required to complete the manufacturing of all
wafers is cycle time, which is the same as the time when
the manufacturing of the last wafer (n-th wafer) ends and is
calculated as:

CT = CT n =

∑m

j=1
tnj (15)

In addition, the average time that n wafers spend in the j-th
state of the cluster tool is termed ST j, and it can be calculated
to determine which state of the wafer manufacturing process
requires the most time on average as:

ST j =
1
n

∑n

i=1
tij (16)

Table 3 lists the notations of simulation results data.

C. OPTIMIZATION MODULE
In semiconductor manufacturing, the yield, which is the
number of healthy chips actually produced as a percentage
of the maximum number of chips designed on a wafer,
is also affected by subtle factors such as errors in setting
process parameters, poor facility management, and operator
error [56]. Consequently, modifications and improvements
to cluster tools require rigorous validation procedures,
and production in the absence of such validation can
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TABLE 3. Notation of simulation result data.

critically affect the quality of an entire production line or
product. To minimize such quality risks, this study aims to
explore optimal operational parameters through incremental
improvements based on existing operational parameters.
This approach ensures the stability of the existing validated
operational parameters while gradually enhancing equipment
performance. Therefore, in this study, an optimization engine
was designed based on the hill climbing algorithm, which is
a metaheuristic algorithm.

The hill climbing algorithm searches for an optimal
solution by exploring neighboring solutions relative to the
current solution. Although it does not guarantee a global
optimal solution, it effectively searches for local optimal
solutions [57]. The hill climbing algorithm operates as
follows:

1. Set the initial solution.
2. Generate neighboring solutions from the initial solution

according to specific rules.
3. Compare the generated neighboring solutions with the

initial solution, and update the current solution if a
better solution is found.

4. Repeat this process until it converges to the optimal
solution.

The key to this algorithm lies in the generation of
neighboring solutions and the criteria for selecting a better
solution. Neighbors can be generated in various ways,
including by randomly selecting neighboring solutions or
incrementally modifying the initial solution. The criterion for
selecting a better solution varies depending on the nature of
the problem; however, in most cases, it involves comparing
objective function values of the solutions and selecting the
solution with the smallest value.

To design an optimization engine based on the hill climbing
algorithm to explore the optimal operational parameters
for the cluster tool, the main components were defined

as listed in Table 4. Because it is difficult to determine
exactly how each component of the initial solution affects
the objective function, various adjustments were made to the
initial solution to generate multiple neighboring solutions.
Subsequently, the same objective function was applied to the
generated neighboring solutions to compare the results and
expand the search process for the optimal solution in various
ways to determine how the components of the initial solution
affect the results of the objective function, which is expected
to help us find a high-quality solution.

The optimization engine sets the existing operational
parameters stored in the MES as the initial solution and
searches for the optimal operational parameters. For this
purpose, the base model of the digital twin module was set as
the objective function, and a manufacturing simulation was
performed based on the generated neighboring operational
parameters.

To achieve this, the base model of the digital twin module
is set as the objective function, and the generated neighboring
solutions, which are the operational parameters, are used
as simulation input data for manufacturing simulation. The
output data from the simulation includes the input operational
parameters and resulting cycle time values. The optimization
engine selects the neighboring solution with the shortest
cycle time from these results, i.e., the improved operational
parameters and updates the current solution accordingly.
When configuring the input data for the next simulation
episode based on the improved operational parameters,
analyzing the impact of each operational parameter item
on the simulation results is possible. To achieve this,
multiple neighboring operational parameters are generated by
sequentially adjusting the values of each item in the current
and newly generated operational parameters. The generated
data are then utilized as input data for subsequent simulation
episode. Fig. 9 illustrates an example of the data configuration
for updating the current solution and generating neighboring
solutions.

This series of processes is defined as one episode, and
the optimal operational parameters are derived by repeating
a specified number of episodes. Fig. 10 illustrates the
process of the optimization engine searching for the optimal
operational parameters based on the hill climbing algorithm.

IV. APPLICATION APPROACH
A. SCENARIO AND APPLICATION OF DIGITAL TWIN
FRAMEWORK
The scenario configuration for optimizing the operational
parameters of the cluster tool defined in this study is shown
in Fig. 11. During the scenario execution, the cumulative
episode count increased for each episode. At the beginning
of an episode, the simulation engine assigns the initial input
data as parameters to the base model and performs virtual
manufacturing. After completing all manufacturing activities,
the simulation engine merges the assigned parameters with
the simulation results and outputs them. Subsequently, based
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TABLE 4. Definition of hill climbing algorithm elements for optimization.

FIGURE 9. Data configuration example for updating the current solution and generating neighboring solutions.

on the simulation results, the optimization engine performs
the optimization tasks, initializes the existing simulation
environment for the next episode, and ends the episode. The
simulation engine determines whether the current episode
has reached the number of times specified by the user; if
not, it returns to the step before starting the episode and
performs the next episode; if it has, it outputs the final
result to end the optimization scenario of the operational
parameters.

This simulation-optimization iterative structure is imple-
mented based on the repetitive search process of the hill
climbing algorithm. It is designed to perform a sufficient
number of iterations, as set by the user, to evaluate the impact
of changes in each component of the operational parameters
on the cycle time and to identify the key operational
parameters.

The implementation environment of the digital twin
application proposed in this study is listed in Table 5. Each
unit component constituting the cluster tool was modeled
using Autodesk Inventor Professional 2024, CAD software,
and saved in STL file format. Subsequently, Blender, a 3D
graphics production software, was used to render the STL
files to match the texture and color of the real-world objects,
converting them into DAE files, which were then stored
in a Unity environment. Unity implements the base model
through the inheritance hierarchy and component settings of
the stored objects, and the simulation engine is implemented
through object-oriented programming using C# in Visual
Studio 2022 based on the base model. The optimization
engine was implemented using Python in the Visual Studio
Code environment and executed in the Anaconda3 virtual
environment. The input and output files were in the form
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FIGURE 10. Sequence to explore optimal operational parameters based on a hill climbing algorithm.

TABLE 5. Implementation environment for digital twin applications.

of CSV files, and the user interface of the application was
implemented using Unity UI.

1) IMPLEMENTATION APPROACH FOR THE DIGITAL TWIN
MODULE
To construct the backbone of the digital twin module,
which is the base model, each modeled object was arranged
according to the appropriate hierarchy and the components
required for the object were clearly defined. First, to adjust
the position and rotation of the objects, the location and
rotation information of the components in 3D space are
input based on actual equipment specifications. Additionally,
the visualization settings were set to consider the material,
color, shadows, and reflections of real objects. Setting
up the physics engine involves specifying details such

as gravity, air resistance, collision detection, and reaction
to enable interactions between objects, thereby enhancing
the reliability of the simulation. Finally, object-oriented
programming is used to implement the behavior, state, and
detailed settings for the interaction between objects to control
their behavior and state. Fig. 12 shows an example of the
hierarchy and component setting information of the base
model implemented in this study. Tables 6−9 show the details
of the information model and the contents used to explain
each item.

The simulation engine performed manufacturing simula-
tions based on this implemented base model. To achieve
this, we implemented a previously defined scenario and
combined classes to perform the detailed procedures of the
scenario. The class configuration of the simulation engine
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FIGURE 11. Scenario diagrams to optimize operational parameters.

TABLE 6. Schema of coordinates component in the base model.

implemented in this study is shown in Fig. 13. The four main
classes and their roles are as follows:

• Scenario Manager: A class that performs the predefined
simulation scenario.

• Job Manager: A class that performs manufacturing
simulations based on the base model of the cluster tool.

• Data Input/Output Manager: A class that inputs and
outputs the data required for the simulation.

• Optimization Manager: A class that calls the optimiza-
tion engine.

During virtual manufacturing activities performed through
the Job Manager class, the wafer state transitions through the
current wafer position and operation state of the cluster tool

components, and the time spent in each state is measured and
stored as the simulation results. For this purpose, as shown in
Fig. 14, the wafer transitions its state by determining whether
it interferes with trigger cubes installed in each component of
the cluster tool.

2) IMPLEMENTATION APPROACH FOR THE OPTIMIZATION
MODULE
The optimization engine of the optimization module was
run at the end of each episode to optimize the operational
parameters. This optimization process is based on the hill
climbing algorithm, which sets the operational parameter
with the smallest cycle time from the simulation result data
as the optimal solution. The optimal solution is determined
based on the simulation input data, and neighboring solutions
are generated by multiplying the optimal solution by a
certain value. During the generation of neighboring solutions,
the ratios of the optimal and neighboring solutions are
sequentially adjusted to assess how each operational param-
eter affects productivity enhancement. Table 10 lists the
pseudocode of the hill climbing algorithm for performing the
optimization process. The next episode of the manufacturing
simulation was performed based on the simulation input data
generated by the optimization engine. Fig. 15 illustrates the
data input and output processes during the simulation and
optimization processes.

B. IMPLEMENTATION AND RESULTS OF THE DIGITAL
TWIN APPLICATION
To demonstrate the applicability and validity of the proposed
framework, an example of implementing the digital twin
application is presented. For security reasons, instead of
using actual semiconductor manufacturing equipment, vir-
tual equipment simulating the manufacturing process was
implemented based on publicly available patent data. During
the simulation process, each module of the cluster tool
executed only one operation at a time, and unexpected
events such as equipment failures were not considered.
In addition, a manufacturing simulation of a single process
recipe was performed for 25 wafers, and the subunits
of the parallel process module were assigned the same
operational parameters. The reason for assigning identical
operating parameter values to the sub-units of the parallel
process module is that performance differences between
chambers can affect wafer yield. To ensure consistent product
quality, chamber matching is essential, which involves
minimizing parameter differences between chambers [58].
In manufacturing environments, permissible ranges for these
operating parameters are established, and sensors are used
to maintain consistent parameter values to ensure pattern
quality [59]. Additionally, standardization through chamber
matching contributes to improved equipment management
and operational efficiency.

An example screen of the digital twin application imple-
mented in this study is shown in Fig. 16. A represents the
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FIGURE 12. Example hierarchy and component setting for implementing a base model.

TABLE 7. Schema of visualizations component in the base model.

digital twin module that performs manufacturing simulation
based on the base model of the cluster tool. In this example,
16 machines are deployed to consider the graphics resources
of the computer. B is the user interface screen, where users
can control the camera position to visualize the digital twin
environment through buttons. The current progress of the
episode, simulation status of each piece of equipment, and
optimization status are visualized using LED indicators.
C is the optimization module that optimizes the operational
parameters considering the cycle time.

When the digital twin application was executed, opera-
tional parameters and process recipes were set as simulation
input data, and the manufacturing simulation was conducted
by assigning these parameters to each base model of the
cluster tool. Subsequently, the optimization module explores
the operational parameters with the highest productivity
based on the stored simulation result data and generates
operational parameters for the next episode based on this,
updating the simulation input data. This process was repeated
until a user-defined number of episodes was reached, and

VOLUME 12, 2024 122093



J. Hwang, S. D. Noh: Digital Twin-Based Optimization of Operational Parameters for Cluster Tools

TABLE 8. Schema of physics component in the base model.

TABLE 9. Schema of scripting component in the base model.

TABLE 10. Pseudocode for a hill-climbing algorithm to optimize operational parameters.

the accumulated simulation results and optimal operational
parameters were utilized for business purposes.

An experiment was conducted to determine the operational
parameters using a previously implemented digital twin

application. In this experiment, 100 simulation-optimization
episodes were repeated to select the operational parameters
with the smallest cycle time, and the accumulated simulation
data were analyzed. The initial operational parameters
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FIGURE 13. Class organization of a simulation engine.

FIGURE 14. Example of setting up state transitions for undetected (a) and detected (b) wafers using a trigger cube.
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FIGURE 15. Data input/output process in simulation and optimization.

FIGURE 16. Example of a screen from an implemented digital twin application.

consisted of the speed settings of the actuators comprising
the transport and process modules of the cluster tool, with a
total of 23 items. In the process of generating neighboring

solutions using the hill climbing algorithm, values ranging
from 98% to 102% of the initial solution were sequentially
arranged, as shown in Fig. 17.
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TABLE 11. Results of optimizing operational parameters.

FIGURE 17. Creating neighboring solutions via cascading arrays.

Fig. 18-(a) shows a graph with the arithmetic mean of the
actuator speed settings on the x-axis and the resulting cycle
time on the y-axis. The optimal solution for a single episode is
marked in redwhile neighboring solutions aremarked in blue.
Fig. 18-(b) presents a graph with the number of episodes on
the x-axis, and the corresponding cycle time and arithmetic
mean of the actuator speed settings on the y1- and y2- axes,
respectively. In the initial phase of the optimization scenario,
as the number of episodes increases, the average actuator
speed settings tend to increase, resulting in a decrease in
cycle time. However, after the number of episodes exceeds
approximately 70, the average actuator speed settings exhibit
unstable fluctuations with a slight upward trend, and the cycle
time converges to approximately 440 seconds.

To understand the impact of individual operational param-
eters on the reduction in cycle time, a graph was plotted with
the sequence number of operational parameter items on the x-
axis, cycle time on the y-axis, and the ratio of the current value
to the initial value of the actuator speed settings on the z-axis,
as shown in Fig. 19. This graph shows that the actuator speed
settings were evenly scattered until the cycle time converged;

however, as the cycle time converged, the speed settings of
certain actuators increased sharply.

Table 11 presents the optimization results for the oper-
ational parameters obtained through this demonstration.
‘‘As is’’ represents the results corresponding to the initial
operational parameters, whereas ‘‘To be’’ represents the
results corresponding to the operational parameters with the
lowest cycle time among the 100 episodes. The cycle time
improved by 41.14% compared to the previous time, with the
average speed setting of the actuators composing the transport
module increasing by 155.34%, and the average speed setting
of the actuators composing the process module increasing by
85.79%.

Studies on the improvement of wafer productivity in cluster
tools have been conducted on different equipment models and
processes, making direct comparisons challenging. However,
from the perspective of wafer productivity improvement,
the 41.14% cycle time reduction achieved in this study
significantly surpasses the 10.00% improvement achieved by
LeBaron et al. through step time optimization [15], the 6.90%
improvement achieved by Watanabe through the elimination
of misunderstanding logics [16], the 3.07% improvement
achieved by Kim et al. through the optimization of scheduling
variables [19], and the 13.45% improvement achieved by
Sivasubramanian et al. through reticle management using a
rollout policy [46]. These results suggest that the method-
ology proposed in this study may be more effective in
improving wafer productivity.

Several significant experimental results were observed in
the example of determining the operational parameters. First,
the cycle time tended to converge after a certain point as the
simulation-optimization iterations were repeated. This result
shows that simple changes in the operational parameters
are not sufficient to sustainably improve productivity. This
suggests that productivity improvement requires a compre-
hensive consideration of various factors, such as equipment
specifications and wafer transfer scheduling, in addition to
the operational parameters.

Furthermore, in the simulation-optimization process for
the example equipment model, it was found that the opera-
tional parameters of the transport module had a greater impact
on improving the cycle time after a certain point than those
of the process module. Through this analysis, it is expected
that operational parameters that have a greater impact on
productivity can be identified not only for this model but also
in the process of determining operational parameters for other
equipment. This can provide users with valuable insights into
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FIGURE 18. Graph of cycle time vs. average of actuator speed (a) and Graph of number of episode vs. cycle time and average of actuator speed (b).

FIGURE 19. Graph of parameters, cycle time, and a ratio of current value
to an initial value.

formulating operational strategies for actual equipment and
laying the foundation for optimizing production processes.
Moreover, it is expected to minimize the wastage of human
resources and operational inefficiencies in the improvement
of actual equipment.

V. CONCLUSION
Technological advancements brought about by the Fourth
Industrial Revolution require large amounts of data pro-
cessing and analysis, driving the demand for related
semiconductor products. In this context, the importance
of manufacturing and supply chain management in the
semiconductor industry is emphasized, and semiconductor
manufacturers focus on efficient production management
and technological development. Cluster tools are essential
equipment in the semiconductor manufacturing process,

and various research and improvement efforts are being
made to utilize them efficiently. However, efficient operation
and management are still a challenge owing to various
physical and system limitations. Therefore, there is an
increasing need for a system that predicts and optimizes
productivity based on the actual operational parameters of
cluster tools.

As an alternative solution to these problems, this study
proposed a framework for determining the operational param-
eters of semiconductor manufacturing cluster tools using
digital twins and demonstrated its implementation through
a specific example. Through manufacturing simulations and
operational parameter optimization based on digital twins,
we were able to significantly reduce the cycle time of cluster
tools in wafer fabrication.

These research findings extend beyond mere productivity
enhancement, considerably influencing the development of
operational strategies for actual equipment and optimization
of production processes. First, by utilizing digital twin-based
simulations to pre-test and optimize real processes, on-site
trial and error can be minimized. This approach reduces
the risks faced by engineers due to the use of hazardous
chemicals and prevents unexpected equipment failures or
product quality degradation. Furthermore, by optimizing
based on verified MES data rather than relying on the
expertise of equipment manufacturers, it contributes to the
establishment of operational strategies for actual equipment,
using cycle time improvement data derived from changes
in operational parameters. Ultimately, this is expected to
contribute to cost reduction and improved efficiency in
human resource allocation in manufacturing environments.

Furthermore, by visually clarifying the manufacturing
simulation process of cluster tools through the application
of digital twin technology, it is anticipated that users will
be provided with insights into the complex interactions that
occur within cluster tools.
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This study has some limitations that need to be addressed
in future research. First, the example of the base model imple-
mented in the digital twin application was based on publicly
available patent data for security reasons; thus, it requires
validation through the application of actual equipment to
increase the reliability of simulation results. Second, the
range of input operational parameters may not encompass all
factors affecting productivity in wafer manufacturing. Con-
ducting research that considers comprehensive factors such
as the physical limitations of equipment specifications and
productivity changes depending on wafer transfer scheduling
methods would yield more reliable results. Third, this study
is limited to a single process. It is necessary to analyze and
generalize the experimental results in various situations, such
as when different process recipes are performed for different
wafers on the same carrier [60]. Finally, this study did not
consider the impact of operational parameter changes on
component failures or defects. Excessive use of components
may not only lead to component failure due to deterioration
but also reduce the reliability of the equipment and eventually
affect wafer quality due to physical factors. Considering these
factors will lead to further empirical research.
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