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ABSTRACT Federated Learning (FL) has emerged as a promising paradigm for privacy-preserving dis-
tributed Machine Learning (ML), enabling model training across distributed devices without compromising
data privacy. However, the impact of hyper-parameters on FL. model performance remains understudied
and most of the existing FL studies rely on default or out-of-the-box hyper-parameters, often leading to
suboptimal convergence. This study specifically investigates the intricate relationship between key hyper-
parameters—Ilearning rate, epochs per round, batch size, and client participation ratio (CPR)—and the
performance of FL models on two distinct datasets: CIFAR-10 using ResNet-18 and FashionMNIST
using a simple CNN model. Through systematic exploration on these datasets, employing a centralized
server and 200 clients, we elucidate the significant impact of varying hyper-parameters. Our findings
underscore the importance of dataset-specific hyper-parameter optimization, revealing contrasting optimal
configurations for the complex CIFAR-10 dataset and the simpler FashionMNIST dataset. Additionally,
the correlation analysis offers a deep understanding of hyper-parameter inter-dependencies, essential for
effective optimization. This study provides valuable insights for practitioners to customize hyper-parameter
configurations, ensuring optimal performance for FL. models trained on different types of datasets and
provides a foundation for future exploration in hyper-parameter optimization within the FL. domain.

INDEX TERMS Communication cost, federated learning, hyper-parameter optimization.

I. INTRODUCTION

Traditional ML approaches collect data from multiple sources
and aggregate it on a central server for model training.
However, this centralized data collection raises significant
privacy concerns, especially when dealing with sensitive or
confidential data [1]. To effectively handle these privacy
concerns, FL was proposed by Google in 2016 [2] and has
rapidly risen as a promising paradigm for training ML models
in a decentralized manner while preserving data privacy [3].
FL addresses these concerns by enabling collaborative model
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training without the need for directly sharing raw data [1].
Instead of centralizing data, the FL framework involves
training models locally on devices or clients where the data
is generated. This decentralized approach eliminates the
need for data transmission or centralized storage, mitigating
potential privacy risks associated with data breaches or
unauthorized access [4], [5]. As a result, FL has gathered
significant attention in applications where data privacy is a
critical concern, such as healthcare, finance, and personalized
user experiences on mobile devices [6].

Despite the numerous advantages of FL due to its
decentralized nature, it introduces additional complexities
compared to centralized ML as well. Factors such as

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

120570

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024


https://orcid.org/0000-0003-4858-1919
https://orcid.org/0000-0001-6246-6218
https://orcid.org/0000-0002-4964-6609

M. Kundroo, T. Kim: Demystifying Impact of Key Hyper-Parameters in FL

IEEE Access

system heterogeneity across clients, statistical heterogeneity,
communication constraints, and the inherent dynamics of
distributed learning pose unique challenges, especially while
selecting hyper-parameters [7]. The decentralized nature
of FL introduces system heterogeneity, where clients may
have varying computational capabilities, memory constraints,
and diverse hardware specifications. Additionally, statistical
heterogeneity arises due to the non-independent and iden-
tically distributed (non-IID) nature of data across clients,
resulting in different data distributions [8]. These challenges
necessitate careful consideration while selecting hyper-
parameters, as sub-optimal choices can lead to convergence
issues, degraded performance, and increased communication
overhead [9].

In many FL studies, a common yet ineffective strategy
is the adoption of default out-of-the-box hyper-parameters,
which are typically optimized for centralized settings [10].
While this approach simplifies the training process, it often
proves to be ineffective within the FL context [11]. Ill-suited
hyper-parameters can lead to a number of issues, including
slow convergence rates, unstable training dynamics, sub-
optimal model accuracy, and inefficient resource utiliza-
tion [12]. Conversely, meticulously tuned hyper-parameters
can unlock the full potential of FL models, enabling
faster convergence, improved generalization capabilities, and
enhanced overall performance [13]. This, in turn, translates
into tangible benefits, such as reduced computational costs,
improved model deployment times, and better-quality predic-
tions, which are critical for real-world applications [11].

Furthermore, the inter-dependencies between various
hyper-parameters in FL settings necessitate a comprehensive
understanding of their intricate relationships and trade-offs.
Failure to account for these inter-dependencies can result in
configurations that appear optimal in isolation but ultimately
under-perform when combined [14]. Therefore, a holistic
approach to hyper-parameter optimization, involving system-
atic exploration and analysis of these inter-dependencies,
is essential for realizing the full potential of FL. models.

This study aims to conduct an analysis of hyper-parameter
relationships and their impact on the performance of
FL models using CIFAR10 and FashionMNIST dataset.
Specifically, we focus on key hyper-parameters including
learning rate, epochs per round, batch size, and CPR. The
overarching objective is to elucidate the intricate relationships
and inter-dependencies among these hyper-parameters and
their influence on the convergence dynamics and overall
performance of models across datasets of different complex-
ities. By delving into the complexities of hyper-parameter
optimization in the FL domain, we aim to contribute
significantly to improving model performance by ensuring
that FL. models are trained using optimal hyper-parameters.
Through a series of systematic experiments, we seek to
enhance our understanding of the impact of hyper-parameter
choices and their inter-dependencies on model performance
and datasets, providing valuable guidance for practitioners in
optimizing FL systems.
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This study holds significant importance and timeliness in
advancing the field of FL by addressing a crucial aspect of
model optimization — hyper-parameter tuning. By shedding
light on the complex relationships between key hyper-
parameters, this research paves the way for improved model
convergence strategies, enabling more efficient and effective
training and deployment of FL in diverse applications.

The key contributions of this study are as follows:

1) Detailed analysis of hyper-parameter relationships
in FL across diverse datasets: Through systematic
experimentation and rigorous evaluation on both
CIFAR-10 and FashionMNIST datasets, this study pro-
vides a in-depth analysis of the intricate relationships
between learning rate, epochs per round, batch size,
and CPR. This analysis unveils their collective impact
on FL model performance across datasets of varying
complexity.

2) Insights into enhancing model convergence and
mitigating associated challenges: By unravel-
ing the inter-dependencies among these critical
hyper-parameters for both complex (CIFAR-10) and
simpler (FashionMNIST) datasets, the study offers
valuable insights into mitigating convergence chal-
lenges and optimizing the training process in FL
settings for a range of data complexities.

3) Comparative analysis of hyper-parameter dynam-
ics across datasets: The study highlights how optimal
hyper-parameter configurations can vary significantly
between datasets of different complexities, emphasiz-
ing the importance of dataset-specific tuning in FL
systems.

4) Correlation analysis to understand hyper-parameter
inter-dependencies: Through a detailed correlation
analysis, the study uncovers the inter-dependencies
between various hyper-parameters, providing a deeper
understanding of their intricate relationships and trade-
offs.

The rest of this paper is organized as follows: Section II
introduces related work. Section III discusses an overview
of FL, hyper-parameters, and their significance in FL
theoretically. The methodology is presented in Section IV
along with the used experimental setup and overview of the
methodology adapted. In Section V, we present analysis and
discussion of the results. Finally, the paper is concluded with
conclusions and future scope in Section VI.

Il. RELATED WORK

In 2016, FL was proposed as a privacy-preserving approach to
train ML models on decentralized data by Konecny et al. [2].
This groundbreaking work laid the foundation for a new
paradigm in distributed learning, where data remains
localized on individual devices, addressing critical pri-
vacy concerns. Despite its benefits, FL. presents several
challenges, including communication overhead, data het-
erogeneity, and maintaining model performance across
diverse datasets [15] Since its inception, numerous federated
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optimization algorithms have been developed to enhance the
efficiency and performance of FL. One of the earliest and
most fundamental algorithms is FedAvg [6], which has been
designed specifically for communication-efficient training in
FL settings. This algorithm introduced a novel approach to
aggregate model updates from distributed clients, facilitating
collaborative learning while minimizing communication
overhead.

Building upon the success of FedAvg, researchers have
explored various techniques to further improve the perfor-
mance of FL systems on both server side [16], [17] and client
side [18], [19]. Many approaches have been employed on the
server side to enhance convergence and address heterogeneity
in the data. Reddi et al. [16] proposed the use of adaptive
optimization methods, such as ADAGRAD [20], YOGI [21],
and ADAM [22], to improve the convergence of federated
models, particularly in scenarios with heterogeneous data
distributions across clients. The effect of different optimizers,
Adam [22] and SGD [23], are analyzed in [24], where
they focused solely on the effects of Adam and SGD
in FL. Xin et al. proposed FedSSO where they used a
server-side second-order optimization method to improve the
performance of FL. In addition to server-side optimizations,
several approaches have also been employed on the client
side like [11], [18], [25], and [26] and many more. One
notable example that improves on both client and server side
is MOCHA [27], a communication-efficient optimization
method that trains distinct yet related models for each device
using a multi-task learning framework. This approach aims to
overcome communication-related challenges inherent in FL
by leveraging the shared representations across tasks, leading
to more efficient model updates and reduced communication
costs.

As the field of FL continues to evolve, researchers have
investigated the impact of various hyper-parameters like
learning rate, number of epochs, batch size etc on the perfor-
mance and convergence of federated models. Learning rate
was shown to have a significant effect on the performance of
ML models [28] and is expected to impact the performance of
FL models as well. In this regard, Koskela and Honkela [18]
conducted an analysis of the effects of different learning
rates in the context of FL, providing valuable insights into
this critical hyper-parameter. Brendan McMahan et al. [6]
also compared the fixed and adaptive learning rates in FL
settings highlighting the importance of dynamically adjusting
learning rate to account for the distributed and non-iid nature
of data in FL systems. Moreover, they also explored a variety
of learning rates for FedAvg and FedSGD to check the
influence of different learning rates on the performance.
Reddi et al. found that lower learning rates may help achieve
more stable and accurate models, especially in heterogeneous
environments [16].

Number of epochs is another significant hyper-parameter
that impacts the performance of ML algorithms in gen-
eral [29], [30] and its effect has also been seen in FL as
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well. The results in [19] show that increasing the number
of local epochs from 1 to 16 per round can significantly
improve the convergence speed of the federated model over
communication rounds. However, [31] demonstrates that very
high epoch values (e.g. 20 epochs) combined with large batch
sizes can lead to poor final performance, highlighting the
need to carefully tune these hyper-parameters, which also
implies the need to study these hyper-parameters together.

Similarly, batch size not only helps in managing the
memory but is also known to impact the convergence in
ML [32], [33] as well as in FLL models. Liu et al. [25]
quantified and leveraged the interplay of the number of
local update steps and heterogeneous batch sizes across
clients for FL and showed larger batch sizes can reduce the
number of communication rounds needed, thereby improv-
ing communication efficiency. Study like [34] shows that
smaller batch sizes generally promote stable convergence and
better generalization in FL, similar to centralized training.
Conversely, very large batch sizes can cause issues like
divergence, poor generalization, and slower convergence
times in FL settings. One study suggests batch sizes in
the range of 32-64 can strike a good balance between
convergence speed and stability for common FL tasks [35].
In addition to the common hyper-parameters between FL
and ML, many hyper-parameters specific to FL, could also
potentially effect the convergence. However, the effects
of such hyper-parameters on convergence has not been
studied extensively yet and need further investigations. Our
survey revealed only few studies [26], [36] explored the
influence of CPR and learning rates to shed the light on the
interplay between these factors and their impact on model
performance.

Besides, the individual effects of hyper-parameters on
model convergence, only few studies have attempted to
find the interplay between two or more hyper-parameters.
These include works by Khodak et al. [11] who incorporated
different learning rates and epoch sizes in their study,
although they did not dig into a comprehensive analysis or
discussion of their effects. FedTune [36], on the other hand,
explicitly investigated the impact of varying the number of
clients and epochs, contributing to a deeper understanding
of these hyper-parameters in FL settings. Additionally,
Kuo et al. [37] explored the role of learning rates and batch
sizes, further enriching the body of knowledge surrounding
hyper-parameter optimization in FL. Different epochs and
batch sizes are also evaluated by [38] in shallow details.
Table 1 presents a summary of key hyper-parameters used
across various studies, including learning rate, epochs per
round, batch size, and CPR.

Based on the survey of literature, we found that none
of the studies has specifically targeted to study the cause
and effect relation of all the important hyper-parameters
in FL. While certain studies cursorily touched the subject
of learning rates or epochs, a in-depth analysis of other
critical hyper-parameters remains prominently absent. This
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TABLE 1. Summary of the hyper-parameters used in literature.

Ref. Year Le;;l:;ng pg‘pl({)(c)ll:; d Batch Size | CPR
[6] 2017 v X X X
[18] 2018 v X X X
[19] 2019 X v X X
[26] 2019 v X X v
[16] 2020 v X X X
[11] 2021 v v X X
[31] 2021 X v X X
[34] 2021 X X v X
[35] 2021 X X v X
[36] 2022 X v X v
[25] 2023 X X v X
[37] 2023 v X v X
[38] 2023 X v v X
This study v v v v

gap in the existing literature became the the motivation
for our endeavor to undertake an exhaustive exploration of
prominent hyper-parameters in FL, analyzing their complex
relationships with model performance.

Ill. PRELIMINARIES

A. FEDERATED LEARNING

FL represents a decentralized approach for training ML mod-
els by utilizing extensive distributed datasets. This method
ensures the privacy of data during training by keeping datasets
on clients, owned by organizations or individuals who
prefer not to disclose their information. Under centralized
supervision, models are trained locally on these clients.
Periodically, a server collects the learned parameters to
update the global model, subsequently distributing it back to
clients for local training and inference. The training process
in FL typically occurs in rounds, each comprising of the
following steps.

1) FL server chooses a global ML model that is to be
trained on the client’s data.

2) A subset of clients is randomly selected and the global
model is broadcasted to the selected clients.

3) The clients upon receiving the global model, trains the
model using its local data to update its weights and then
transmits the updated weights to the server.

4) The server receives the updated model weights from all
clients and aggregates them to construct a new global
model.

5) The new global model is then again broadcasted to
all the clients and these steps continue till the model
converges.

FL aims to achieve model improvement while preserving
privacy by keeping data localized this decentralized training
methodology is particularly useful in scenarios where data
privacy is a priority or when centralizing large datasets is
impractical.

B. HYPER-PARAMETERS AND THEIR SIGNIFICANCE IN FL
In the realm of ML, hyper-parameters refer to external config-
urations or settings predetermined before the commencement
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of the training process. These parameters, distinct from those
learned from data, are defined by practitioners or determined
through optimization techniques. Hyper-parameters play a
crucial role in shaping the behavior and performance of
the learning algorithm [39]. A hyper-parameter, identified
as a variable that significantly influences the learning
process by affecting the parameters or weights learned
by a ML algorithm, is aptly termed as such due to its
distinctive role at the “top level”” of the learning hierarchy.
This nomenclature emphasizes its pivotal position with a
profound impact on the overarching learning process and
the subsequent determination of model parameters. The
meticulous selection of these hyper-parameters is important,
as it directly shapes the trajectory and speed of the learning
algorithm. Recognizing the importance of hyper-parameters
is integral to achieving optimal model performance and
ensuring effective training outcomes in ML applications.
Several critical hyper-parameters, involved in FL and their
significance is given below:

1) LEARNING RATE

The learning rate, a critical hyper-parameter, that plays a
pivotal role in determining the size of steps taken during the
optimization process and influences how quickly or slowly
a model converges to the optimal set of parameters during
training [28]. Represented as a scalar value, the learning rate
scales the gradient descent or optimization updates applied
to the model weights. The significance of the learning rate
includes:

1) Affects model convergence: An appropriately set
learning rate enables efficient navigation of the error
surface to reach an optimal or near-optimal minimum.
Too small a rate slows this journey down while too large
a rate overshoots the destination [29].

2) Impacts training stability: Choosing the right learning
rate is crucial to ensure training stability and avoid
fluctuations or divergent behavior. Overlarge rates tend
to cause large weight updates leading to oscillating
losses. Appropriate rates maintain steady smooth
convergence.

Therefore, choosing an optimal learning rate is crucial for
both model convergence and performance. The learning rate
is a crucial factor that affects the convergence, stability, and
efficiency of training ML models. Striking the right balance
by carefully tuning the learning rate is essential for achieving
optimal performance and ensuring that the model generalizes
well to unseen data.

2) NUMBER OF EPOCHS

The term “epoch™ in ML refers to one complete iteration
of training a model. The number of complete runs required
to prepare an algorithm efficiently is specified in terms
of epochs, and the model’s internal parameters are mod-
ified after each epoch. Epochs per round is an important
hyper-parameter in FL that controls how many local epochs
or training iterations each client performs on their local data
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before sending an update to the central server. The number of
epochs needed is related to the size of the dataset and learning
rate [30]. As the size of the dataset increases, the number of
epochs required for convergence also increases with respect
to the specified learning rate [29]. The significance of epochs
per round in FL includes:

1) Controls client computation vs. communication trade-
off: More local epochs means clients do more compu-
tation in parallel before communication. This reduces
communication overhead but can lead to client models
diverging too much.

2) Affects model performance: Generally, more local
epochs leads to better client model performance up to
a point before overfitting. But too many epochs may
cause client model divergence.

3) Impacts system efficiency: With more compute inten-
sive clients, fewer local epochs may allow involving
more available clients in each round at the expense of
potentially decreased model accuracy.

In summary, determining the optimal number of epochs
per round in FL involves considering trade-offs between
training efficiency, model performance, communication over-
head, and global model consistency. Careful tuning of
this hyper-parameter is crucial for achieving efficient and
effective FL outcomes.

3) BATCH SIZE

Batch size is also one of the most important hyper-parameters
and it represents the number of samples used in one forward
and backward pass through the network. Batch size controls
the amount of local data used in each training iteration on the
clients. The significance of batch size includes:

1) Affects model accuracy: Larger batch sizes tend to
improve model accuracy, but can reach a plateau or
even diminish returns after a point.

2) Impacts computational efficiency: Larger batches
allow more parallelism and GPU utilization, leading to
faster training time. However, extremely large batches
may not improve throughput and can even degrade
performance.

3) Controls client memory usage: Larger batches require
more temporary memory during client gradient com-
putation. More resource-constrained clients may only
support smaller batches.

Overall, the batch size in FL is a crucial hyper-parameter
that requires careful consideration. It involves balancing
communication efficiency, global model consistency, local
model generalization, and resource constraints. The optimal
batch size is often determined through experimentation
and fine-tuning to achieve efficient and effective FL
outcomes.

4) CLIENT PARTICIPATION RATIO
CPR in FL refers to the fraction or percentage of total clients
that actively participate in a specific training round. It is
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a hyper-parameter that determines the proportion of clients
whose local models contribute to the global model update
during a FL round. Its significance includes:

1) Affects model performance: Higher participation
allows aggregating updates from more clients, improv-
ing accuracy and generalization. But too high a ratio
can diminish returns.

2) Impacts training efficiency: Lower participation per-
forms more local epochs on each selected client. This
enables faster rounds, but can reduce accuracy if too
few clients participate.

3) Relates to system scalability: Participation ratio must
balance with increase in number of clients. As more
clients enroll, keeping participation ratio constant
allows scaling up while maintaining statistical signif-
icance.

4) Controls failure tolerance: When participation is low,
failure of few clients has higher impact. Higher ratios
make the system more fault tolerant.

An ideal participation ratio ensures statistical significance
while maximizing accuracy and system efficiency. Values
typically range from 5-50% depending on the number of
clients and their capabilities. CPR in FL is a critical parameter
that impacts communication efficiency, resource utilization,
convergence dynamics, model robustness, and generaliza-
tion capabilities. Careful tuning of this hyper-parameter is
essential to achieve a balance that aligns with the goals and
constraints of the FL scenario at hand.

IV. METHODOLOGY

In this study, our main objective is to elucidate the influence
of crucial hyper-parameters within the complex landscape
of FL systems. We focus specifically on four pivotal hyper-
parameters - the learning rate, epochs per round, batch size,
and CPR. There are other hyper-parameters as well involved
in FL process, but in this study we are focusing only on
four important hyper-parameters which are mentioned above.
Comprehending the roles played by these hyper-parameters
and their effects is fundamental to the overarching goal
of enhancing model performance and expediting training
convergence.

To conduct our investigation, we designed an experimental
FL framework including datasets and model architectures
discussed in subsection IV-A and subsection IV-B provides
an overview of our experiments.

A. EXPERIMENTAL SETUP

1) FL FRAMEWORK

For this study, a federated framework is developed using
Flower (v1.15) [40], that allows for flexible and scalable FL.
simulations. Flower was chosen for its ease of use and ability
to simulate a large number of clients. The framework was set
up with a central server and 200 client devices, enabling the
simulation of a realistic FL environment.
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2) DATASETS

o CIFAR-10 [41]: A widely used dataset in computer
vision, consisting of 60,000 32 x 32 color images across
10 classes. The dataset was split into 50,000 training
images and 10,000 test images. For our federated
learning setup, the training data was evenly distributed
among the 200 clients in an IID manner.

o FashionMNIST [42]: A dataset of Zalando’s article
images, consisting of 70,000 28 x 28 grayscale images
across 10 fashion categories. It includes 60,000 training
images and 10,000 test images. Similar to CIFAR-
10, the training data was evenly distributed among the
200 clients in an IID manner for the FL experiments.

The rationale behind using two datasets, CIFAR-10 and
FashionMNIST, for this experiment is to analyze the effects
of hyper-parameters in FL across different levels of dataset
complexity. CIFAR-10, a more complex dataset with color
images of various objects, contrasts with FashionMNIST,
which consists of simpler grayscale images of clothing
items. This diversity allows for a robust evaluation of how
hyper-parameter settings need to be adjusted based on dataset
characteristics, ensuring the findings are broadly applicable
and not limited to a single type of data.

3) MODEL ARCHITECTURES

o Resnet-18: For the more complex CIFAR-10 dataset,
we employed the ResNet18 [43] architecture. ResNet18
is a deep convolutional neural network known for its
ability to handle complex image classification tasks.
It consists of 18 layers and utilizes skip connections
to mitigate the vanishing gradient problem, making it
well-suited for the diverse and challenging nature of the
CIFAR-10 dataset.

o Simple CNN: For the simpler FashionMNIST dataset,
we used a lightweight convolutional neural network
taken from [6]. This CNN architecture consists of two
convolutional layers followed by max pooling, a flat-
tening operation, and two dense layers. It is designed to
be efficient for the less complex FashionMNIST dataset
while still providing good performance.

The selection of different architectures for CIFAR-10 and
FashionMNIST serves a dual purpose in our study. Firstly,
it reflects the inherent complexity of each dataset: the deeper
and more sophisticated ResNet18 model is well-suited for
CIFAR-10’s rich and diverse natural images, while the sim-
pler CNN architecture effectively classifies FashionMNIST’s
grayscale clothing items. More importantly, this deliberate
variation in both datasets and model architectures allows
us to investigate the impact of hyper-parameter effects in
FL. By examining how hyper-parameters behave across
these diverse scenarios, we aim to uncover insights that
are robust across different data complexities and model
architectures. This approach enhances the broader applica-
bility of our findings and can provides a more in-depth
understanding of hyper-parameter dynamics in varied FL
contexts.
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B. OVERVIEW OF EXPERIMENTS

We conducted four distinct set of experimentation’s on
each dataset to assess the impact of the hyper-parameters
holistically. First, we tuned the learning rate across values
of 0.3, 0.1, 0.01, 0.001 and 0.0001 while fixing all other
variables. This allowed us to isolate and analyze the effects
of varying learning rates. The chosen range of learning rate
values covers a broad spectrum, from relatively large values
(0.3) to small values (0.0001). This comprehensive range
increases the likelihood of capturing the optimal learning rate
or at least a suitable range for further fine-tuning. Second,
we adjusted the epochs per round to 1, 2, 4, 8, and 16 while
controlling other settings to examine the specific influence
of this factor. The selected range of values of epochs per
round covers a wide spectrum, from minimal local training (1
epoch) to more extensive local training (16 epochs). Our aim
was to check the influence of low, medium, and high epoch
values, so we chose the range from low to high by powers
of 2. This comprehensive range increases the likelihood of
capturing the optimal or near-optimal value for the given
problem and setup. It will also enables the us to observe
potential patterns or trade-offs that may emerge as the number
of epochs per round increases or decreases.

Third, we manipulated the batch size from 8 to 128 in
factors of 2 to reveal insights on the batch size-performance
interplay. The range of batch sizes selected (8, 16, 32, 64, 128)
are the most commonly used batch sizes in the literature, and
we wanted to see the effects of lower, intermediate, and higher
batch sizes on the training dynamics and model performance.
This range also enabled us to observe potential patterns or
trade-offs that may emerge as the batch size increases or
decreases. Finally, we explored CPR values of 5%, 10%,
and 25% to construct CPR-efficiency trade-off curves. The
range of CPR values selected is among the most common
values used in the literature, and usually in FL, a high
CPR is avoided due to communication and computational
constraints. By systematically varying the CPR across this
range while keeping other hyper-parameters constant, we can
isolate and study the specific influence of CPR on the FL
model’s behavior and performance.

Our serialized experiments allow us to identify the
independent effect of each hyper-parameter by carefully
adjusting one hyper-parameter at a time while maintaining
consistency of the other variables for each dataset. For our
experiments, we systematically explore a spectrum of values
for each hyper-parameter in our experiments as discussed
earlier, the default values were set at 0.001, 4, 32, and 5%
for learning rate, epochs per round, batch size, and CPR
respectively. The subsequent sections of this study show the
results obtained from these experiments, their implications
and exploration directions in the domain of FL and hyper-
parameter optimization.

V. RESULTS AND ANALYSIS
We provided a theoretical overview of the critical
hyper-parameters connected with FL and explained their
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significance in Section III. Building upon this foundation,
this section shows the in-depth analysis of the practical impli-
cations and effects associated with each hyper-parameter
within the context of a FL setup for each dataset. In our
upcoming discussion, we will explore how different settings
for hyper-parameters impact how well a FL system works.
This analysis goes beyond just theory and we will also
discuss what happens in real-world situations when we
change the values of these hyper-parameters. Specifically,
we will analyze the effects of hyper-parameters such as
learning rate, batch size, CPR, and the number of epochs
per round. By empirically evaluating these hyper-parameters,
we aim to understand their complex relationship and
determine their influence on critical aspects of FL, like
model loss and training time etc. This detailed examination
of hyper-parameter effects in FL. aims to provide practical
insights that go beyond theory. Our goal is to enhance our
understanding of the complexities involved in optimizing FL.
models for real-world applications.

A. CIFAR-10 DATASET
This subsection discusses the results obtained from experi-
ments done on CIFAR-10 dataset using Resnet-18.

1) IMPACT OF LEARNING RATE

To illustrate the impact of the learning rate in FL,
we conducted a series of experiments similar to that
of [44], systematically varying the learning rate while
maintaining other hyper-parameters at constant values.
The learning rates explored were chosen from the set
{0.0001, 0.001, 0.01, 0.1, 0.3}. The effect on loss is visually
represented in Figure 1, where the loss curves across rounds
are depicted for each learning rate.

—e— Learning Rate = 0.0001
-4-- Learning Rate = 0.001

)
0.8 i —+— Learning Rate = 0.01
“{ -%- Learning Rate = 0.1
i —%— Learning Rate = 0.3
206 3
z E
—

0.4

0 100 200 300 400 500 600 700 800 900 1000 1100
Rounds

FIGURE 1. Global loss over 1100 rounds with different learning rates on
CIFAR-10 dataset.

A notably high learning rate of 0.3 results in highly unsta-
ble training, characterized by higher loss and pronounced
fluctuations from one round to the next. Beyond 400 rounds,
the loss experiences an upward trend, indicating instability.
Similarly, a learning rate of 0.1 exhibits suboptimal per-
formance with noticeable oscillations in loss over rounds,
indicative of excessive variance and unsuitable for stable
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convergence. In contrast, a learning rate of 0.01 produces
a smoother loss curve with significantly fewer fluctuations,
but also loss starts to increase after 100th round. The loss
curve for a learning rate of 0.001 stabilizes early and exhibits
a gradual reduction over rounds, reflecting a balanced and
suitable learning rate. Conversely, the loss curve for a
learning rate of 0.0001 is smooth, consistently decreasing,
but it is constantly at a higher value than the 0.001 curve,
indicating slower convergence. In conclusion, a learning
rate of 0.001 emerges as the optimal choice, providing
a harmonious blend of stability, convergence speed, and
minimal loss among the examined values. Extremely small
rates impede training speed, while larger rates destabilize
and hinder model convergence. Furthermore, as evidenced
by Table 2, learning rate does not significantly influence
training time. Regardless of the learning rate values, all
trials take nearly the same amount of time to complete
1100 rounds. Consequently, selecting an optimal learning
rate in FL becomes crucial for enhancing the overall
performance.

2) IMPACT OF NUMBER OF EPOCHS PER ROUND

To elucidate the influence of the number of epochs per round
in FL, we conducted experiments with varying epoch sizes
across different trials while maintaining consistency in other
hyper-parameters. The chosen epoch sizes spanned the set
{1, 2,4, 8, 16}. The impact of different epochs per round on
loss is visually depicted in Figure 2. Utilizing 16 epochs per
round resulted in significant overfitting, initially exhibiting
a rapid decrease in loss. However, after 200 rounds, the loss
began to rise with increasing fluctuations, signaling excessive
local iterations without global updates and degradation of
convergence. Training with 8 local epochs led to the fastest
loss reduction among the tested values, swiftly reaching
near 0.2 in about 500 rounds. Nevertheless, the curve
displayed a slight increasing trend in later stages, indicating
the onset of overfitting and variations in loss throughout
the rounds, suggesting incomplete convergence. The loss
curve for 4 epochs per round exhibited a decreasing trend

—e— Epochs per Round = 1
-4- Epochs per Round = 2
—+— Epochs per Round = 4
~-#- Epochs per Round = 8

0.40 —¥— Epochs per Round = 16

D e R R T SO,

e s o R B, R A N

0 100 200 300 400 500 600 700 800 900 1000 1100
Rounds

FIGURE 2. Global loss over 1100 rounds with different epochs per round
on CIFAR-10 dataset.
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throughout the 1100 rounds, with fewer variations indicating
a better convergence rate compared to 8 and 16 epochs. Using
2 epochs per round provided more stable convergence, with
a smoother loss curve steadily decreasing in later rounds.
Remarkably, with only 1 local epoch per round, we observed
a smooth loss curve indicating robust convergence, with very
minor variations across rounds. Although the convergence at
the start was slower compared to other values, it outperformed
them at the end of the training.

The number of epochs per round is directly correlated with
training time, as evidenced in Table 2. Using fewer epochs
per round resulted in less training time, while higher epoch
values increased the time required for completion.

In summary, impact of the number of epochs per round in
FL is a crucial factor in determining the model’s performance
and training time. The provided analysis demonstrates that
using different numbers of epochs per round can significantly
affect the loss and training time of the model. The findings
indicate that employing a higher number of epochs per round
can lead to overfitting, as evidenced by the loss initially
decreasing rapidly but later exhibiting an increasing trend
with fluctuations. On the other hand, using a lower number
of epochs per round results in reduced training time but may
require more rounds to achieve convergence. The analysis
also emphasizes the importance of customizing the number
of epochs per round for each client to achieve optimal
performance in FL.

3) IMPACT OF BATCH SIZE

Similarly, we conducted experiments with different batch
sizes while keeping other hyper-parameters fixed. The batch
sizes tested were 8, 16, 32, 64, 128. Figure 3 depicts the
impact on loss. With a batch of 8, loss reduces rapidly
initially, reaching the minimum value of 0.18. However,
high fluctuations later signify instability. Increasing to sizes
16, initially shows good performance but the loss started to
increase after 500 rounds. With batch sizes of 32 and 64,
shows steadier decrease in loss up to 0.22 by round 1100.
The almost identical curves indicate marginal performance
difference between them. Further increase 128 shows slightly
slower convergence versus 32 and 64, achieving slightly
higher final loss. No settings overfit within 1100 rounds,
as shown by the consistent descent.

Table 2 shows the training times for different batch sizes.
We observe that lower batches like 8 take much longer
duration in contrast to higher batches, as size increase
reduces time. In summary, a batch of 8 starts converging
fastest but suffers in stability and efficiency. The 32 and
64 offers better reliability with smooth consistent conver-
gence comparable to higher batches, at intermediate time.
Thus, 32 demonstrates the optimal balance of performance
and time. Overall, batch size mildly impacts loss trajectory
without overfitting, making it useful to tune for efficiency
constraints.
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FIGURE 3. Global loss over 1100 with different batch sizes on CIFAR-10
dataset.

4) IMPACT OF CLIENT PARTICIPATION RATIO

Similarly, we evaluated different CPRs between rounds
while fixing other hyper-parameters. The CPR percentages
tested were 5%, 10% and 25%. Figure 4 visualizes the loss
trajectories for each CPR. With 5% CPR, though loss steadily
descends, noticeable fluctuations persist across 1100 rounds
and the loss is higher in comparison with others. Low partic-
ipation impairs statistical resiliency. Increasing to 10% CPR
markedly smooths out convergence with minimal variations
and lowest overall loss. Rapid convergence indicates 10%
enables better model updates. However, further increasing
CPR to 25% barely improves the loss curve over 10% across
rounds. Such diminishing returns imply excessive client
updates per round fail to enhance heterogeneity-constrained
learning.

0.50

—e— CPR=5
-4- CPR=10
0.45 —+— CPR =25

0.40

0.25
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FIGURE 4. Global loss over 1100 with different CPRs on CIFAR-10 dataset.

As per Table 2 shows, training time increases with higher
CPR percentages since aggregating grows more expensive.
In summary, while 5% CPR demonstrates fluctuating conver-
gence, 10% boosts consistency substantially and minimizes
loss. Unfortunately, beyond 10% CPR, loss of consecutive
rounds became stagnant, as client diversity starts to impede
progress. Therefore, convergence peaks at a moderate 10%
CPR before declining with higher rates. Fine-tuning the

120577



IEEE Access

M. Kundroo, T. Kim: Demystifying Impact of Key Hyper-Parameters in FL

percentage of active clients boosts model efficiency and
performance.

5) CORRELATION ANALYSIS

The correlation shown in Figure 5 highlights the inter-
dependencies between key parameters from our results.
It suggests trends such as the impact of epochs on training
time, the relationship between batch size and learning rate,
and the influence of CPR on various variables. Understanding
these correlations is essential for effective hyper-parameter
tuning and optimizing the performance of FL models.

1.0
IESOEEELE | -(0.064 -0.064 -0.095 N5 0. I

0.8

Epochs per Round =050/ Sl -0.04 -0.06
-0.6

EEvRaISiveR -0.064 -0.041 1 [-0.06
-04

[0i3:% -0.095 -0.06 -0.06

-0.2

Loss- 0.16 0.46 0.16

Training Time

FIGURE 5. Correlation matrix on CIFAR-10 dataset.

The main key take aways from this correlation are as

follows:

e There is a moderately positive correlation (0.16)
between learning rate and loss - higher learning rates
tend to increase loss. But it has very little correlation
with training time.

« Epochs per round shows a moderate positive correlation
with loss (0.46), indicating that a higher number of
epochs is associated with increased loss. Moreover, there
is a strong positive correlation (0.94) with training time,
suggesting that a increasing the number of epochs leads
to a longer training duration.

o Batch size has little correlation with either loss or
training time, suggesting tuning it keeps accuracy
vs efficiency tradeoff constant. Its interplay is more
complex and data-dependent.

« Higher CPR reduces loss moderately (-0.2 correlation)
by aggregating more client updates. But it only slightly
improves training time. There are diminishing returns
for increasing participation.

o Training time exhibits a strong positive correlation with
epochs per round (0.94) and a weak positive correlation
with loss (0.26). This indicates that longer training times
are associated with a higher number of epochs and, to a
lesser extent, increased loss.

Moreover, Table 2 provides a detailed summary of results

evaluating the isolated and combined effects of learning
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rate, local epochs, batch size and CPR on loss and training
time over 1100 rounds. The key insight is that a learning
rate of 0.001, 4 local epochs per round, batch size of
32 and CPR of 10% provides the optimal balance between
achieving smooth, fast and stable convergence to low loss
while keeping training time reasonable in case of CIFAR10
dataset. Specifically, the experiments quantify how adjusting
each hyper-parameter introduces specific trade-offs - larger
batches improve accuracy but reduce efficiency, more epochs
benefits loss at exponentially higher duration’s, larger
learning rates destabilize learning while smaller ones slow
it down. The interplay between factors is elucidated through
the correlational trends. Fundamentally, this table offers
empirical evidence to mathematically tune configurations for
objectives around speed, cost and accuracy in FL.

TABLE 2. Key hyper-parameter dynamics in federated learning: Insights
from CIFAR-10.

Learning Epochs Batch Size | CPR Loss Training
Rate per Round Time(s)
0.0001 0.2759 | 17343.756
0.001 0.2211 | 17283.671
0.01 4 32 5 0.3182 | 17317.275

0.1 0.2934 | 17261.896
0.3 0.2435 | 17306.428

1 0.2152 | 10373.723

2 0.2185 | 13828.978

0.001 4 32 5 0.2299 | 20731.817
8 0.2081 | 33107.668

16 0.3197 | 53489.864

8 0.1818 | 28035.648

16 0.2319 | 21033.067

0.001 4 32 5 0.2155 | 17287.607
64 0.2184 | 15621.533

128 0.2579 | 14632.241

5 0.2155 | 17287.607

0.001 4 32 10 0.2059 | 22455.315
25 0.2138 | 24258.282

The results suggest that finding the optimal hyper-
parameter settings can significantly improve the performance
of a FL system. Overall, the correlation provide valuable
insights into the impact of hyper-parameters on the per-
formance of a FL system and the need for customized
hyper-parameter optimization.

In overall summary, these evaluations performed on
CIFAR10 dataset and Resnet-18 dive deeply into the
complex dynamics of critical hyper-parameters in this
specific case. Across meticulously designed experiments,
the study uncovers minute insights, emphasizing the pivotal
role of learning rate, epochs per round, batch size, and
CPR in optimizing the model performance. The optimal
learning rate is identified as 0.001, showcasing a balanced
convergence speed and minimal loss. Notably, the number
of epochs per round correlates strongly with training time,
highlighting its direct impact on the efficiency of FL systems.
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Analysis of different batch sizes shows that a batch size
of 32 strikes a balance between model efficiency and
training time. Additional experiments with different CPR
values demonstrate significantly fewer gains above 10%. The
correlation analysis provides a deeper understanding of of
hyper-parameter inter-dependencies, guiding practitioners in
informed decision-making. These CIFAR-10-specific find-
ings underscore the importance of tailored hyper-parameter
optimization in FL for complex image classification tasks.
The optimal configuration identified can provides a valuable
starting point for practitioners working with similar datasets
in FL environments. However, it’s crucial to note that these
results are specific to CIFAR-10 with Resnet-18, and may not
generalize directly to other datasets or scenarios.

B. FashionMNIST DATASET

This subsection discusses the results obtained from experi-
ments done on FashionMNIST dataset using a simpler CNN
model.

1) IMPACT OF LEARNING RATE

The learning rates explored were chosen from the set
{0.0001, 0.001, 0.01, 0.1, 0.3}. The effect on loss is visually
represented in Figure 6, where the loss curves across rounds
are depicted for each learning rate.

A learning rate of 0.1 shows the fastest convergence and
lowest overall loss, reaching a minimum around 0.03 by the
end of training. Learning rates of 0.01 and 0.3 also perform
well, converging to slightly higher loss values. In contrast,
lower learning rates (0.001 and 0.0001) result in slower
convergence and higher final loss values. Unlike CIFAR-10,
FashionMNIST seems to benefit from higher learning rates,
likely due to its simpler nature. Furthermore, as evidenced by
Table 3, learning rate does not significantly influence training
time. Regardless of the learning rate values, all trials take
nearly the same amount of time to complete 1100 rounds.
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FIGURE 6. Global loss over 1100 rounds with different learning rates on
FashionMNIST dataset.

2) IMPACT OF NUMBER OF EPOCHS PER ROUND
The impact of different epochs per round on loss is visually
depicted in Figure 7. Using 16 epochs per round leads to
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FIGURE 7. Global loss over 1100 rounds with different epochs per round
on FashionMNIST dataset.

the fastest initial decrease in loss and lowest overall loss.
As the number of epochs decreases, the convergence becomes
slower and final loss values increase. This suggests that
for FashionMNIST, more local computation (higher epochs
per round) is beneficial, unlike CIFAR-10 where it led to
overfitting.

The number of epochs per round is directly correlated with
training time, as evidenced in Table 3. Using fewer epochs
per round resulted in less training time, while higher epoch
values increased the time required for completion.

3) IMPACT OF BATCH SIZE

Figure 8 illustrates that smaller batch sizes (8 and 16)
demonstrate faster initial convergence and achieve lower
overall loss. As the batch size increases, we observe a
slower convergence rate and higher final loss values. Notably,
the batch size of 128 performs significantly worse than
the others. These findings suggest that for FashionMNIST,
smaller batch sizes are more effective, possibly due to the
dataset’s relatively simpler nature allowing for more frequent
model updates.

—8— Batch Sizes = 8
0.7 —4- Batch Sizes = 16
—+— Batch Sizes = 32
-4+ Batch Sizes = 64
—¥— Batch Sizes = 128

0.0
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Rounds

FIGURE 8. Global loss over 1100 with different batch sizes on
FashionMNIST dataset.

Table 3 presents the training times for various batch sizes.
We note an inverse relationship between batch size and
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training duration. Smaller batch sizes, such as 8, require
considerably longer training times, while larger batch sizes
progressively reduce the overall training duration. This
trade-off between convergence speed and training time
highlights the importance of carefully selecting batch sizes
in FL implementations.

4) IMPACT OF CLIENT PARTICIPATION RATIO

Figure 9 visualizes the loss trajectories for each CPR.
Interestingly, all three CPR values (5%, 10%, and 25%) show
very similar performance, with nearly identical loss curves.
This suggests that for a simpler CNN model and dataset,
the model can achieve good performance even with lower
client participation, which could be beneficial for reducing
communication costs in practical implementations. As per
Table 3 shows, training time increases with higher CPR
percentages since aggregating grows more expensive.

0.5
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-4- CPR=10
—+— CPR =25

Loss

0.2

PSSP SN

0 100 200 300 400 500 600 700 800 900 1000 1100

Rounds

FIGURE 9. Global loss over 1100 with different CPRs on FashionMNIST
dataset.

5) CORRELATION ANALYSIS

The correlation shown in Figure 10 highlights the
inter-dependencies between key parameters from our results
obtained on FashionMNIST dataset and SimpleCNN model.
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FIGURE 10. Correlation matrix on FashionMNIST.
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The main takeaways from this correlation are as follows:

o Learning rate shows a strong negative correlation
(—0.53) with loss, indicating that higher learning rates
generally lead to lower loss for FashionMNIST. But it
has very little correlation with training time.

o Epochs per round has a moderate negative correlation
(—0.28) with loss, suggesting more epochs tend to
reduce loss. Moreover, there is a strong positive
correlation (0.54) with training time, suggesting that
a increasing the number of epochs leads to a longer
training duration.

« Batch size shows a moderate positive correlation (0.3)
with loss, implying larger batch sizes tend to increase
loss.

« CPR has a very weak positive correlation (0.058) with
loss, confirming the observation from Figure 9 that CPR
has little impact on performance for this dataset.

o Training time is strongly positively correlated (0.76)
with CPR and moderately positively correlated (0.54)
with epochs per round, indicating these factors signif-
icantly influence training duration.

Furthermore, Table 3 presents a detailed summary of the
results, assessing the individual and combined impacts of
learning rate, local epochs, batch size, and CPR on loss
and training time across 1100 rounds. A learning rate of
0.1 achieves the lowest loss (0.0321) while maintaining
similar training time to other rates. Increasing epochs per
round consistently reduces loss, with 16 epochs achieving
the lowest loss (0.0886). However, this comes at the cost
of significantly increased training time (11446.18 seconds
compared to 2200.625 seconds for 1 epoch). Smaller batch

TABLE 3. Key hyper-parameter dynamics in federated learning: Insights
from FashionMNIST.

Learning Epochs Batch Size | CPR Loss Training
Rate per Round Time(s)
0.0001 0.2799 | 4070.287
0.001 0.1478 | 4069.109
0.01 4 32 5 0.0663 | 4059.825
0.1 0.0321 4063.516
0.3 0.0447 | 4060.897

1 0.1929 | 2200.625

2 0.1688 | 2829.011

0.001 4 32 5 0.1478 | 4076.377
8 0.1255 | 6525.372

16 0.0886 11446.18

8 0.0934 | 7607.835

16 0.1265 5147.24

0.001 4 32 5 0.1478 | 4060.765
64 0.1688 | 3580.051

128 0.1929 | 3390.497

5 0.1478 | 4061.776

0.001 4 32 10 0.1482 | 6769.213
25 0.1482 | 14984.292
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sizes achieve lower loss, with a batch size of 8 reaching
0.0934 loss. However, smaller batch sizes also increase
training time. Interestingly, all tested CPR values (5%, 10%,
and 25%) achieve very similar loss (around 0.148), but higher
CPR values significantly increase training time.

In summary, for the FashionMNIST dataset and simple
CNN model, higher learning rates, more epochs per round,
and smaller batch sizes tend to improve performance.
The impact of CPR is minimal on loss but significant
on training time. These findings contrast with CIFAR-10
in several aspects, highlighting the importance of dataset-
specific hyper-parameter optimization in federated learning.

C. COMPARATIVE ANALYSIS: CIFAR-10 VS FashionMNIST
The study reveals significant differences in hyper-parameter
dynamics between FashionMNIST and CIFAR-10 datasets in
FL, highlighting the impact of dataset complexity and model
architecture on optimal hyper-parameters.

FashionMNIST, a simpler dataset paired with a basic CNN
model, demonstrated higher tolerance for aggressive hyper-
parameters. It showed improved performance with higher
learning rates, such as 0.1, which achieved the lowest loss
and fastest convergence. The correlation analysis indicates
a positive relationship between higher learning rates and
improved performance metrics for FashionMNIST. Similarly,
increasing the number of epochs per round (up to 16) led
to faster convergence and lower overall loss, suggesting that
more local computation before global updates is beneficial
for simpler datasets.

In contrast, the more complex CIFAR-10 dataset, using
ResNet-18, required more conservative settings to avoid
instability and ensure stable convergence. A moderate
learning rate of 0.001 was necessary to maintain stability
and achieve optimal performance, with higher learning rates
showing a negative correlation with performance metrics due
to increased instability and loss. For CIFAR-10, increasing
epochs per round beyond 4 led to overfitting and instability,
as shown by a negative correlation with performance metrics
at higher values.

These findings imply that simpler datasets can benefit
from more agressive learning rates and epochs per round,
without risking instability, while complex datasets require
more careful tuning to avoid overfitting and ensure stable
convergence.

Interestingly, both datasets exhibit similar patterns when it
comes to batch size variations. Smaller batch sizes generally
resulted in lower training loss but significantly increased
the training time. This trade-off indicates that while smaller
batches may enhance model accuracy by providing more
granular updates, they require considerably more time to
converge due to the higher number of updates needed.
On the other hand, larger batch sizes tended to reduce
training time but at the cost of higher training loss. Notably,
a batch size of 32 emerged as the optimal choice for
both CIFAR-10 and FashionMNIST, striking an effective
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balance between minimizing training loss and maintaining a
reasonable training time. This batch size allowed for efficient
training while preserving the accuracy of the model.

The study also reveals significant differences in how
CPR affects performance. For CIFAR-10 using ResNet-
18, the optimal CPR was around 10%, with diminishing
returns for higher values. FashionMNIST, using a simpler
CNN model, showed minimal loss differences across CPR
values but increased training time for higher CPRs. Notably,
FashionMNIST achieved good performance even with lower
CPR, suggesting simpler datasets can maintain effectiveness
with reduced client participation.

These insights underscore the critical importance of
dataset-specific hyper-parameter optimization in FL, balanc-
ing performance gains against practical constraints. While
simpler datasets like FashionMNIST can benefit from more
aggressive settings, such as higher learning rates and more
epochs per round, they may not always require such stringent
optimization, offering greater flexibility in system design.
In contrast, complex datasets like CIFAR-10 demand more
conservative settings to avoid instability and overfitting.
These differences highlight the need for hyper-parameter
optimization tailored to the specific dataset and task. Without
this tailored approach, there is a risk of suboptimal perfor-
mance, inefficient training, and potential instability, espe-
cially in more complex tasks. Therefore, achieving optimal
performance in FL requires careful optimization of hyper-
parameters, considering the unique characteristics and com-
plexities of each dataset, model architecture, and task at hand.

VI. CONCLUSION AND FUTURE SCOPE

In conclusion, this study elucidates the complex relation-
ships between hyper-parameters and FL model perfor-
mance. Through extensive experiments on CIFAR-10 and
FashionMNIST datasets, we have highlighted the impor-
tance of dataset-specific hyper-parameter optimization. Our
experiments on CIFAR-10 and FashionMNIST reveal that
optimal hyper-parameter configurations can significantly
vary depending on the dataset characteristics and model com-
plexity. The correlation analysis conducted further enriches
our understanding of the inter-dependencies between these
parameters, aiding practitioners in making informed deci-
sions during hyper-parameter optimization.

The differences in results between CIFAR-10 and
FashionMNIST underscore the necessity of dataset-
specific hyper-parameter optimization in FL. While certain
hyper-parameters like learning rate and batch size universally
affect model performance, their optimal values and impacts
can significantly differ based on the dataset and model
used. This variability necessitates a tailored approach to
hyper-parameter optimization for each specific task to ensure
optimal performance and efficiency. These findings con-
tribute significantly to the understanding of hyper-parameter
dynamics in FL, offering practical guidance for practitioners
in optimizing FL systems across varied applications and data
complexities.
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For future research, exploring adaptive strategies for
hyper-parameter optimization that dynamically adjust to

the

evolving characteristics of participating clients could

be a promising avenue. Addressing the challenges posed
by non-IID data distributions and heterogeneous network
conditions remains a crucial aspect of advancing FL research.
Overall, this study sets the stage for further advancements
in hyper-parameter optimization for FL, contributing to the
ongoing evolution of privacy-preserving and decentralized
ML paradigms.
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