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ABSTRACT Pedestrian trajectory modelling in an urban complex is challenging because pedestrians can
have many possible destinations, such as shops, escalators, and attractions. Moreover, weather and time-of-
day may affect pedestrian behavior. In this paper, a new weather-time-trajectory fusion network (WTTFNet)
is proposed to incorporate weather and time-of-day (WT) information to refine the predicted destination
and trajectories. First, a word embedding is used to encode the WT information and its representation can
be further optimized according to the loss function. Afterwards, a gate multimodal unit is used to fuse
the WT information and preliminary pedestrian intent probabilities obtained from a preliminary baseline
classifier. A joint loss function based on focal loss is used to co-optimize both the preliminary and final
classifiers, which helps to improve the accuracy under possible class imbalances. Finally, a destination
adapted trajectory model is used predict the trajectories guided by the predicted destination. Experimental
results using the Osaka Asia and Pacific Trade Center (ATC) dataset shows improved performance of the
proposed approach over state-of-the-art algorithms by 23.67% increase in classification accuracy, 9.16% and
7.07% reduction of average and final displacement error. The proposed approach may serve as an attractive
approach for improving existing baseline trajectory prediction models when they are applied to scenarios
with influences of weather-time conditions. It can be employed in numerous applications such as pedestrian
facility engineering, public space development and technology-driven retail.

INDEX TERMS Functional objects, LSTM, pedestrian trajectory prediction, urban complex, weather.

I. INTRODUCTION
Predicting pedestrian trajectories in crowd scenario is essen-
tial in smart city. It has numerous applications such as
self-driving cars [1], smart road crossings and intelligent
retail [2]. KB models describe pedestrian dynamics using
physical, social or psychological rules. Pioneer KB mod-
els are Social Force model [3] and collision avoidance [4].
Deep learning (DL) approaches leverage extensive observa-
tions. They can be mainly categorized into Recurrent Neural
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Network (RNN) [5], [6], Convolutional Neural Network
(CNN) [7], Transformer (TF) [8], Generative Adversarial
Network (GAN) [9], [10], [11]. Most recent research focuses
on Social-awareness incorporated deep neural network archi-
tectures [10] and graph convolutional network (GCN) [12] to
further improve performance.

Whilemuch attention is directed towardsmodelling the tra-
jectory in outdoor scenarios with applications to autonomous
vehicles, this paper focuses on modelling the pedestrian tra-
jectory within an urban complex. Recently, Indoor Pedestrian
Trajectory Generator (IPTG) [13] was reported, which uses
a GAN based approach to generate trajectories for a fictional
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conference scenario. Han et al. [14] employed trajectory clus-
tering in modeling pedestrian flow for indoor design space.
D’Orazio et al. [15] simulated the pedestrian flow of a build-
ing using agent-based model with proximity and exposure
time based rules to estimate the spread of Coronavirus Dis-
ease (COVID-19) in building. However, there is few existing
literature about indoor pedestrian trajectory modelling under
the influence of weather and time-of-day, a.k.a. weather-time
(WT) condition. Xue et al. [16] studied the modelling of
pedestrian movement in a train station and proposed a Pedes-
trian Trajectory Prediction method by LSTMwith Automatic
Route Class Clustering (PoPPL). It employed k-mean cluster-
ing to label pedestrian trajectories followed with subsequent
LSTM based intent classification and trajectory prediction.
However, the train station dataset only contained video lasting
for 30 minutes with same weather and it mainly serves the
purpose of transportation.

Weather-time (WT) conditions refer to weather and time-
of-day variations. An objective of this paper is to study
the effect of weather and time-of-day for pedestrian move-
ment pattern in urban complex. Typical indoor environment,
such as residential apartments, offices, factories, etc., are
single functional premises. Individuals usually share com-
mon location-of-interest (LOI), i.e. going home/going to
work. In contrast, pedestrian behavior in urban complexes
exhibits much more randomness as the pedestrians could
have different destinations to functional objects [17] that
serves a wide range of purposes, such as retail, shopping
malls, office accommodations, and business functions. Pre-
vious studies [18], [19] suggested that weather has an impact
in affecting pedestrian behavior. In particular, bad weather
may discourage consumers from shopping. Also, adverse
weather conditions may lead to delays or cancellations of
public transportation services [20], which affects pedestrian
traffic. Time-of-day will affect commuter traffic and hence
pedestrian flow [21], [22]. This study aims to improve under-
standing on how the weather and time-of-day influence the
choice of destination and hence the trajectories of pedes-
trians, which will help to facilitate flow management [23]
and intelligent retail [2]. With the increasing popularity of
multimodal transportation in large metropolises to decrease
reliance on private cars and greenhouse emission, many urban
complexes are designed with multimodal transportation [24]
capabilities. They serve as interconnection points to facili-
tate seamless transfers between buses and trains. Examples
are Osaka station (Osaka, Japan) [24] and Chatswood inter-
change shopping mall (Sydney, Australia).

Three practical issues may arise in modelling the pedes-
trian trajectory under different weather-time (WT) conditions
in urban complex are i) appropriate preprocessing and feature
selection, ii) effective fusion, iii) choice of clusters under the
effect of different WT conditions.

First, the format of weather information may not directly
fit for use and require appropriate preprocessing and feature
selection. Directly concatenating this information to the deep
neural network may even confuse the classifier and lead to
inferior performance. For instance, Time-of-day information

is commonly available as numeric values and the classi-
fier may perceive it as ordinal, i.e. 9 o’clock is larger than
8 o’clock, which is not logical at all.

Second, it is not trivial on where and how to fuse the WT
information. For example, direct concatenation of one-hot
encoded WT information to the raw pedestrian trajectories
does not yield satisfactory performance.

Third, although the use of trajectory prediction guided
by pedestrian intent have been reported before, it is mainly
used to predict the pedestrian’s intent for road crossing in
outdoor scenarios [25] involving pedestrian-vehicle interac-
tion. Unlike the road crossing scenario, where pedestrians
will need to cross the road under different weather con-
ditions, the pedestrian behavior in urban complex can be
affected by weather, especially in destinations for retail and
entertainment.

To overcome these challenges in improving the pedestrian
trajectory prediction accuracies of baseline deep learning
models, we propose a new weather-time-trajectory net-
work (WTTFNet) for pedestrian trajectory prediction The
WTTFNet is made up of the following components:

1. Weather-time (WT) Embedding: To tackle the issue of
preprocessing and feature selection ofWT information,
a word embedding is used to encode the WT informa-
tion and it has the advantage to be further optimized
according to the final loss function.

2. A new statistical test based on the Pearson’s chi-
squared χ2 statistic is used to test the significance of
theWT condition and determinewhether to incorporate
the WT information.

3. Novel WTTFNet based intended destination (ID) clas-
sifier: The ID classifier is used to predict the destination
based on input trajectories. Motivated by the rationale
that weather-time conditions can influence the decision
of reaching a destination, the proposed WTTF archi-
tecture employs the Gated Multimodal Unit (GMU) to
fuse the WT embedding with preliminary pedestrian
intent probabilities obtained from a baseline deep neu-
ral network based classifier. The fused representation
is used to train the final classifier, which generates
predicted destinations refined by the weather and time.

4. Deep supervision [27] is used to co-train the prelimi-
nary and final classifiers together using auxiliary and
final loss functions. While the preliminary pedestrian
intent probabilities provide supervisory signals to train
the baseline classifier, the final loss function optimizes
the whole architecture. The Focal Loss [28] is used
to cater for possible class imbalance. A Destination
adapted trajectory predictor (DATP) is used to perform
subsequent trajectory prediction. Multiple trajectory
models targeted to different destinations are trained
and the trajectory model that points to the predicted
destination will be chosen.

To illustrate the effectiveness of the proposed approach in
improving a baseline pedestrian trajectory model, the public
dataset obtained from Asia and Pacific Trade Center (ATC)
[29] in Osaka is considered. It is an urban complex serving as
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a multimodal transportation hub, which connects the intercity
ferry pier and Osaka metro line, as well as accommodating
a trade center and multi-entertainment complex. Pedestrian
trajectories obtained on a sunny (22ndMay, 2013) and cloudy
day (29th September, 2013) were used. There were roughly
1.5 times more pedestrians during peak hours in compared
to off-peak hours. A significant log p-value of −104.8395
(≪log(0.05)))1 is attained using the proposed statistical test,
which suggests that there is significant deviation in pedestrian
flow across weather and off/peak hours.

Experimental results show that the proposed WTTFNet
surpasses state-of-the-art algorithm by reduction of 9.16 %
and 7.07% in average displacement error (ADE) and final
displacement error (FDE), respectively. It also improves the
classification accuracy (ACC) and Cohen’s Kappa (κ) of
the baseline model (i.e. PoPPL) by 23.67% and 28.13%,
respectively.

To study the role of weather and time-of-day in improving
prediction performance, ablation test is performed to compare
between the proposed WTTFNet with/without incorpora-
tion of weather-time information. Significant McNemar’s
test [30] p-value of p = 0.0196 < 0.05 was attained,
which suggests the improvement in classification accuracy
from 71.5% to 71.95% after adding weather-time informa-
tion was significant because of the large sample size of
28536 pedestrians.

Further analysis of the 3008 significant pedestrians identi-
fied by McNemar’s test shows that an overall 5.47% (7.8m
to 7.4m) and 7.58% (14.11m to 13.04m) improvement in
ADE and FDE reduction were obtained for the significant
3008 pedestrians, and significant one-sided Mann–Whitney
U test [32] p-values were attained for ADE (p = 0.0203
< 0.05) and FDE (p = 0.00533 < 0.05), respectively.
This shows that weather-time information helps to improve
prediction performance significantly for the 3008 cases con-
sidered. Overall, the ratio 3008 out of 28536 pedestrians was
also statistically significant according to the McNemar’s test,
suggesting that these 3008 pedestrians showing significantly
improved performance out of 28536 cases were very unlikely
a random event. This suggests the proposed approach may
serve as an attractive approach for incorporating WT infor-
mation to improve pedestrian trajectory prediction and it also
serves as a systematic approach to test the significance ofWT
conditions.

Finally, with the increasing popularity of multimodal trans-
portation in large metropolises to decrease reliance on private
cars and reduce greenhouse emission, understanding pedes-
trians’ behavior in urban complex is increasingly important.
Walking networks with interconnecting urban complexes
will be increasingly prevalent to facilitate smooth transfers
between different modes of transportation and contribute to
the economic development of nearby areas. There are also
numerous applications in public space development [33],
evacuation planning [34], and advancements in technology-
driven retail [2].

1A significance level of 0.05 is sought [31].

The rest of this paper is organized as follows. Section II
presents a review on the background and related works,
whereas the proposed WTTFNet is presented in Section III.
In Section IV, experimental results and comparisons with
state-of-the-art algorithms are presented. The proposed statis-
tical test is also used to test the significance of weather-time
effects. Finally, conclusion is drawn in Section V.

II. BACKGROUND AND RELATED WORK
Pedestrian trajectory prediction (PTP) methods can be cat-
egorized according to input modality, network architecture,
features, and prediction tasks [35], [36]. Traditionally, PTP
is achieved using knowledge based methods such as social
force [3] collision avoidance [4], kinetic models [37]. In the
last decade, deep learning approaches have gained much
popularity for its powerfulness in leveraging extensive obser-
vations. They can be mainly categorized into

1. Recurrent neural network (RNN): Examples are Long
Short Term Memory (LSTM) [5], Social LSTM [38],
Gated Recurrent Unit (GRU) and Conv-LSTM [39].
LSTM are renowned for its capability to handle
sequence-to-sequence prediction. Social LSTM further
extends LSTM to model social interactions. Conv-
LSTM replaces the fully connected layers in conven-
tional LSTM with convolutional layers, which enables
the capturing of both spatial and temporal information
for intent and trajectory prediction in [39].

2. Convolutional neural networks (CNN): The CNNs
are usually used for PTP approaches that uses
images/videos to predict the trajectories. CNN is used
to extract spatial-temporal features [7] or skeleton key-
points [40] for classifying pedestrian behaviour.

3. Transformer: VOSTN [8] used a variational one-shot
transformer for trajectory prediction together with a
cross-attention module to model the inter-relationship
between trajectory and ego-motion. AgentFormer [10]
integrated a transformer architecture with agent-aware
attention mechanism and a conditional variational
autoencoders (CVAE) based trajectory prediction
framework.

4. Generative adversarial network (GAN): POI-GAN [41]
used generative model that integrates interest point
model, field of view angle, and observed trajectories,
to produce projected pedestrian trajectories for future
time frames. Social GAN [9] employs a LSTM model
to capture temporal structure of individual pedestrian
and a social poolingmechanism to aggregate pedestrian
interactions. The resultant deep features are used to
train the GAN.

Over the past 5 years, most research focuses on
incorporation of Social-awareness [9], [10], or contextual
information [25], [39] to improve prediction performance.
Social-awareness approaches such as social LSTM Mann
and Whitney [32], social GAN [9], Sophie [42], Agent-
Former [10] etc., primarily center around predicting trajec-
tories and modeling interactions among a fixed number of
pedestrians based on social pooling mechanisms. GCN based
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FIGURE 1. A pedestrian trajectory prediction problem. The observed
trajectory is used to predict the future trajectory and final destination in
this paper.

approaches, such as Social Spatial Temporal Graph CNN
(SSTGCNN) [43], which models pedestrian interactions as
graphs and extract spatial-temporal feature from the graphs
using convolutional operations.

Context-based approaches incorporates context informa-
tion to predict pedestrian intent and use it to guide subsequent
trajectory prediction [23], [33]. Typical pedestrian intent
includes crossing road and other walking gestures [44].
These intents are predicted from video or LIDAR sequences.
Examples of contextual information are road topology,
maps, pedestrian attributes, road boundaries and ego-vehicle
information [23], [33].

Whilemuch attention is directed towardsmodelling the tra-
jectory in outdoor scenarios with applications to autonomous
vehicles, this paper focuses on modelling the pedestrian
trajectory within an urban complex, which is challenging
because pedestrians can have many possible destinations,
such as shops, escalators, and attractions. Moreover, weather
and time-of-day may affect pedestrian behavior. A new
weather-time-trajectory fusion network (WTTFNet) is pro-
posed to incorporate weather and time-of-day (WT) informa-
tion to refine the predicted destination and trajectories. In the
next section, the proposed methodology will be discussed.

III. PROPOSED METHODOLOGY
Fig. 1 shows an illustration of the pedestrian trajectory predic-
tion problem,where the proposedWTTFNet predicts the final
destination and future trajectory from partially observed tra-
jectory, e.g. half of the trajectory in this paper. The proposed
WTTFNet is made up of the following components:

1. Destination-driven clustering: It is used to label the
pedestrian trajectories of the training set with desti-
nations assigned by k-mean clustering for subsequent
training of the intended-destination (ID) classifier.

2. The proposed statistical test based on the Pearson’s
chi-squared χ2 statistic is designed to determine the
minimum sample size required for each cluster and
determine whether to incorporate the WT information.

3. ID classifier: It predicts the final destination that occurs
in future from an observed ‘‘historical’’ trajectory of
the pedestrian. The training set is provided by the
destination-driven clustering. It is made up of a baseline
deep neural network based classifier and the proposed
WTTFNet, which serve as the preliminary and final
classifiers, respectively. The baseline classifier will

generate a set of preliminary pedestrian intent prob-
abilities indicating the chances of reaching different
destinations. Afterwards, the WTTFNet fuses the WT
information and the preliminary pedestrian intent prob-
abilities for subsequent training of the final classifier,
which generates the final intent probabilities.

4. Destination adapted trajectory predictor (DATP): After
the final pedestrian intent probabilities are gener-
ated, the destination with the highest probability is
chosen. The target trajectory model trained using the
clustered trajectories of surrounding the chosen des-
tination is used to predict the future trajectory. As an
illustration, the PoPPL-def sub-LSTM [16] is adopted
as the trajectory model. In general, other trajectory
prediction models can be used.

A. DESTINATION-DRIVEN CLUSTERING MODULE
In a pedestrian trajectory prediction problem, an observed
trajectory sn for the n − th pedestrian of length L is used to
predict the future L ′ observations trajectory ẑn:

sn =
{(
xn,1, yn,1

)
, . . . ,

(
xn,L , yn,L

)}
(1a)

ẑn =
{(
x̂n,L+1, ŷn,L+1

)
, . . . ,

(
x̂n,L+L ′ , ŷn,L+L ′

)}
. (1b)

However, there are multiple possible destinations of a pedes-
trian and hence a destination-driven clustering will be
beneficial for training destination-specific trajectory models.
In the destination-driven clustering module, the end-point
of all trajectories, i.e. �end : {

(
xn,L+L ′ , yn,L+L ′

)
, n =

1, 2, . . . ,N } from (1b) are passed to the k-means algorithm
to form clusters. The membership of an endpoint (x, y)
is sought by minimizing its distance from the centroids∑K

k=1
∑

(x,y)∈Sk || (x, y) −
(
µx,k , µy,k

)
||
2
2, where �k is the

k − th cluster and its centroid is updated as µk =[
µx,k , µy,k

]T
=

1
|�k |

∑
(x,y)∈�k

(x, y) .|�k | is the number
of elements in �k . After assignment, each trajectory is
labelled with the corresponding class from ω = 1, . . . ,K for
sub-sequent training of the pedestrian intent classifier. The
raw trajectories are cleaned and resampled so that the total
duration of each trajectory is normalized to To.

The proposed approach also employs a statistical test to test
the significance of each cluster and establish the minimum
number of samples for each cluster (See Eqn. (12)). If a
cluster is found to have insufficient number of samples, it can
be merged to one of the clusters using an agglomerative clus-
tering similarity measure, such as centroid linkage criterion

min.||
(
µx,k , µy,k

)
−

(
µx,k i , µy,k i

)
||
2
2, (2)

where
(
µx,k , µy,k

)
is the centroid of the cluster to be merged

and
(
µx,k i , µy,k i

)
are the remaining clusters. It is noted that

other similarity measures can be employed. After the clusters
have been computed, the training dataset for the ID classifier
can be obtained as

Trajectory:sn =
{(
xn,1, yn,1

)
, . . . ,

(
xn,L , yn,L

)}
, (3a)

Destination:ωn = 1, . . . ,K , (3b)

where K is the total number of destinations.
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FIGURE 2. The proposed WTTFNet. Key innovations lie in the Intended Destination (ID) classifier, which is made up of i)
baseline model, ii) focal loss iii) Deep supervision (preliminary and final classifiers optimized using joint loss function),
and iv) incorporation of weather and time information via Gated Multimodal Unit (GMU). The structural details are
summarized in Table 1.

B. NOVEL WEATHER-TIME-TRAJECTORY NETWORK FOR
DESTINATION CLASSIFICATION
Fig. 2 and Table 1 show the proposed intended desti-
nation (ID) classifier, which comprises the weather-time
(WT) embedding, baseline model (e.g. PoPPL) and the
novel WTTFNet. First, a baseline model is used to learn
the micro-level representation of the trajectory. Afterwards,
a fully connected (FC) layer is used to learn a preliminary
classifier of the destinations. The output preliminary ID class
probabilities are then passed to the GMU for fusing with
the WT embedding. The fused multimodal representation is
passed to a final FC layer for training the final classifier. Both
the preliminary and final classifier are co-optimized using
the focal loss function. Here, the PoPPL is employed as the
baseline model. In general, other trajectory models can be
used.

More precisely, suppose there are Cw weather condi-
tions and Cd different time-of-day and the total number of
weather-time conditions are C = Cw + Cd . For example,
in this paper, Cw = 2 (sunny/rainy) and Cd = 2 (off-
peak/peak hours) are chosen. The proposed Weather-Time
(WT) Embedding for the n− th pedestrian is given as

WT Embedding:eWT,n = 2
(
f w,n, f d,n

)
, (4)

where 2() is the embedding layer. f w,n and f d,n are the
one-hot encodings describing the weather-time condition for

the n − th pedestrian. The preliminary ID class probabilities
p̂pre (ωn) can be obtained as the softmax probabilities from
the preliminary classifier in Fig. 2. Batch normalization and
softmax are performed after the FC layer. The preliminary
intent probabilities p̂pre (ωn) and preliminary classifier f Cn are
given as

p̂pre (ωn) = σ Soft

(
f Cn

)
, (5a)

f Cn = φBN

(
FC

(
f basen

))
, (5b)

respectively, where

σ Soft (u) =
1∑K

k=1 e
uk

[
eu1 , eu2 , . . . ,euK

]T
, and (5c)

φ (uk) =
uk − E (uk)

√
var (uk) + ϵ

× wγ,k + wb,k (5d)

represent softmax operation and Batch normalization (BN),
respectively. f Cn and f basen are the output of the preliminary
classifier and base model, respectively for the n − th pedes-
trian. φBN (u) = [φ (u1) , φ (u2) , . . . , φ (uK )]T is the batch
normalization function. FC (u) = W · u is a fully connected
layer with weights W and σ Soft (u) is the softmax function.
wγ,k and wb,k are learnable parameters for BN.
The preliminary pedestrian intent probabilities p̂pre (ωn)

and the WT embedding 2
(
f w,n, f d,n

)
are then fused at
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TABLE 1. Structural details of proposed WTTFNet.

TABLE 2. Proposed statistical test of significance of weather-time
conditionsa.

the GMU. The GMU is used to find an intermediate repre-
sentation that fuses the two modalities, i.e. preliminary ID
probabilities and WT embedding. First, the pedestrian intent
probabilities and WT embedding are passed to individual
tanh layers, each of which contains a neuron with hyperbolic
tangent activation to encode the individual modalities. At the
same time, a tied gate neuron learns the contribution of the
two modalities, as shown in Fig. 2. The contributions n and
(1 − n) obtained from the gate neuron will be multiplied in
an elementwise manner to the output of the tanh layers of
p̂pre (ωn) and 2

(
f w,n, f d,n

)
, respectively. A special feature

of this gate unit is that n supports multivariate weighting.
To use this feature, the output dimension of the two tanh
layers can be modified to a common dimension matching
each other. Finally, the fused multimodal representation will
be passed to the final classifier for predicting the final class
probability.

More precisely, the GMU can be described using the fol-
lowing set of equations:

hvn = tanh
(
W v · p̂pre (ωn)

)
, (6a)

hen = tanh
(
W e · 2

(
f w,n, f d,n

))
, (6b)

n = σ sgm(W ·

[
p̂pre (ωn)

T , 2
(
f w,n, f d,n

)T ]T
), (6c)

f fusen = n⊙hvn + (1 − n) ⊙ hen, (6d)

where hvn is the output of tanh layer for p̂pre (ωn) for the nth

pedestrian. hen is the output of tanh layer for Embedding.

n is the output of the gate neuron. f fusen denotes the fused
representation. tanh (u) = [tanh (u1) , tanh (u2) , . . .]T and
tanh (u) =

eu−e−u
eu+e−u . σ sgm (u) =

[
σsgm (u1) , σsgm (u2) , . . .

]T
and σsgm (u) =

1
1+e−u . The Hadamard product operator is

denoted as ⊙. The set of unknown neural network weights to
be learnt in the GMU are {W v,W e,W }, which corresponds
to the weights of tanh layer for the preliminary pedestrian
intent probabilities, tanh layer for the WT embedding and
Gate Neuron, respectively. A common dimension M is cho-
sen for the two tanh layers in (6a) and (6b) so that they match
the dimension of n. Finally, a FC layer FCM,K() with input
dimension M and output dimension K is used to learn the
final ID class probabilities. p̂F (ωn) is the predicted pedestrian
intent probabilities obtained from the final classifier and it is
given as

p̂F (ωn) = σ Soft

(
φBN

(
FCM ,K

(
f fusen

)))
, (7)

where φBN and σ Soft are the batch normalization and softmax
operations defined in (5c) and (5d), respectively. The prelim-
inary and final classifiers will be jointly optimized as

LT = (1 − λP)Lfocal
(
ω, p̂F (ω)

)
+ λPLfocal

(
ω, p̂pre (ω)

)
. (8)

where for simplicity, we drop the subscript n in (8).
Lfocal

(
ω, p̂F (ω)

)
and Lfocal

(
ω, p̂pre (ω)

)
the losses for the

final and preliminary classifiers, respectively. λP is a param-
eter controlling the ratio of the two losses. It is chosen as
λP = 0.5 in this paper. To cater for possible class imbalance,
the focal loss [28] is used

Lfocal
(
ω, p̂

)
= −

1
NK

N∑
n=1

K∑
k=1

Ik,nβk
(
1 − p̂k,n

)γ

× log
(
p̂k,n

)
, (9)

where p̂k,n is the predicted class probability for the k − th
class. Ik,n is an indicator variable and Ik,n = 1when the actual
class isK .γ is a focusing factor and βk ∈ [0, 1] is a weighting
factor. The final predicted class (i.e. intended destination) can
be obtained as

ω̂n = max(p̂F
(
ωn,1

)
, p̂F

(
ωn,2

)
, . . . , p̂F (ωn,K )), (10)

where p̂F
(
ωn,k

)
is the softmax probability of the k − th des-

tination. p̂F (ω) = [p̂F
(
ωn,1

)
, p̂F

(
ωn,2

)
, . . . , p̂F (ωn,K )]

T .

C. DESTINATION-ADAPTED TRAJECTORY PREDICTOR
MODULE
After obtaining the final probabilities, the predicted trajectory
can be obtained as

ẑn = DTPk=ω̂n (sn),

where ẑn is the predicted trajectory for the chosen class.
DTPk=ω̂n (sn) is the chosen destination trajectory baseline
model based on predicted class ω̂n. The baseline model
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FIGURE 3. Initialization centroids for k-means clustering, K = 10 classes
added to 1/F floor plan of Osaka ATC Centre [29]. Important functional
objects (i.e. ticket office, escalator, kiosk and stairs) are redrawn. The
historical weather on 22nd May 2013 (sunny) and 29th September
(cloudy), 2013 was obtained from [45].

TABLE 3. List of initialization centroids for Osaka ATC Centre 1/F.

is chosen as sub-LSTM (PoPPL-def) in PoPPL [16] for
the sake of comparison. The sub-LSTM (PoPPL-def) is an
encoder-decoder LSTM with two hidden layers. In the next
sub-section, the proposed statistical test will be presented.

D. STATISTICAL TEST FOR WEATHER-TIME CONDITIONS
The proposed statistical test can be used to establish the
minimum required samples for each cluster and to quantify
whether it is necessary to treat the pedestrian movement
pattern in different periods and weathers as different groups
and use different trajectory models to describe their behavior.
More precisely, Table 2 shows a K × C contingency table
summarizing the number of pedestrians arriving to K desti-
nations under C different weather-time (WT) conditions. The
following null hypothesis is proposed:

H0 :The WT condition does not affect

the choice of destination. (11)

If the null hypothesis is true, then the observed number of
pedestrians should not deviate significantly from the expected
counts across different WT conditions. According to the χ2

test, the minimum number of expected samples/trajectories
required for each cluster k under condition c is

ekc =
lK × nC

n
≥ 5, (12)

TABLE 4. Number of pedestrian arrivals during peak hour (12:00-16:59).
off-peak (09:00 –11:59, 17:00 – 20:00), sunny and cloudy for Osaka ATC
dataset (K = 10).

where lk =
∑C

c=1 lkc, nc =
∑K

k=1 lkc and n = 6K
k=16

C
c=1

lkc. lkc is the number of observed trajectories/samples in the
k − th destination and c− th condition.
Once the clusters are established, the test statistic for WT

condition reads

χ2
obs =

C∑
c=1

K∑
k=1

(okc − ekc)2

ekc
, (13)

where okc is the actual observed number of pedestrians in
condition c and destination k . The p-value of the test is given
as

p = Pr(χ2
≥ χ2

obs,j|H0), (14)

where the test statistic follows a χ2 distribution with (C −

1)(K − 1) degree of freedom. At a significance level of 0.05
[31], the null hypothesis will be rejected when the p-value is
smaller than 0.05 and it will suggest the difference between
the proportion of pedestrian arrival under different conditions
and origins is statistically significant.

IV. RESULTS AND ANALYSIS
For illustrative purposes, the Osaka Asia and Pacific Trade
Center (ATC) dataset (Dražen et al. 2013) is considered. The
Osaka ATC is a transportation hub linking the Sunflower
inter-city Ferry pier to the Osaka City Metro. It contains a
multi-entertainment complex and a conference center. The
trajectories were collected at 1/F of ATC using 3D range
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sensors. The full dimension is over 140 m × 60 m. Trajec-
tories from 0900 to 2000 on 22nd May, 2013 (sunny) and
29th September, 2013 (cloudy) are chosen. Trajectories that
are too short are removed (i.e. same cluster for origin and
destination) as they may be a result of occlusion or tracking
loss of the 3D range sensor. After resampling, the trajectory
length L+L ′

= 40. The total number of pedestrian trajectories
after pre-processing are 7329 on 22nd May, 2013 (sunny) and
21207 on 29th September, 2013 (cloudy) and respectively.
Hence, the total number of pedestrian/ trajectories are 28536.
Each pedestrian contains only 1 trajectory.

A. CHOICE OF CLUSTER
A general rule of thumb to choose the number of classes is
to study the number of possible entrances/exits of the floor
plan [16], [17]. Fig. 3 shows the floor plan of the Osaka ATC
Center (1/F). Following this notion, key entrances and exits
are chosen as the initialization centroids as in Fig. 3. Table 3
shows the list of initialization centroids.

B. STATISTICAL ANALYSIS OF TIME-OF-DAY AND
WEATHER CONDITIONS
In this sub-section, we shall test the significance of time-of-
day and weather conditions using the proposed statistical test.

Table 4 shows the number of observed pedestrian arrival
during peak hour (12:00-16:59), off-peak, sunny and rainy
conditions for K = 10. Using (12), it was found that class
ω6 does not meet the minimum sample requirement. Hence,
using the centroid linkage criterion, ω6 is merged with ω10.
The observed χ2

obs computed using (13) is 588.64 (degree
of freedom 24) and the log( p-value) is -104.8395, which is
statistically significant under the typical significance level of
0.05, Ross [31]. This suggests there is a significant deviation
in the pedestrian counts across the different clusters under the
different conditions. Hence, the proposed approach should
be used to model the pedestrian trajectory patterns under the
different conditions. Next, we shall evaluate the performance
of the various algorithms.

C. BASELINE AND METRIC
To evaluate the performance of the proposed approach,
we compare the proposed WTTFNet with the following
algorithms:

1. Linear Model: A simple linear model with a hidden
layer (nn.linear in Pytorch) [46] is used to predict the
trajectories.

2. Vanilla LSTM: The sub-LSTM in PoPPL-def is used.
It employs an encoder-decoder LSTM with 2 hidden
layers fitting all the trajectories. The implementation
follows the Github codes [16].

3. PoPPL [16]: The sub-LSTM model is employed
together with route class clustering. The implementa-
tion follows the Github codes. Following the previous
statistical analysis, K = 9 destinations were chosen.
Route class clustering divides all trajectories according
to all combinations of all 9 origins and 9 destinations
for training trajectory models.

4. ProposedWTTFNet: For fair comparison, we adopt the
same baseline model as in PoPPL, as shown in Fig. 1.
However, the proposed destination-driven clustering
and proposed WTTFNet are used. Hyperparameters
same as the authors are adopted for the PoPPL baseline
model. For the number of destinations,K = 9 is chosen
as in the previous analysis.

For evaluating the quality of trajectory prediction, the
average displacement error (ADE) is the average Euclidean
distance between all the actual and all predicted coordinates
over all trajectories. The FDE is the average Euclidean dis-
tance between the final destination of the predicted and actual
trajectories. They are given as

ADE =
1

NTL ′

∑NT

n=1

∑L ′

t=1

∥∥∥∥(
xn,L+t
yn,L+t

)
−

(
x̂n,L+t
ŷn,L+t

)∥∥∥∥
2
,

(15a)

FDE =
1
NT

∑NT

n=1

∥∥∥∥(
xn,L+L ′

yn,L+L ′

)
−

(
x̂n,L+L ′

ŷn,L+L ′

)∥∥∥∥
2
, (15b)

where ||.||2 denotes the Euclidean distance. NT is the total
number of testing samples. (xn,t , yn,t ) is the actual coordi-
nate and (x̂n,t , ŷn,t ) is the predicted coordinate of the n − th
pedestrian’s trajectory. The accuracy of the destination classi-
fication is evaluated using classification accuracy (ACC) and
Cohen’s Kappa (κ). They are given as

ACC =
1

NTest

∑K

k=1
CM [i, i], (16a)

κ =
NT

∑K
i=1 CM [i, i]−

∑K
i=1 CT [i]CP[i]

N 2
T −

∑K
i=1 CT [i]CP[i]

, (16b)

whereCM [i, j] =
∑NTest

n=1 I (ωn = i& ω̂n = j) is the total num-
ber of counts of having the actual class i and predicted class j.
I is the indicator function. CT [i] =

∑K
j=1 CM [i, j] and

CP [j] =
∑K

i=1 CM [i, j]. While classification accuracy is
commonly used to describe the generic performance, Cohen’s
Kappa is used more frequently for scenarios with possible
class imbalance. The following relative metrics, rd are used
to compare between different algorithms,

rd =
(d − dREF ) (−1)m

dREF + ϵ
× 100%, (17)

where d can be any metrics, such as the ADE, FDE, ACC and
κ . dREF is the performance of the referencemethod. ϵ = 10−8

is a small constant added to denominator to avoid division by
zero. m is a parameter defining metric type. m = 0 is used
for maximizing metrics with larger value indicating better
performance, whereas m = 1 is used for loss metrics with
smaller value indicating better performance.

D. EXPERIMENTAL SETUP
The Google Colab Tesla T4 Graphics Processing Unit (GPU)
notebook with 16GB GPU memory and 17 GB of system
memory is used for evaluation. In the experiment, each
observed trajectory has a duration of 20 time-instants and
an algorithm will predict the trajectory for the next 20 time-
instants. Fig. 3 shows the validation protocol following the
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FIGURE 4. Validation protocol and learning curves for various batch sizes.
Stratified 5-fold cross validation (CV) is used.

validation strategy in [16]. Stratified 5-fold cross validation
(CV) is employed. Due to stratification and possible chances
that the total number of samples is indivisible by 5, the
number of samples across folds may vary slightly. Three-
folds (∼60%), one-fold (∼20%), and one-fold (∼20%) are
used for training, validation, and testing, respectively.

1) BATCH SIZE AND STOPPING CRITERION
Fig. 4 shows the training and validation curves for the pro-
posed WTTFNet under batch sizes 256, 512,1024 and 2048.
For batch size 256, the validation curve is quite noisy and
fluctuates rapidly and hence it is not considered. For batch
sizes 512, 1024 and 2048, the training accuracy starts to level
off around epoch 100 but the validation accuracy remains
roughly around a certain range. This suggests more epochs do
not necessarily lead to better validation performance. Hence,
1000 epochs are chosen as stopping criterion. Overall, batch
size 1024 attained the lowest variance in validation accuracy
and hence it is chosen. For each CV fold, the model obtained
at the epoch attaining the best validation accuracy is chosen
and is used to evaluate the testing data.

2) HYPERPARAMETERS
Hyperparameters same as the PoPPL are adopted for the
baseline classifier and trajectory models. Dropout parameter
of 0.5 and hidden size of 128 are adopted. For the proposed
WTTFNet, the weighing factor in the focal loss is chosen as
β = [β1, β2, . . . , βK ]T , βk = ( N/Nk∑K

k=1 N/Nk
), where N is the

total number of training samples,Nk is the number of training
samples of class k , K is the total number of classes. The
focusing parameter is chosen as γ = 2. The ratio between
the preliminary and final loss in (8) is chosen as λP = 0.5.

E. EXPERIMENTAL RESULTS
In this sub-section, the proposed WTTFNet is compared
against various algorithms. Since the proposedWTTFNet can
be attached to arbitrary deep neural network baseline models,
the PoPPL is adopted as baseline for illustration. In general,

TABLE 5. Trajectory prediction performance of various algorithms.

TABLE 6. Trajectory prediction performance of various algorithms.

other deep neural network based intent classifier, such as
transformers, can be adopted as the baseline model. Since the
PoPPL is a technique that combined clustering and LSTM,
we also compared with Vanilla LSTM.

Table 5 shows the overall performance of all algorithms.
The proposed WTTFNet performed better than the original
PoPPL, Vanilla LSTM and the linear model for all cases
considered. Particularly, the proposed WTTFNet surpasses
the original PoPPL 23.67% in classification accuracy, 9.16%
reduction in ADE and 7.07% reduction in FDE. Significant
p-values of (p < 10−16) are attained for improvement in
classification accuracy (McNemar’s test [30]), ADE and FDE
(one-sided Mann–Whitney U tests [32]).

1) ABLATION TEST
The intended destination classifier of the proposedWTTFNet
is made up of i) baseline model ii) focal loss iii) deep
supervision (preliminary and final classifiers co-trained with
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FIGURE 5. Average Displacement Error (ADE) of the proposed approach
with/without the incorporation of weather-time information. Significant
reduction in ADE can be observed (7.8m to 7.4m) for the significant
3008 pedestrians out of all 28536 pedestrians.

joint loss function) and iv) incorporation of WT information
using GMU. To study the incremental contribution of each
component of the proposed novel WTTFNet and show the
role of weather and time-of-day in improving the prediction,
we consider Table 6, which compare the following four dif-
ferent settings:

1. PoPPL (baseline model): The original PoPPL with
entropy loss. In general, other baseline models can be
used.

2. PoPPL (baseline model) + FL: PoPPL modified with
Focal Loss.

3. WTTFNet without WT information (second last col-
umn of Tables 5 and 6): GMU is bypassed and WT
information is not incorporated. Deep supervision is
used to co-train the preliminary and final classifiers.

4. WTTFNet with WT information (final column of
Tables 5 and 6): Between the preliminary and final
classifiers, the GMU is inserted and the WT infor-
mation is fused with the preliminary pedestrian intent
probabilities at the GMU.

Comparing between PoPPL and PoPPL+FL (Setting 1
vs 2), it can be seen that the use of focal loss improves
the ACC as it helps to tackle the class imbalance existed
among the clusters. After adding the proposed WTTFNet
(Setting 2 vs Setting 3), even without the WT informa-
tion, around 4% relative improvement in ACC is observed.
This suggests even when the GMU is bypassed and WT
information is not supplied, deep supervision employed in
the WTTFNet is useful in refining both the preliminary
and final classifiers optimized using auxiliary and final loss
functions based on focal loss. This leads to improved clas-
sification accuracy (Table 6), reduction in ADE and FDE
(Table 5 ).
Finally, to study the role of weather and time-of-day in

improving the performance, we compare WTTFNet with-
out/with WT information (Setting 3 vs Setting 4). We can
observe that the best performance (highest classification
accuracy, lowest ADE and FDE) can be attained in Tables 6
and 5, respectively, after incorporation of WT information

FIGURE 6. Final Displacement Error (FDE) of the proposed approach
with/without the incorporation of weather-time information. Significant
reduction in FDE can be observed (14.11m to 13.04m) for the significant
3008 pedestrians out of all 28536 pedestrians.

into the proposed WTTFNet, which suggests the usefulness
in adding WT information in prediction.

Overall, the ACC increased from 71.5% to 71.95% after
adding WT information in the proposed WTTFNet. To vali-
date its statistical significance, we performed a McNemar’s
test and a significant p-value (p = 0.0196 < 0.05) was
attained. This suggests the improvement from 71.5% to
71.95% in ACC is very unlikely to be solely due to random
under the large sample size of 28536 pedestrians. What fol-
lows, the McNemar’s test also identifies 3008 pedestrians out
of 28536 to have deviation in identified destination classes
after WT information is added, this prompted us to further
analyze those two different groups of pedestrians in next
subsection.

2) QUANTITATIVE ANALYSIS OF THE ROLE OF WEATHER
AND TIME-OF-DAY
In this section, further analysis on the role of weather
and time-of-day in improving the prediction performance
is studied. Following the significance p-value obtained for
the McNemar’s test in previous sub-section, which suggests
that there is significant improvement in classification accu-
racy after adding WT information to the proposed approach.
Moreover, 3008 pedestrians were found to have significant
improvement after WT information were added. This moti-
vates us to analyze the average displacement error (ADE) and
final displacement error (FDE) of the 3008 pedestrians.

Figs. 5 and 6 compare the ADE and FDE of the proposed
approach under two settings, respectively: with/without the
incorporation ofWT information. ‘‘No effect onDestination’’
means the predicted destination are same under the both set-
tings, whereas ‘‘Influenced the Predicted Destination’’ means
the predicted destination was altered after incorporating the
WT information.

Fig. 5 shows the ADE of the proposed approach
with/without WT information incorporated. From the figure,
it can be shown that similar ADE was attained when the WT
information has no effect on the predicted destination. On the
other hand, if the predicted destination changed because of
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FIGURE 7. Illustration of predicted trajectories, where the weather-time condition has (a,b) significant influence on destination (chosen
from the 3008 significant pedestrians), and (c,d) no influence on destination (chosen from remaining pedestrians). The first half of the
trajectory (denoted in black) is used to predict the latter half of the trajectory. Since the two lines of WTTFNet with/ without WT
overlapped in (c) and (d), both settings are merged to one line.

the varying weather (Influenced the predicted destination),
the proposed WTTF with WT information incorporated will
attain lower ADE (7.4083m) in compared to without WT
information (7.83m). One-sided Mann–Whitney U test was
used to test the significance in ADE reduction (7.83m to
7.4083m after adding WT information) and a p-value of p =

0.0203 < 0.05 was attained, suggesting the significance in
performance improvement for these pedestrians considered.

Fig. 6 shows the FDE under the two settings (with/without
WT information) were compared for the proposed approach.
Similar to the observation in the previous comparison, same
FDE was attained when the WT information has no effect on
the predicted destination (FDE = 9.99m) and improved FDE
(reduction from 14.11m to 13.04m) for the proposed WTTF
approach when it changes the predicted destination after
incorporating WT information. One-sided Mann–Whitney
U test was used to test the significance in FDE reduction
(14.11m to 13.04m after adding WT information) and a
p-value of p = 0.00533 < 0.05 was attained, suggesting the
significance in performance improvement for these pedestri-
ans considered.

Overall, 5.47% (7.8m to 7.4m) and 7.58% (14.11m to
13.04m) improvement in ADE and FDE reduction were
obtained for the 3008 pedestrians, and the reduction is found
significant according to one-sided Mann–Whitney U tests.
(p = 0.0203 (<0.05) and p = 0.00533 (<0.05) for ADE and
FDE, respectively). For the remaining pedestrians, similar
ADE and FDE performance was observed for pedestrians

with no effect, because they have the same predicted desti-
nation under two settings (with/without WT information).

3) QUALITATIVE ANALYSIS OF THE ROLE OF WEATHER AND
TIME-OF-DAY
To illustrate the usefulness of adding WT information in
the proposed WTTFNet, we consider four different cases,
where Figs. 7(a) and (b) are extracted from the significant
3008 pedestrians and Figs 7(c) and (d) are extracted from the
remaining pedestrians, whose destination was not affected by
weather-time conditions.

Comparing between the proposed WTTFNet and other
algorithms, the proposedWTTFNet (solid blue linewith dots)
generally aligns the best with the actual trajectory (solid
black). In particular, the linear model, vanilla LSTM and
PoPPL diverged inferiorly in Figs. 7(a) and 7(b).
To study the role of weather and time-of-day, we compare

between the two different settings of the proposedWTTFNet:
with/without WT information. From Figs 7(a) and 7(b), the
WTTFnet with WT information (solid blue line with dots)
aligns much better than the counterpart without WT infor-
mation (solid red line with diamonds), which diverges in
the middle of the path. For the remaining non-significant
pedestrians, both settings nearly the same performance in
Figs. 7(c) and 7(d) and hence only one of them are plot on
the graphs.

Overall, the quantitative (Figs. 5 and 6) and qualita-
tive (Fig. 7) analyses show that weather-time information
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helps to improve prediction performance significantly for
the 3008 cases considered. The proportion of 3008 out of
28536 was also statistically significant according to the
McNemar’s test, suggesting that these 3008 pedestrians
showing improved performance out of 28536 cases were very
unlikely a random event. This suggests the proposed approach
may serve as an attractive approach for incorporating WT
information to improve pedestrian trajectory prediction and
it also serves as a systematic approach to test the significance
of WT conditions.

V. CONCLUSION
A new deep WTTFNet has been presented. Experimen-
tal results using the Osaka ATC dataset [3] show that the
proposed approach attained better performance than other
state-of-the-art methods considered under varying weather-
time conditions. A statistical test is also used to establish
the significance of time-of-day and weather conditions. The
proposed refinement framework can be adopted on other
baseline models to improve these performance under varying
weather-time conditions.
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