IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 July 2024, accepted 26 August 2024, date of publication 28 August 2024, date of current version 13 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3451229

== RESEARCH ARTICLE

The Segmentation Tracker With Mask-Guided
Background Suppression Strategy

ERLIN TIAN', YUNPENG LEI“2, JUNFENG SUN""3, KEYAN ZHOU?, BIN ZHOU?,
AND HANFEI LI

!'School of Electronic Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
2School of Electric and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
3China Tobacco Guangxi Industrial Company Ltd., Nanning 530000, China

Corresponding author: Junfeng Sun (Junfengsun1981@163.com)
This work was supported in part by the National Natural Science Foundation of China under Grant 62272423, Grant 62072416, Grant
62006213, and Grant 62102373; in part by the Program for Science and Technology Innovation Talents in Universities of Henan Province

under Grant 21HASTIT028; in part by the Natural Science Foundation of Henan under Grant 202300410495; and in part by the Key
Scientific Research Projects of Colleges and Universities in Henan Province under Grant 21A120010.

ABSTRACT Segmentation-based tracking is currently a promising tracking paradigm with pixel-wise
information. However, the lack of structural constraints makes it difficult to maintain excellent performance
in the presence of background interference. Therefore, we propose a Segmentation tracker with mask-guided
background suppression strategy. Firstly, a mask-aware module is designed to generate more accurate target
masks. With the guidance of regression loss, features were selected that are sensitive only to the target
region among shallow features that contain more spatial information. Structural information is introduced
and background clutter in the backbone feature is suppressed, which enhances the reliability of the target
segmentation. Secondly, a mask-guided template suppression module is constructed to improve feature
representation. The generated mask with clear target contours can be used to filter the background noise,
which increases the distinction between foreground and background of which. Therefore, the module
highlights the target area and improves the interference resistance of the template. Finally, an adaptive
spatiotemporal context constraint strategy is proposed to aid the target location. The strategy learns a region
probability matrix by the object mask of the previous frame, which is used to constrain the contextual
information in the search region of the current frame. Benefiting from this strategy, our method effectively
suppresses similar distractors in the search region and achieves robust tracking. Broad experiments on five
challenge benchmarks including VOT2016, VOT2018, VOT2019, OTB100, and TC128 indicate that the
proposed tracker performs stably under complex tracking backgrounds.

INDEX TERMS Object tracking, Siamese network, object segmentation, background interference.

I. INTRODUCTION

Single object tracking plays a crucial role in computer vision,
and it has various practical applications in various fields
such as medical diagnosis, video surveillance and human-
computer interaction. Only the ground truth of the target to
be tracked in the first frame is given, VOT aims to locate
the target and report its location and size with a bounding
box in the subsequent frames. Presently, VOT has still been
considered a highly difficult task because of a number of
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factors for example background clutter and deformation,
especially for Siamese-based trackers.

The shape of the target is often irregular, however, tracking
is considered a matching process in Siamese-based trackers,
which take fixed-size rectangular features as target templates.
As a result, interference information is also included in the
target template, which may reduce the reliability of the target
representation. In addition, background interference in the
search area tends to cause tracking drift.

To suppress the background distractor, many efforts
have been made on Siamese-based trackers recently.
Spatio-temporal constraints, attentional mechanisms, and
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exploration of distinguishing features are common
approaches. Some Siamese trackers employ cosine win-
dows to constrain the response map, which achieves the
goal of focusing more on the centers and ignoring the
surrounding areas. For example, the cosine window is used in
SiamRPN [1] and the scores of proposals are ranked for the
best proposal. And there are some trackers [2], [3], [4], [5]
that penalize large displacements through temporal context
prior. This distribution is too simple as a temporal context
prior and therefore has limited capability for constraining
background interference. And some incorporated attention
mechanisms into the tracker to make the network focus
more on the target of interest and thus ignore irrelevant
information. There are various attention mechanisms applied
in the Residual attentional siamese network(RASNet) [6] to
enhance its discrimination, which includes channel, residual,
and general attention. SA-Siam [7] integrates a channel
attention module into the semantic branch to calculate the
weight of the channel based on the channel activities that
are surrounding the target location. Distraction-aware module
is designed in the Distractor-aware siamese network [8] in
order to help the tracker pay more attention to semantic
interference. Some trackers combat background interference
by exploring distinguishing features. C-RPN [9] adopts
the fusion of multi-layer features and multiple steps of
regressions to progressively refine the representation of the
target. For SiamDW [10], the depth and width of the backbone
framework are enhanced to achieve more accurate and robust
tracking results.

Despite the effectiveness of these methods, they are
limited by the form of target representation, which makes it
difficult to further improve the performance of the tracker.
Because existing trackers commonly represent targets by
an axis-aligned rectangular box, which is unreliable and
inevitably introduces background information in many cases.
For example, when the target is a person with open hands,
although the rectangular box surrounds the target, it contains
a lot of background information. This situation is illustrated
in Figure 1. The output of the semi-supervised segmentation
task consists of a binary segmentation mask indicating
whether a pixel belongs to the target or not. Consider that
it is advantageous to solve the background interference
problem because the target and the background can be clearly
distinguished.

Recently, segmentation has often been introduced into
trackers to improve their performance thanks to its pixel-
level information. SiamMask [11] introduces a segmenta-
tion branch following the SiameseRPN, which allows the
regression of bounding boxes and the segmentation of objects
to be learned jointly in training. Then much work is done
based on SiamMask on reverse optimization paradigm [12]
and rotated box estimation [13]. Later, D3S [14] combines
a segmentation branch with online DCF [15] to incorporate
the process of target classification and inference of pixel-level
segmentation. However, segmentation plays only an auxiliary
role in these trackers, and few studies have used segmentation
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information to solve the background interference problem in
trackers. In addition, tracking accuracy will be compromised
due to the direct reuse of features in the tracking network.
This is because, without structural constraints, interference
can be introduced in the learning process of segmentation due
to background clutter outside the bounding box.

To solve the problems mentioned above, we propose a
Segmentation tracker with mask-guided background sup-
pression strategy that aims to mitigate the background
interference problem in Siamese-based trackers by exploiting
the segmentation information at the pixel level. First, a mask-
aware module is proposed to guarantee the accuracy of
segmentation. Regression Loss is introduced to guide the
selection of features at the shallow layers, which are only
sensitive to the target region. The shallow features extracted
by the neural network have more spatial information. This
module reduces the interference in the backbone network
and introduces structural information to ensure the reliability
and accuracy of segmentation mask generation. With the
pixel-level information, the segmentation mask can clearly
separate the target from the background and can thus be
used to solve the problem of background interference. Then,
a background suppression model is constructed to reduce
background interference in the target template by using
segmentation information. Finally, a mask-guided spatiotem-
poral contextual constraint model is constructed to aid target
localization. A region probability matrix is calculated via
the previous frame’s mask, which represents the spatial
distribution between the object of interest and its contextual
information. This matrix is then applied to the search region
features to constrain the contextual information.

Our method based on the Siamese tracking framework
shows better performance in suppressing the background due
to the exploitation of segmentation information. Extensive
experiments on popular tracking benchmarks including
VOT2016, VOT2018, VOT2019, OTB100, and TC128 have
validated the effectiveness of our tracker.

The main contributions of this work are summarized in
three-fold:

« We propose the mask-aware module to ensure the
accuracy of the generated segmentation masks. Regres-
sion loss is introduced to guide the selection of
shallow features that are sensitive only to the target
region to generate the mask. This introduces structural
information constraints in the process of generating
the mask, thus reducing the interference of background
clutter in the backbone features.

e We propose a mask-guided template suppression
module and adaptive spatiotemporal context constraint
strategy that aims to suppress background interference
by exploiting the pixel-level segmentation information.
For the template branch, MTSM employs the mask of
the initial frame to filter out background interference in
the target template, which improves its discriminative
capacity. For the search region branch, ASTCCS calcu-
lates a region probability matrix based on the mask of the
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FIGURE 1. An illustration of the annotation of a target with a rectangular box is shown in the first line. It can
be seen that the irregularity of the target shape thus introduces an amount of background information in the
bounding box. And the segmentation results are shown in the second line. It can be seen that the pixel-level
segmentation result has a clear target contour and can clearly distinguish the target from the background,
which shows the natural advantage of using the segmentation result to suppress background interference.

previous frame to constrain the contextual information
in the current frame to aid the target location.

o The proposed module is seamlessly integrated into the
siamese-based segmentation tracking framework, and
the results of extensive experiments on popular datasets
show that our approach achieves excellent performance.

Il. RELATED WORKS

The main content of this section is to introduce the
technologies related to this work. Our approach introduces
segmentation information into the Siamese-based tracking
framework for removing its background interference. We first
present the Siamese-based tracking, then the segmentation
based tracking and the tracking with background information
included at the end.

A. SIAMESE-BASED TRACKERS

The Siamese-based trackers have aroused a lot of attention
with balanced speed and precision achieved. Siamese net-
works were originally proposed for signature verification
tasks and were then applied for visual tracking in SINT [16]
and SiamFC. SINT turned out the efficiency of the learned
matching function. It matches the initial patch of the first
frame with the candidates of the new frame by means of a
learned matching function and returns the most similar patch.
SiamFC trained a Siamese-based fully-convolutional network
to perform cross-correlation between a template image within
a larger search region. Subsequent Siamese-based trackers
followed this thinking and treat tracking as a similarity-
matching method. The features of the target template and
the search area branches are extracted with branches of
shared weights, and then their similarity is calculated by
correlation operations. There are a number of strategies
being proposed to enhance SiamFC, for instance bounding
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box regression, exploration of deeper networks [10], [17],
[18], loss function [19] and updating of model [20], [21].
CFNet [15] integrates the correlation filters into SiamFC
as a CNN layer. DSiam [3] equips the SiamFC with a
fast transformation learning model to online adaptability of
both target appearance and background suppression. Region
proposal network (RPN) is embedded in the Siamese-based
network in Siamrpn [1], which employs predefined anchors
instead of the multi-scale searching method as used in
previous trackers to solve the scale estimation problem.
Siamrpn++4- [17] integrates a spatial aware sensing sampling
strategy to the ResNet [22]-driven Siamese tracker, which
mitigates the restriction of network depth for tracker perfor-
mance. Subsequent works [18], [23] propose an anchor-free
algorithm to reduce the calculation of parameter adjustment
and improve the adaptive capability of the network to achieve
the effect of manual intervention reduction.

Siamese-based trackers have made great progress in terms
of accuracy and speed, however, background interference
is still a significant challenge for them. Therefore, in this
paper, we address this problem by introducing pixel-level
segmentation information with clear target edges. Segmen-
tation information is introduced to filter out background
interference in the template and to constrain the contextual
information in the search region.

B. VIDEO OBJECT SEGMENTATION

Semi-supervised VOS [3], [24], [25], [26] task aims to predict
a detailed mask representation of the interest object given in
the first frame. Therefore with the pixel-wise segmentation
information, many studies have developed various segmenta-
tion trackers by optical flow [27], filter [28], [29], boosting
decision tree [30], and Absorbing Markov Chain [31].
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Depending on the network structure, segmentation-based
trackers can be categorized roughly into two groups, cascaded
and parallel. The cascade paradigm [32], OceanPlus [12]
SiamMargin [12] adapts a well-trained bounding-box-to-
segmentation (Box2Seg) network [33], [34] to output binary
target masks within the bounding boxes, which are presented
by a separate branch. For SiamRCNN [32], a Box2Seg
network from PReMVOS [34] was employed to predict the
mask, which is a fully convolutional DeepLabV3+ [33]
network with an Xception-65 [35] backbone and has been
trained on Mapillary [36] and COCO [37]. The parallel
paradigm [11], [14] typically contains a segmentation branch
composed of up-sampling modules for refinement of the
features extracted from the backbone network of the tracker,
similar to the classical U-Net construction [38]. For the
Siamese-based tracker, SiamMask [11] introduces a seg-
mentation branch following the SiameseRPN to implement
combined training of regressing the bounding box and
segment target. For correlation filter-based tracking, D3S [14]
combines a segmentation branch with online DCF [15] to
get the combination of target classification and pixel-wise
segmentation reasoning. Our approach utilizes a parallel
architecture and proposes a mask-aware module to guarantee
the quality of mask generation. Afterward, the mask is used
in the tracking process to reduce the impact of background
interference on the tracker.

C. TRACKERS WITH BACKGROUND INFORMATION
Although some progress has been gained in visual tracking
recently, for example, Siamese and segmentation-based solu-
tions, background information is also a challenging task for
visual tracking. The capacity of trackers can be remarkably
enhanced if it is equipped with a background suppression
component. In correlation filter-based trackers, temporal
context prior is employed in diverse forms to suppress back-
ground distractors. Some approaches [21], [39], [40], [41]
use cosine windows or Gaussian windows as temporal
context priors to structure constraint models. Zhang et al. [42]
formulate spatiotemporal relationships between the target
and its surrounding regions based on a Bayesian framework.
Based on the Siamese-based tracker, Galoogahi et al. [43]
learn a novel background suppression module by mining the
information of the background features in the first frame.
Tan et al. [44] detects and suppress background interference
through the calculation of activation maps of them in the
previous frame. Wei [45] et al. improve the feature representa-
tion by filtering out background interference in the template,
which mitigates background interference. In contrast to the
above tracker, segmentation information is considered a priori
information in our tracker to suppress the background noise
both in the template branch and search region branch. For
the template branch, the initial frame is employed to filter
out background interference in the target template and we
also compute a region probability matrix to constrain the
contextual information in the search region.
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lil. METHOD

In the following, the overall framework of our proposed
method is first presented in Section I1I-A, and the mask-aware
module is explained in Section III-B. The benefits of
our mask-guided template suppression module design are
demonstrated in Section III-C. Finally, we describe the
adaptive spatiotemporal context constraint strategy in detail
in Section III-D.

A. OVERALL ARCHITECTURE
The proposed framework aims to address the problem
of background interference in Siamese-based networks by
segmentation information at the pixel level. The overall
pipeline is shown in Figure 2.

The proposed method first follows the recent Siamese-
based tracker SiamMask [11] to implement object tracking.
Centered on the target annotated in the initial frame, the
template image is cropped to a size of 127*127 as in the
classical Siamese structure. In the following tracking process,
the search region image is obtained by cropping at the center
of the target position in the last frame, which has a size of
255%255. Then, we follow the original SiamMask inference
procedure to predict the target location in the search image.
The target template image and the search region image
are extracted features through a fully-convolutional network
with the same weights and obtain template feature z and
search region feature X. The two features are performed
with a depth-wise cross-correlation to obtain a multi-channel
response map, and the process can be described as:

[ @X)=9¢@) ¢ X) ey

where ¢ () is the function to obtain deep features from the
pre-trained neural network resnet50. % denotes depth-wise
cross-correlation.

In addition to similarity scores and bounding box can-
didates, the response map also contains the necessary
information that allows the generation of binary masks. For
target mask generation, we first extract the information of the
highest scoring position in the response map. The strategy
of [46] is then followed to merge low-resolution features and
high-resolution features with multiple refinement modules
composed of up-sampling layers and skip connections.

Direct reuse of features in the tracking network can
compromise segmentation accuracy. To improve the reli-
ability and accuracy of generating segmentation masks,
the mask-aware module is proposed, in which structural
constraints are introduced in the generation process of masks.
Based on SiamMask, tracking-oriented backbone features
are fed into the mask-aware module, and shallow features
that are sensitive to the target region only are selected to
generate the mask under the guidance of regression loss. The
target mask provides pixel-level classification information of
the target and background which can be used to suppress
background interference. To enhance the discrimination of
the target template, the initial frame target mask is fed into
the mask-guided template background suppression module
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FIGURE 2. The overall framework of our method. The aim of our method is to reduce background
interference in Siamese-based trackers by exploiting pixel-level segmentation information. Firstly, the
mask-aware module (MIAM) is proposed to lead the network to pay more attention to the features of

the target area and thus obtain more accurate object masks. Then, the mask-aware module (MAM) and the
adaptive spatiotemporal context constraint strategy (ASC) are proposed to introduce the target mask into
the template branch and the search area branch to suppress background interference respectively.

to filter out the noise of the background in the template.
To help target location, the target mask of the previous frame
is used to construct a region probability matrix to constrain
the contextual information in the search region of the current
frame. the improved Siamese-based tracking method can be
described as:

Ja (2, X) =Frnv * [RO ¢ (X)] @

where Fry denotes the target template after background
suppression. R denotes the region probability matrix, and
©® denotes the Hadamard product.

B. MASK-AWARE MODEL (MAM)

The segmentation branch is often designed in a segmentation-
based tracker as a structure like the classical U-Net,
which includes up-sampling layers for the refinement and
integration of the low- and high-resolution features extracted
from the backbone network of the tracker. In this paper,
the mask with a clear target edge is used to suppress
background interference in the proposed method, so the
accuracy of the mask representation is important. However,
the general features extracted consist of several feature
patterns representing different target priors, of which the
object of interest represents only a part. Other redundant fea-
tures may compromise segmentation accuracy and introduce
false positives in segmentation. Therefore, we constructed a
mask-aware features model for the segmentation branch to
select features that are active for the target region, as shown
in Figure 3.

Specifically, we compute the importance of features along
the channel depending on a gradient-based approach and then
retain the most important features as mask-aware features.
Given the extracted general features X, mask-aware features
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that are active for the target can be generated according to the
channel importance A as:

X' =y(x; 4) 3)

where y denotes the mapping function that selects channel
features with top importance. Equation (3) is inferred from a
combination of the chain rule and Equation (2) where x is the
output prediction.

We regress all the samples X; ; in a template to a Gaussian
2
label map Y (i,j) = e 202 , where (i, ) is the offset against

the target and o is the kernel width. The problem can be
formulated as the regression loss,

Lugg = IIY (inj) — W 5 X; 12 — AW |2 @

where W denotes the regressor weight and * indicates
the convolution operation. The importance of each channel
feature can be calculated based on its contribution to the fitted
label map, i.e., the derivation of L., with respect to the input
feature X;,.

aLreg . z aLreg «
Xin < 0X, (i.J)

=D 2(Y (i) — Xo (i,))) x W &)

ij

09X, (i, ))
0Xin (i, )

The mask-aware module has the following advantages
over directly reusing features extracted by the tracking
backbone. We select a portion of features that are sensitive
only to the target region for segmentation refinement by
introducing structural information. This not only reduces
irrelevant information in the depth features but also improves
the representation of the target, which guarantees the quality
of the segmentation results.
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FIGURE 3. An illustration of the proposed mask-aware module. With the guidance of regression loss, the
module selects features that are sensitive only to the target region for refinement of the mask within the

features extracted by the tracking framework.

mask I —> @%

|
|
|
\

e g

———- Mapping to the target template @

Element-wise multiplication

> P —>

Frs

p —> %@%I

Fr

@ Element-wise addition

FIGURE 4. The framework of the mask-guided template suppression module.

C. MASK-GUIDED TEMPLATE SUPPRESSION

MODULE (MTSM)

Most Siamese-based trackers regard tracking as a matching
process, with the template patch as fixed kernels to match
the search patch. However, the template contains some
background information in addition to the target. While
this contextual information can aid target location, it causes
tracking to drift or even fail in more cases. Considering
binary segmentation mask can clearly indicate whether a
pixel belongs to the target, it was introduced to reduce
the interference of background clutter. The mask-guided
template suppression module is proposed to achieve this goal,
which is presented in Figure 4. We consider the target mask
of the initial frame to be credible because the ground truth
value of the initial frame is given. Firstly, the target template
feature Ft extracted by resnet50 and the target mask of the
initial frame are fed into this module. Each pixel of the target
is also mapped to the Fr, forming a region of interest M
which can be identified by the mask /. Mask I is the output
of the segmentation branch, which clearly indicates whether
a pixel belongs to the target or not. Thus, with mask 7,
we construct a binary mask M; € [0, 1]**" corresponding to
the elements on the template patch. Its elements for each pixel
are calculated with Equation (6). The information of spatial
location (i, j) is considered target-related information when
the value of (7, /) on mask / is 1, and the corresponding value
of M (i, j) is 1; otherwise, the corresponding value of M (i, j)
is 0. Hence, the region of interest is located by all elements
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with a value of 1.

—

M@p=I’V“”GR ©)

0, otherwise

So that we can obtain a background-suppressed feature by
Frs = ¢ (T (i,j) © M; (i, ))) )

where T is the target template patch and ¢ () is the function
to obtain deep features from the pre-trained neural network
resnet50. ¢ () denotes Hadamard product. The new template
patch Fry is derived from the fusion operation between Fr
and Frs as follows:

Fiyn =B Fr+ (1 —B)xFryg ()

where B is a hyperparameter to control the influence of the
background information. Then, the new template patch Fry
is reused inside the search region in the subsequent tracking
process.

Through the above operations, background information
is suppressed, while the information related to the target
is enhanced, so that the updated template patch Ft can
pay more attention to the target-related information. The
background suppression template fs which contains only
partial information related to the target, was not chosen as
the new template patch. For the background information in
the template cannot be completely discarded as the closer
ones can be regarded as contextual information to locate
the target. In addition, the module is only applied once
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Search region

FIGURE 5. The overall pipeline of adaptive spatiotemporal context constraint strategy.

at initialization, so it improves performance without the
additional burden of computation. (The effectiveness of
the module was demonstrated in section IV-C by ablation
experiments.)

D. ADAPTIVE SPATIOTEMPORAL CONTEXT CONSTRAINT
CTRATEGY

During tracking, we only want to select a candidate with
the highest similarity to the target template. However, other
candidates from the background compromise the tracking
accuracy. Therefore, an adaptive spatiotemporal context
constraint strategy is proposed to alleviate this problem,
as shown in Figure 5. The aim of this strategy is to suppress
the background noise in the current frame, by means of
learning the spatiotemporal distribution between the target
and the interference in the previous frame.

In visual tracking, the search region is an area three times
larger than the template centered on the target position of
the previous frame. The information in the search area can
therefore be considered the local context of the target. Since
the time interval between video frames is usually small,
it is reasonable to assume that successive frames are smooth
between them. So that the spatial distribution of the target
and surrounding interference remains essentially unchanged.
Furthermore, the spatial relationship between an object and
its surrounding context provides specific scene configuration
information which aids to differentiate the target from the
context. The closer to the target location the more important
the information is and a larger weight should be given to it.

First, a region probability matrix is calculated with
the search region feature and the mask. Specifically, we
have the mask M,_; after tracking at the (¢ — 1) th frame,
in which the corresponding part of the search region can be
cropped from M,_; and mapped to the same size of the search
patch. Then a grid of size H x W is computed, which is of
the same spatial resolution as the search region feature F.
We demonstrate how to calculate the regional probability
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matrix using a grid of 4 x 4 size In Figure 5. Denotes the
grid box at the position (i, j) as (x,-j] s Yijls Xij2, yijz) and each
grid value can be calculated as follows:

n

(xé’ - xl) (yz y’f)

The numerator n is the number of pixels in the grid area
that belong to the target and the Gj indicates the overlap
ratio of this grid with the target. All grid values together form
a regional probability matrix R which represents the spatial
distribution of the target in the search region. Then, the search
patch Fyg is multiplied bitwise by the regional probability
matrix R to generate an interference-suppressed patch Fsy,
which is formulated as Equation (9).

The strategy takes the target mask of the previous frame as
a priori information to constrain the contextual information
of the search area in the current frame. With the proposed
strategy, contexts in the search patch are re-weighted, with
information close to the target being given more weight,
and far from the target being relatively suppressed. This
effectively mitigates the effects of interference on tracking
and improves tracking performance. The ablation experiment
in this module is in subsection IV-C.

G(l g —

©))

IV. EXPERIMENTS

In this section, the setup of this work is first presented in
Section IV-A. Then, experiments are conducted in
Section IV-B on five popular trace datasets to evaluate
the performance of our method. Next, attribute-based
experiments and ablation experiments are conducted in
Sections IV-C and IV-D, respectively.

A. IMPLEMENTATION DETAILS

All experiments are implemented on a PC with an Intel
i7-10700CPU 2.90 GHz) processor and a single NVIDIA
GeForce GTX 1650 with 16 GB RAM. Like SiamMask,
the template patch input size is 127 pixels and the search
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area input size is set to 255 pixels, the modified ResNet-50
in [33] is used as the base Siamese subnetwork. In the initial
training, the convergence loss threshold is set to 0.002 and
the maximum iteration number is 100. We select the top
250 important channel features from the Conv1l, Conv2, and
Conv3 layers respectively for the refinement of target masks.
Our algorithm is evaluated on five benchmarks, including
VOT2016 [47], VOT2018, VOT2019, OTB2015, and TC128.

B. EXPERIMENTS ON THE TRACKING BENCHMARK

1) VOT2016 BENCHMARK

In order to evaluate the performance of our method,
we conduct experiments on the popular VOT2016 [47], which
comprises 60 short sequences with various challenges. The
VOT benchmark evaluates a tracker from three aspects:
expected average overlap, accuracy, and robustness. The
accuracy was indicated by calculating the average overlap
ratio between the ground truth values and predicted results
and the robustness is calculated by a number of tracking
failures. The tracking is considered a failure when the
overlap ratio between the predicted and ground truth values
is zero. And the tracker is reinitialized for object tracking
after 5 frames of the failure. The Expected Average
Overlap (EAO) is used for overall performance ranking
according to these two measures. We compared some state-
of-the-art trackers (SiamFC [2], TCNN [48], CCOT [49],
CSRDCF [50], SiamRPN [1], TADT [51], ECO [52],
ASRCF [53], ATOM [54], SPM [55], and SiamMask [11].
Their scores are shown detailed in Table 1. ATOM and
ASRCF obtained better robustness, but their EAO scores
and overlap scores are lower than ours. In comparison to
the SiamMask [11], which is a segmentation-based tracker
as well, our EAO scores and Accuracy scores were 1.3%
and 1.5% higher, respectively, and our robustness score is
1.8% lower. Overall, our method has the highest accuracy and
EAO and better robustness score, indicating that the method
effectively reduces the background interference problem.

TABLE 1. Details about the state-of-the-art trackers in VOT2016 [47]. red,
blue and green, represent 1st, 2nd and 3rd respectively.

Tracker EAO Accuracy Robustness
SiamFC 0.235 0.532 0.461
TCNN 0.325 0.550 0.268
CCOT 0.331 0.540 0.238
CSRDCF 0.338 0.510 0.238
SiamRPN 0.344 0.560 0.302
TADT 0.360 0.560 0.299
ECO 0.375 0.550 0.569
ASRCF 0.391 0.560 0.187
ATOM 0.430 0.610 0.180
SPM 0.210
SiamMask 0.436 0.621 0.214
OURS 0.449 0.636

2) OTB100 BENCHMARK

To further validate the performance of our tracker,
we conducted experiments on VOT2018. VOT2018 con-
tains 60 video sequences and, like VOT2016 [47], takes
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expected average overlap, accuracy, and robustness to
measure the performance of the tracker. The videos
contained in the VOT2018 dataset [56] are somewhat
longer than those in VOT2016 and the challenges are
more complex. In Table 2, we compare our tracker with
others including SiamFC [1], ECO [52], ASRCF [53],
SPM [55], SiamMask [11], DaSiamRPN [8], SiamRPN [1],
LADCEF [57], and ATOM [54]. DaSiamRPN [8] suppresses
distractors by learning interference-aware features and
obtains 0.383 EAO scores and 0.590 accuracy scores. Our
method achieves EAO scores equivalent to its accuracy
scores 1.7% higher, which indicates the advantage of
employing segmentation information to suppress background
interference. However, our method has not yielded the best
performance. ATOM obtains better robustness and EAO
scores, only our accuracy scores were higher than ours.
This is probably because our tracker cannot cope with target
disappearance and reappearance well.

TABLE 2. Details about the state-of-the-art trackers in VOT2018 [56]. red,
blue and green, represent 1st, 2nd and 3rd respectively.

Tracker EAO Accuracy Robustness
SiamFC 0.188 0.506 0.506
ECO 0.280 0.270 0.480
ASRCF 0.328 0.490

SPM 0.338 0.580 0.300
SiamMask 0.375 0.592 0.272
DaSiamRPN 0.383 0.276
SiamRPN 0.384 0.588 0.276
LADCF 0.389 0.503 0.159
ATOM 0.401 0.204
OURS 0.607 0.272

3) VOT2019 BENCHMARK

Then we evaluate our method on VOT2019 [58], in which
sequences are replaced by 20% compared to the VOT2018.
Table 3 shows the EAO, robustness, and accuracy of
our trackers, SA-Siam [7], SiamCRF_RT [58], SPM [55],
SiamMask [11], SiamRPN+4 [17], ATOM [54],
ARTCS [58], SiamDW_ST [10], DCFST [58] respectively.
Although the overall performance metric EAO scores of our
tracker are lower than ATOM in the vot2018 comparison
results, in vot2019, the EAO and accuracy scores are
comparable to or even slightly higher than it. And in the case
where EAO scores are slightly lower than SiamDW_ST [10]
and DCFST [58], our accuracy scores are higher than both.
In general, our method ranks first on the accuracy metric on
the VOT2019 dataset and also ranks high in EAO metrics.
This shows that our tracker obtains better tracking accuracy,
which validates the effectiveness of our target-guided mask
refinement module. This module improves the reliability
and accuracy of the object mask by introducing structural
constraints in the mask generation process, thus improving
the tracking accuracy of the tracker.

4) OTB100 BENCHMARK
To verify the versatility of our tracker, we conducted
experiments on OTB100 [59]. It contains 100 videos, some
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FIGURE 6. The Success plot and Precision plot on the Object Tracking Benchmark (OTB) 100 dataset.

TABLE 3. Details about the state-of-the-art trackers in VOT2019 [58]. red,
blue and green, represent 1st, 2nd and 3rd respectively.

Tracker EAO Accuracy Robustness
SA-Siam 0.252 0.547 0.492
SiamCRF_RT | 0.252 0.549 0.346
SPM 0.262 0.577 0.507
SiamRPN++ 0.275 0.590 0.492
ATOM 0.280 0.411
ARTCS 0.287 0.602 0.482
SiamDW_ST | 0.287 0.600 0.467
DCFST 0.299 0.585 0.371
OURS 0.607 0.497

of which are in grayscale. Different from VOT, OTB100
takes success and precision as the major evaluation metrics.
The precision represents the percentage of error between
the center point of the ground truth and the prediction
bounding box. The success indicates the percentage of
successfully tracked frames to the total number of video
frames. The success of the frame tracking is determined
when the percentage of overlap between the ground truth
and the prediction bounding box is greater than a certain
threshold. We compare our method with numerous trackers
including Siammask [11], GradNet [60], DeepSRDCF [61],
SiamRPN [1], SiamDWfc [10], SRDCF [62], CFNet [63],
SiamFC [2], Staple [64]. The performance of the above
trackers by one-pass evaluation (OPE) including both the
accuracy plots and the success plots are shown in Figure 6.
Our method achieves a score of 0.653 and 0.854 on
success and precision respectively. In comparison to the
Siamese-based method SiamFC, our method obtained a 6.6%
improvement in the success metric. This demonstrates the
advantage of our approach of using pixel-level segmentation
information to suppress background noise. TADT learns
target-aware features that improve the tracker’s ability
to identify targets that undergo significant changes in
appearance, and obtains 0.656 success scores. Our method
achieves scores equivalent to its, which also proved that
the proposed mask-guided background suppression module
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TABLE 4. Details about the state-of-the-art trackers in VOT2019 [58]. red,
blue and green, represent 1st, 2nd and 3rd respectively.

Tracker Success Precision
KCF 0.386 0.557
BACF 0.495 0.660
CF2 0.495 0.692
SiamFC 0.503 0.688
CREST 0.533 0.708
SCS-Siam 0.538 0.742
SiamMask 0.540 0.725
SCSAtt 0.744
ECO 0.552

TADT 0.562 0.758
DeepSRDCF 0.543 0.730
OURS 0.736

improves the discriminative ability of the target template.
However, in contrast to the good performance on the VOT
datasets, the overall performance of the proposed method on
OTB100 is still somewhat distant from the state-of-the-art
methods. The reason for this phenomenon is the targets in
the OTB100 dataset are annotated with rectangles, while the
tracking results generated by our method are presented in the
form of quadrilaterals. In addition, the OTB dataset is not
set up with a mechanism to reinitialize after tracking failure,
which also proves that our approach cannot cope well with
the challenge of target loss.

5) TC128 BENCHMARK

To demonstrate the universality of the proposed approach,
additional experiments were conducted on the TCI28
dataset [47]. We evaluated three distinct categories of
tracking algorithms: correlation filter-based trackers such as
KCF [41] and BACF [43], CNNs and CF-based trackers
including CF2 [65], DeepSRDCF [61], and ECO [52],
as well as Siamese network structure-based trackers including
SiamFC [2], SiamMask [11], SCS-Siam [66], TADT [51],
and SCSAtt [67]. CREST [68] was also included in
the evaluation. The comparison results are presented
in Table 4.
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FIGURE 7. Comparison of success plots and precision plots on challenging attributes for tracking, including
scale variation (SV), illumination variation (IV), low resolution, In-plane rotation (IPR), Fast Motion, and

Deformation for OTB-100.

C. ATTRIBUTE-BASED COMPARISON

We compared the performance of nine trackers using
success plots and precision plots on six attributes that are
closely related to our method: fast motion, scale variation,
illumination variation, low resolution, in-plane rotation,
and deformation. The experiments were conducted on the
OTB100 dataset. Figure 7 displays the performance of our
proposed tracker and other trackers on six distinct attributes.
Overall, the performance of our algorithm was found to
be superior to that of most of the other trackers evaluated
in the comparison study. What is worth emphasizing is
that our method outperforms SiamMask for each attribute,
which proves that our tracker makes fuller use of the
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segmentation information. For the attributes of scale variation
and fast motion, our algorithm obtains the first scoring rate
which indirectly proves that our object-guided background
suppression module effectively enhances the discriminability
of the target template.

D. ABLATION EXPERIMENTS

To verify the effectiveness of the proposed algorithm,
we performed ablation experiments on the VOT2016 dataset.
we investigate the effects of different combinations of three
main components in our method, including the mask-aware
module (MAM), mask-guided template suppression module
(MTSM), and adaptive spatiotemporal context constraint
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strategy (ASC). Their contributions are validated by remov-
ing them separately from the entire framework. Detailed
results are reported in Table 5. The baseline algorithm is a
method without the mask-aware model and the background
constraint method, which is described in detail in the
subsections.

TABLE 5. Ablation studies on VOT2016.In the table, E represents the EAO
metrics. The larger the value, the better the performance of the tracker.
R indicates the robustness metrics. The smaller the value, the better the
robustness of the tracker.

Tracker name EAO A R Lost
Number
Baseline 0.436 | 0.621 0.214 | 46
Baseline + MAM 0.438 0.631 0.205 48
Baseline + MAM + 0.441 0.640 | 0.205 44
MTSM
Baseline + MAM + 0.449 | 0.636 | 0.196 | 42
MTSM + ASC

1) EFFECTIVENESS OF MASK-AWARE MODEL

Based on the baseline algorithm, the mask-aware model is
introduced to improve the quality of the segmentation mask.
Compared to the baseline algorithm, the score on the accuracy
metric is improved with almost unchanged in other metrics.
This demonstrates that the proposed mask-aware model can
effectively improve the quality of the mask. For the model
selects the features that best represent the target to generate
the mask, which significantly reduces the negative impact of
interference in the backbone network.

2) EFFECTIVENESS OF MASK-GUIDED TEMPLATE
SUPPRESSION MODULE

In order to verify the validity of the background suppress
module, we introduce this module with the other components
unchanged. The mask-guided template suppression module
improved the EAO score and Accuracy score and reduce
the number of lost. This indicates that the utilization of this
module effectively suppresses irrelevant information in the
target template and highlights foreground information related
to the target. For pixel-wise segmentation information can
clearly distinguish whether each pixel belongs to the target
and the background.

3) EFFECTIVENESS OF ADAPTIVE SPATIOTEMPORAL
CONTEXT CONSTRAINT STRATEGY

Next, we further show the superiority of the adaptive spa-
tiotemporal context constraint strategy. As can be seen from
Table 5 the method with ASC performs better. Compared
to the method in which the module is not included, ASC
reduces the number of lost tracks while improving accuracy.
This indicates that the proposed MSCM can significantly
reduce the possibility of tracking drift. This is because
the module learns a region probability matrix representing
the spatial distribution of the target from the segmentation
information of the previous frame, which is then used in
the current frame. Our tracker maintains as much temporal
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and spatial information as possible, thus improving tracking
performance.

V. CONCLUSION

Previous Siamese-based trackers use attentional mechanisms
or explore distinguishable features to suppress interference,
but the lack of structural information makes it difficult to
highlight targets effectively. Considering that the output of
semi-supervised object segmentation results in determining
whether each pixel position belongs to the target, which is
advantageous for separating the target from the background.
We propose segmentation tracker with mask-guided back-
ground suppression strategy to suppress background inter-
ference by exploiting pixel-level segmentation information.
First, we propose a mask-aware module that introduces
structural information to help the network focus more on
target region features and thus generate more accurate target
masks. Then, we introduce the object mask with pixel-wise
information into the template branch to filter the background
interference, which obtains a more discriminative target
template. Finally, the mask is introduced into the search
region branch to help target location. The spatial distribution
of the target in the search region in the previous frame
is learned by the object mask to constrain the background
interference in the current frame. We evaluated our tracker
on the VOT2016, VOT208, VOT2019, OTB100, and TC128
datasets. The quantitative and qualitative results show that our
method achieves superior tracking accuracy and robustness.

REFERENCES

[1] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual
tracking with Siamese region proposal network,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8971-8980.

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional Siamese networks for object tracking,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), Amsterdam, The Netherlands. Berlin,
Germany: Springer, Oct. 2016, pp. 850-865.

[3] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. S. Torr,
“End-to-end representation learning for correlation filter based tracking,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 5000-5008.

[4] W. Zhou, L. Wen, L. Zhang, D. Du, T. Luo, and Y. Wu, “SiamMan:
Siamese motion-aware network for visual tracking,” 2019,
arXiv:1912.05515.

[5] J.Zhu, T. Chen, and J. Cao, “Siamese network using adaptive background
superposition initialization for real-time object tracking,” IEEE Access,
vol. 7, pp. 119454-119464, 2019.

[6] Q. Wang, Z. Teng, J. Xing, J. Gao, W. Hu, and S. Maybank, “Learning
attentions: Residual attentional Siamese network for high performance
online visual tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 4854-4863.

[7] A. He, C. Luo, X. Tian, and W. Zeng, “A twofold Siamese network for
real-time object tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 4834-4843.

[8] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, “Distractor-aware
Siamese networks for visual object tracking,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 101-117.

[9] H. Fan and H. Ling, “Siamese cascaded region proposal networks for
real-time visual tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 7944-7953.

[10] Z.Zhang and H. Peng, “‘Deeper and wider Siamese networks for real-time
visual tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 4586-4595.

VOLUME 12, 2024



E. Tian et al.: Segmentation Tracker With Mask-Guided Background Suppression Strategy

IEEE Access

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. S. Torr, “Fast
online object tracking and segmentation: A unifying approach,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 1328-1338.

Y. Wang, J. Choi, K. Zhang, Q. Huang, Y. Chen, M.-S. Lee,
and C.-C.-J. Kuo, “Video object tracking and segmentation with box
annotation,” Signal Process., Image Commun., vol. 85, Jul. 2020,
Art. no. 115858.

B. Xin Chen and J. K. Tsotsos, “Fast visual object tracking with rotated
bounding boxes,” 2019, arXiv:1907.03892.

A. Lukezic, J. Matas, and M. Kristan, “D3S—A discriminative single
shot segmentation tracker,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 7131-7140.

D. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object
tracking using adaptive correlation filters,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 2544-2550.

R. Tao, E. Gavves, and A. W. M. Smeulders, “‘Siamese instance search for
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 1420-1429.

B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, “SiamRPN-++:
Evolution of Siamese visual tracking with very deep networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4277-4286.

Y. Xu, Z. Wang, Z. Li, Y. Yuan, and G. Yu, “SiamFC++: Towards robust
and accurate visual tracking with target estimation guidelines,” in Proc.
AAAI Conf. Artif. Intell., Apr. 2020, vol. 34, no. 7, pp. 12549-12556.
X.Dong and J. Shen, “Triplet loss in Siamese network for object tracking,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 459-474.

G. Bhat, M. Danelljan, L. Van Gool, and R. Timofte, ‘“Learning
discriminative model prediction for tracking,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6181-6190.

Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker with
feature integration,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Zurich,
Switzerland. Berlin, Germany: Springer, Sep. 2017, pp. 254-265.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

D. Guo, J. Wang, Y. Cui, Z. Wang, and S. Chen, “SiamCAR: Siamese
fully convolutional classification and regression for visual tracking,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 6268-6276.

Y. Zhang, Z. Wu, H. Peng, and S. Lin, “A transductive approach for
video object segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 6947-6956.

Y.-T. Hu, J.-B. Huang, and A. G. Schwing, ““VideoMatch: Matching based
video object segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
Sep. 2018, pp. 54-70.

F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and A. Sorkine-Hornung,
“Learning video object segmentation from static images,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3491-3500.
B. K. P. Horn and B. G. Schunck, “‘Determining optical flow,” Artif. Intell.,
vol. 17, nos. 1-3, pp. 185-203, Aug. 1981.

I. Kompatsiaris and M. G. Strintz, “Spatiotemporal segmentation and
tracking of objects for visualization of videoconference image sequences,”
IEEE Trans. Circuits Syst. Video Technol., vol. 10, no. 8, pp. 1388-1402,
Aug. 2000.

V. Belagiannis, F. Schubert, N. Navab, and S. Ilic, “Segmentation based
particle filtering for real-time 2D object tracking,” in Proc. 12th Eur.
Conf. Comput. Vis. (ECCV), Florence, Italy. Berlin, Germany: Springer,
Oct. 2012, pp. 842-855.

J. Son, I. Jung, K. Park, and B. Han, “Tracking-by-segmentation with
online gradient boosting decision tree,” in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2015, pp. 3056-3064.

D. Yeo, J. Son, B. Han, and J. H. Han, “Superpixel-based tracking-by-
segmentation using Markov chains,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 511-520.

P. Voigtlaender, J. Luiten, P. H. S. Torr, and B. Leibe, “Siam R-CNN:
Visual tracking by re-detection,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 6577-6587.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, ‘“Encoder—
decoder with atrous separable convolution for semantic image segmenta-
tion,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 801-818.

VOLUME 12, 2024

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

(46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

(54]

[55]

J. Luiten, P. Voigtlaender, and B. Leibe, “PReMVOS: Proposal-generation,
refinement and merging for video object segmentation,” in Proc. Asian
Conf. Comput. Vis. Cham, Switzerland: Springer, 2018, pp. 565-580.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2017, pp. 1251-1258.

G. Neuhold, T. Ollmann, S. R. Bulo, and P. Kontschieder, ‘“The mapillary
vistas dataset for semantic understanding of street scenes,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5000-5009.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in Proc. 13th Eur. Conf. Comput. Vis. (ECCV), Zurich,
Switzerland. Berlin, Germany: Springer, Sep. 2014, pp. 740-755.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. I8th Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. (MICCAI), vol. 9351, Munich,
Germany. Cham, Switzerland: Springer, Oct. 2015, pp. 234-241.

T. Liu, G. Wang, and Q. Yang, “Real-time part-based visual tracking via
adaptive correlation filters,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 4902-4912.

M. Danelljan, G. Héger, F. Shahbaz Khan, and M. Felsberg, “Accurate
scale estimation for robust visual tracking,” in Proc. Brit. Mach. Vis. Conf.,
Sep. 2014, pp. 65.1-65.11.

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, ‘““High-speed tracking
with kernelized correlation filters,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 583-596, Mar. 2015.

K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang, “Fast visual
tracking via dense spatio-temporal context learning,” in Proc. 13th
Eur. Conf. Comput. Vis. (ECCV), Zurich, Switzerland. Berlin, Germany:
Springer, Sep. 2014, pp. 127-141.

H. K. Galoogahi, A. Fagg, and S. Lucey, “Learning background-aware
correlation filters for visual tracking,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1144-1152.

K. Tan, T.-B. Xu, and Z. Wei, “Online visual tracking via background-
aware Siamese networks,” Int. J. Mach. Learn. Cybern., vol. 13, no. 10,
pp. 2825-2842, Oct. 2022.

B. Wei, H. Chen, Q. Ding, and H. Luo, “SiamOAN: Siamese object-
aware network for real-time target tracking,” Neurocomputing, vol. 471,
pp. 161-174, Jan. 2022.

P. O. Pinheiro, T. Y. Lin, R. Collobert, and P. Dollr, “Learning to
refine object segments,” in Proc. 14th Eur. Conf. Comput. Vis. (ECCV),
Amsterdam, The Netherlands. Cham, Switzerland: Springer, Oct. 2016,
pp. 75-91.

P. Liang, E. Blasch, and H. Ling, “Encoding color information for
visual tracking: Algorithms and benchmark,” IEEE Trans. Image Process.,
vol. 24, no. 12, pp. 5630-5644, Dec. 2015.

A. Pandey and D. Wang, “TCNN: Temporal convolutional neural
network for real-time speech enhancement in the time domain,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 6875-6879.

M. Danelljan, A. Robinson, F. Shahbaz Khan, and M. Felsberg, “Beyond
correlation filters: Learning continuous convolution operators for visual
tracking,” in Proc. 14th Eur. Conf. Comput. Vis. (ECCV), Amsterdam,
The Netherlands. Cham, Switzerland: Springer, Oct. 2016, pp. 472-488.
A. Lukezic, T. Vojir, L. C. Zajc, J. Matas, and M. Kristan, “Discriminative
correlation filter with channel and spatial reliability,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4847-4856.

X. Li, C. Ma, B. Wu, Z. He, and M.-H. Yang, ‘“Target-aware deep
tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1369-1378.

M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “ECO: Efficient
convolution operators for tracking,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 6931-6939.

K. Dai, D. Wang, H. Lu, C. Sun, and J. Li, “Visual tracking via
adaptive spatially-regularized correlation filters,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4665-4674.
M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “ATOM: Accurate
tracking by overlap maximization,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 4655-4664.

G. Wang, C. Luo, Z. Xiong, and W. Zeng, “SPM-tracker: Series-parallel
matching for real-time visual object tracking,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 3638-3647.

124043



IEEE Access

E. Tian et al.: Segmentation Tracker With Mask-Guided Background Suppression Strategy

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

M. Kiristan et al., “The sixth visual object tracking VOT2018 challenge
results,” in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops, 2018,
pp. 3-53.

T. Xu, Z.-H. Feng, X.-J. Wu, and J. Kittler, “Learning adaptive
discriminative correlation filters via temporal consistency preserving
spatial feature selection for robust visual object tracking,” IEEE Trans.
Image Process., vol. 28, no. 11, pp. 5596-5609, Nov. 2019.

M. Kristan et al., “The seventh visual object tracking VOT2019 challenge
results,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW),
Oct. 2019, pp. 2206-2241.

Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A bench-
mark,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 2411-2418.

P. Li, B. Chen, W. Ouyang, D. Wang, X. Yang, and H. Lu, “GradNet:
Gradient-guided network for visual object tracking,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6161-6170.

M. Danelljan, G. Higer, F. S. Khan, and M. Felsberg, ‘“Convolutional
features for correlation filter based visual tracking,” in Proc. IEEE Int.
Conf. Comput. Vis. Workshop (ICCVW), Dec. 2015, pp. 621-629.

M. Danelljan, G. Héger, F. S. Khan, and M. Felsberg, “Learning spatially
regularized correlation filters for visual tracking,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 4310-4318.

Z. Shen, Y. Dai, and Z. Rao, “CFNet: Cascade and fused cost volume for
robust stereo matching,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 13901-13910.

L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. S. Torr,
“Staple: Complementary learners for real-time tracking,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1401-1409.
C.Ma, J.-B. Huang, X. Yang, and M.-H. Yang, ‘“‘Hierarchical convolutional
features for visual tracking,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 3074-3082.

M. Fiaz, A. Mahmood, and S. K. Jung, “Learning soft mask based feature
fusion with channel and spatial attention for robust visual object tracking,”
Sensors, vol. 20, no. 14, p. 4021, Jul. 2020.

M. M. Rahman, M. Fiaz, and S. K. Jung, “Efficient visual tracking
with stacked channel-spatial attention learning,” IEEE Access, vol. 8,
pp. 100857-100869, 2020.

Y. Song, C. Ma, L. Gong, J. Zhang, R. W. H. Lau, and M.-H. Yang,
“CREST: Convolutional residual learning for visual tracking,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2574-2583.

ERLIN TIAN was born in Henan, China, in 1980.
He received the M.S. degree in communication and
information systems from Huazhong University of
Science and Technology, Wuhan, China, in 2008.
He was an Associate Professor at Zhengzhou
University of Light Industry. His research interests
include pattern recognition and image processing.

124044

YUNPENG LEl was born in Henan, China,
in 2002. He received degree in smart grid infor-
mation engineering from the School of Electrical
Information Engineering, Zhengzhou University
of Light Industry, in 2022. His research interests
include object tracking and object segmentation

JUNFENG SUN received the bachelor’s degree.
He is currently working as a Engineer with China
Tobacco Guangxi Industrial Company Ltd. His
research interests include application of power
control and automation control technology.

KEYAN ZHOU was born in Henan, China, in 1999.
She received the B.S. degree in smart grid
information engineering and the M.S. degree in
control science and engineering from Zhengzhou
University of Light Industry, China, in 2021 and
2024, respectively. Her research interests include
object tracking and object segmentation.

BIN ZHOU was born in Henan, China, in 1996.
She received the B.S. degree in electrical engineer-
ing and automation from Zhengzhou University
of Aeronautics, in 2018, and the M.S. degree in
electrical engineering from Zhengzhou University
of Light Industry, in 2024. Her research interests
include object segmentation and object tracking.

HANFEI LI received the master’s degree in rural
regional development from Henan University of
Science and Technology, in 2022. She is currently
working with the Department of Science and Tech-
nology, Zhengzhou University of Light Industry.
Her research interests include regional economic
development and social public management.

VOLUME 12, 2024



