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ABSTRACT Conventional centralized optimization and management approaches may not work well in
an emerging and distributed energy system with a high penetration of electric vehicles and green energy
sources. The usage of blockchain technology is growing as a strong competitor as it can provide this
kind of market with a transparent, secure, and efficient transactional platform. Nevertheless, most energy
systems usually depend on complexmathematical optimization, which is poorly incorporated into blockchain
applications. Moreover, time-sensitive message dissemination requirements, resource-intensiveness, high
computational load, and communication overhead of the traditional blockchain consensus mechanisms make
it difficult to connect with real-time vehicular networks. Here, we employ Proof of Intelligence (PoI), a novel
prosumer-centric blockchain consensus mechanism to develop a comprehensive model of trust based on
commitments of supply and demand through the application of peer-to-peer energy exchange with effective
and dynamic integration of renewable sources and electric vehicles both in the day ahead and real-time energy
trading platforms. Additionally, the PoI smart contract is developed to seamlessly incorporate mathematical
optimization with an increased level of security, scalability, throughput, and low confirmation latency of
transactions achieved through the reduced effort involved in finding and confirming the optimal solution in
comparison with conventional blockchain consensus mechanisms.

INDEX TERMS Blockchain-enabled energy scheduling, consensus mechanism, distributed energy resource,
distributed ledger technology, energy trading, proof of intelligence, smart contract.

NOMENCLATURE
α
EV,SE
kdω Factor employed for modelling of final state of

batteries of EVs.
α
EV,SI
kdω Factor employed for modelling of initial state

of batteries of EVs.
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ηEV Charging/ discharging efficiency of EVs.
ω Scenario index, �: Scenario array.
πω Probability of occurence of a typical scenario ω.
θBbtω Voltage angle at an identified bus during specific

time interval in balancing market.
θDbt Voltage angle at an identified bus during specific

time interval in day ahead market.
ADgtd Availability factor of renewable source during

specific time interval in day ahead market.
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b Bus index, B: b’s array.
CUD Price of unfulfilled demand.
cG,D
gt Cost offered by the generating entity in day-

ahead market.
cG,RCD
gt Low backup price of generating entity g for

specific time interval.
cG,RCU
gt High backup price of generating entity g for

specific time interval.
cG,SD
gt Generation entity’s shutdown cost.

cG,SU
gt Generation entity’s startup cost.

CEV ,CD
kbt Bidding cost of EV group k charging in the day

ahead marketplace connected to a typical bus
during specific time interval.

CEV ,DD
kbt Bidding cost of EV group k discharging in the

day ahead marketplace connected to a typical
bus during specific time interval.

CEV ,RCD
kbt Cost of low backup provided by EVs group

k connected to bus b during specific time
interval.

CEV ,RCU
kbt Cost of high backup provided by EVs group

k connected to bus b during specific time
interval.

eEVkbtω Stored energy of EVs batteries in specific
environment.

EEV
max,k Maximum capacity of batteries of EVs group.
F(l) Line l destination bus.
g Generating entity index, G: g’s array.
GD Dispatchable generating entities array.
GI Intermittent generating entities array.
Gb Generating units array connected with bus b.
k Index of EVs groups, K : k ′s array.
l Transmission line index, L: l ′s array.
LFb Transmission lines array connected to termi-

nating bus b.
LOb Transmission lines array connected to starting

bus b.
NEV
kb Number of EVs in a group connected to bus b.

O(l) Line l origin.

pUD,B
btω Unfulfilled demand in the run time market.

PD,D
bt Demand of power in the day ahead trading

zone.
PGDW,g Low ramp factor of generating entity.

pG,B
gtω Power harnessed through the generating entity

in the run time marketplace.
pG,D
gt Energy planned by generating entity in day

ahead marketplace.
pEV ,BC
kbtω Power charging of EVs array in a typical

situation.
pEV ,BD
kbtω Power discharging of EVs array in a typical

situation.
pEV ,CD
kbt Charging energy of EVs planned in the day

ahead marketplace.

pEV ,DD
kbt Discharging energy of EVs planned in the day

ahead marketplace.
pL,B
ltω Power flowing through the transmission line l

in run time marketplace.
pL,D
ltω Power passing through the transmission line l

in day ahead marketplace.
PGmax,g Upper bound of generating entities.
PEVmax,k Highest rate of charging and discharging of

electrical vehicles in a single group.
PLmax,l Transmission line active power carrying capac-

ity.
PGmin,g Lower bound of generating entities.
PGUP,g Upper ramp factor of generating entity.

rG,DD
gtω Deployment of low backup by the generating

entity.
rG,DU
gtω Deployment of high backup by the generating

entity.
rG,CD
gt Low backup planned by generating entity g for

specific time interval.
rG,CU
gt High backup planned by generating entity g for

specific time interval.
rEV,DUD
kbtω Deployment of high backup from discharging

of group of EVs.
rEV,DDC
kbtω Deployment of low backup achieved through

the charging of EVs array.
rEV,DDD
kbtω Deployment of low backup achieved through

discharging of EVs array.
rEV,DD
kbtω Deployment of low backup planned by EVs

group.
rEV,DUC
kbtω Deployment of high backup from the charging

of EVs array.
rEV,DU
kbtω Deployment of high backup of EVs array.

rEV,CD
kbt Low backup planned by EVs group.

rEV,CU
kbt High backup planned by EVs group.

I. INTRODUCTION
An energy system is an assemblage of discrete networks,
sources, sinks, corresponding accountable stakeholders, rel-
evant information, and physical fluxes [1]. The information
is obtained from observing both individual actors’ decisions
and physical processes. Interfaces for information sharing
are how data is transferred between various accountable
stakeholders [2], [3]. Energy networks are expected to
become more complex as information volumes and the
variety of controllable components rise. It will require
additional information to be handled at already-existing
interfaces or result in the construction of new ones when
combined with the decentralization of duties [4]. One
instance of this in the context of electrical networks is the
potential conversion of Great Britain’s (GB) distribution
network operators (DNOs) to distribution system operators
(DSOs). DNOs would be tasked with more specialized
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balancing duties as part of the shift [5], [6], [7]. As a result,
more intricate agreements would be needed at interfaces i.e.
between two distribution systems or a distribution system and
a transmission system, as neighboring stakeholders would
be increasingly dependent on the predictable actions of
neighboring networks. It begs the question of what- if any,
uniform regulations at the interfaces between accountable
stakeholders could improve the security and economy of
energy system planning and operation [8], [9], [10]. One
such upcoming decentralized distributed ledger system is
blockchain. In P2P networks, blockchain enables reliable
transaction execution, synchronized information exchange,
and secure data storage. Blockchain offers a decentralized
platform that eliminates the need for a central middleman
to record and validate energy transactions [11]. Moreover,
blockchain makes it possible to create smart contracts, which
have the ability to automate energy trade and encourage
EV owners to take part in energy management procedures.
The intrinsic qualities of the blockchain offer tremendous
promise for peer-to-peer energy trade to strengthen power
grid resilience.

The consensus mechanism, which is the foundational
technology of blockchain technology, is essential to the
efficient and safe operation of blockchain-based resilient
power grids. Nonetheless, classic consensus or enhanced
variants built upon these traditional processes make up most
consensus mechanisms applicable to peer-to-peer energy
trading. However, these consensus processes need a signif-
icant amount of computer power and enhanced connectivity,
reducing their applicability in real-world Internet of Things
(IoT) applications like energy trading. Grid resilience can
only be improved by facilitating the practical deployment of
peer-to-peer energy trading once this fundamental problem
has been resolved [12].

Utility Grids can benefit from aggregated EVs’ large-scale
battery storage and load frequency control capabilities [13].
The unpredictable nature of electric vehicle (EV) charging
and routing presents another challenge for utilities and
distribution operators managing EV demand [14]. While
EV nodes are quite mobile, the majority of energy trading
nodes are immobile. Nevertheless, most existing consensus
techniques for blockchains do not allow for the dynamic
addition and deletion of nodes [15], [16], [17]. Therefore,
we employ a novel consensus technique known as Proof of
Intelligence (PoI) to address the challenges associated with
vehicular energy trade, enhance the resilience of a renewable
energy-integrated power grid, and achieve security, decentral-
ization, and unlimited scalability. This paper has made the
following contributions:

• We consider two strategies, one for low traffic volume
(group of EVs-k1) and the other for large traffic volume
(group of EVs-k2), based on the number of EVs
participating in energy trade.

• We go beyond the conventional consensus frame-
work and use the sharding technique based on the

characteristics of EVs and the internet of EVs (IoEV)
to achieve limitless scalability.

• We disprove the security, unlimited scalability, and
decentralization impossibilities of blockchain technol-
ogy in the context of energy trade.

• The cross-shard trading commit mechanism is suggested
for the frequent mobility of electric vehicles. For EV
leader election, the PoI consensus mechanism provides
unlimited scalability without compromising security.
To further increase the transaction speed, we leverage
the Hashgraph within each shard as a replacement for
conventional consensus techniques.

The advent of smart contract platforms, which are
commonly referred to as distributed ledger or blockchain
technologies, provides a chance to safely automate numerous
interface-related processes and perhaps reduce overall system
costs [18]. The notion of smart contracts, which are
self-executing agreements in the form of executable software
codes, was first introduced by Szabo in 1994 and offers a way
to establish highly trustworthy negotiation and self-enforcing
settlement processes [19]. These smart contracts developed
through blockchain technology can be verified, secured,
and replicated. ‘‘If A occurs, credit B to account C’’ can
be a basic rule to develop a smart contract [20], [21].
The self-executing aspect of the ‘‘credit’’ statement is an
important innovation. The digitally encoded event in the
example, ‘‘X,’’ is a result of a sensor reading. Therefore, the
reliability of sensors, information encoding, and information
transfer ultimately determine the reliability of any smart
contract method. Furthermore, there is currently discussion
and investigation to determine how smart contracts fit into
the current legal frameworks. When decision-makers are
dispersed around many organizations or between divisions
of one larger organization, a smart contract is an excellent
tool for enacting agreements for cooperative management of
energy exchange procedures [22], [23].

In electrical networks, shared energy transfer operations
include the control of components like transformer tap
changers, switches, and converters while creating a DC link.
DC-links provide the ability to precisely regulate the flow
of energy between electrical circuits and provide a clear
means of assigning accountability for the management and
operation of individual electrical network segments [24].
It is commonly known that DC links can lower network
costs by controlling the set points for active and reactive
power. Additionally, DC links can disconnect networks,
which would make it obvious who is in charge of the system’s
frequency and, consequently, the stability of the power grid.
Hence, the use of smart contracts may be able to reduce unex-
pectedly complicated control interactions amongst energy
systems [25]. Furthermore, agreed norms for shared control
can be instantiated in a fashion that is less vulnerable to
manipulation and less dependent on conventional techniques
for the prosecution of infractions because smart contracts are
self-enforcing. Options that are susceptible to manipulation
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by one or more participants include one-sided authority via a
distributionmanagement network or control that is only based
on sensor measurements [26].

The goal of this effort is to define the best way for
system operators and other stakeholders to think about
using smart contracts in energy systems. In doing so, it is
necessary to take into account the shared features that
smart contracts have in addition to how players engage
with them [27], [28], [29]. In general, the dilemma of
which controlling factor should be chosen in any given
circumstance arises when multiple energy networks, each
with several accountable parties, are linked by the same
regulated procedure [30], [31], [32]. Here, we describe a
generic smart contract type that may be used at any size of
power network that has effective surveillance and command
to enable shared control over energy transfer procedures.
The six steps of the general form of the smart contract
include deposit, preference setting, negotiation, procedure
instruction, settlement, and withdrawal. We demonstrate the
application of smart contracts to control directives between
respective parties through the use of an emulated smart
contract platform. The comparative performance evaluation
metrics of different optimization architectures employed in
peer-to-peer energy trading market are shown in Table 1.

TABLE 1. Comparative performance evaluation of optimization
techniques.

II. SMART CONTRACT FOR COOPERATIVE MANAGEMENT
Fig. 1 illustrates the overall form of a smart contract
that is suggested for use in negotiations and settlements
involving controllable processes between two or more
concerned stakeholders.We classify information flowswithin
the accountable stakeholders into three layers: decision
support, data processing, and decision making [35]. The
interface between physical apparatus including metering and
protocols of maintenance schedules is the data processing
layer dealing with data gathering, compression, and storage.
After the available data has been analyzed, information is
presented to decision-makers as part of the decision support
layer. Cost-minimizing optimization is one instance of the
decision support layer [36]. Moreover, the decisions about a
controllable process are made at the decision-making layer.
The places where a decision maker from one stakeholder
must reach a consensus with a decision maker from another
stakeholder are known as agreement interfaces [4], [37], [38].

The interoperability defined by the Smart Grid Architec-
ture Model (SGAM) is expanded here by the conceptual
framework. According to the SGAM, interoperability is the
ability of multiple networks to exchange information to work
together to accomplish a common goal [39]. In our approach,
a smart contract gives instructions for an actual procedure

to integrate the information exchange and control function.
To carry out the shared control function, a generic form of
smart contract is defined in the suggested architecture, which
classifies the data gathering and processing processes.

Particularly, distributed green energy sources like pho-
tovoltaic panels, wind turbines, and other decentralized
energy-producing entities are the focus of the energy side.
The consumers cover a wide spectrum of stakeholders who
actively participate in energy trading and consumption, such
as users of electric vehicles, microgrids, businesses, and
industries. The grid-connected photovoltaic system’s world-
wide total capacity of 843.09 GW is currently considered
the fastest-growing renewable energy technology [40]. The
stakeholders in this blockchain-based renewable energy trad-
ing platform can conduct a variety of business interactions
with one another. Customers can exchange energy with other
users or give the grid their excess renewable energywhen they
participate in distributed energy services between grids and
customers. Furthermore, grids and customers work together
to maintain equipment, guaranteeing the dependable and
effective operation of renewable energy systems. Another
facet of the business connection is energy efficiency testing,
which enables clients to verify and enhance their patterns
of energy usage. Additionally, grids and consumers can
represent themselves in commerce, serving as middlemen
in energy transactions and assisting in negotiations between
buyers and sellers. Another big commercial possibility is data
trading, which makes it possible to exchange energy-related
data including output estimates, consumption trends, and
grid demand. In the ecosystem of renewable energy, this
data exchange promotes transparency and allows for well-
informed decision-making. This renewable energy trading
mechanism is built on top of blockchain technology, which
has built-in benefits including immutability, security, and
transparency. Blockchain technology can be employed to
create a decentralized ledger that transparently and auditably
records and verifies all energy transactions. This makes peer-
to-peer energy trading easier, fosters trust among participants
and does away with the need for middlemen.

III. DAY-AHEAD AND BALANCING ENERGY MARKETS
In this study, we primarily address how the daily electricity
market functions in the light of widespread use of electric
vehicles. The day-ahead market and the run-time operations
are represented as a two-stage mixed-integer problem.
Energy and corresponding backup capacity are set aside
in the day-ahead marketplace for the whole 24 hours of
the next day [41], [42], [43]. This problem is unique
in that when EVs are linked to the network, they can
offer backup services in addition to dispatchable generating
entities. The decision-making process and the problem’s
unknown parameters including power consumption, battery
level of EVs at the start of the charging time, and the
fluctuation of intermittent renewable generation sources
are represented using stochastic programming [44]. A set
of scenarios is created to show the range of possible
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FIGURE 1. Smart contract architecture for cooperative management of an energy transfer procedure. Stakeholders must demonstrate that they have
enough money to cover the outcome of the negotiations during the deposit stage. In the event that one stakeholder doesn’t, the other regains control of
the shared process. Communicating the degree of desire for each operational point is part of the preference establishing process. Subsequently, during
the discussion phase, the contract establishes a predetermined set of guidelines about preferences and provides a designated operational point. It is
employed to provide instructions to the actual hardware throughout the procedure. Peer-to-peer payments are calculated in the ‘settlement’ point of the
contract according to a set of guidelines based on the negotiation and real-world operations. Lastly, if specified in the regulations, a way to withdraw the
deposit and any peer-to-peer payouts is also provided in the smart contract.

Algorithm 1 Implementation of Smart Contract

function init():
Input: u, IKu, gNumbu
{Certu,GDu, qDu, locu} ← record(IDu, gNumbu)

end
function create():

Input: zu, subq, πu, zu, time(t), gCost ,
timestamp(ts), subu

confirm(subq);
confirm(subu ≥ πu);

end
function invoke():

Input: wq, wu
confirm(t ≥ time(t));
surchargeq← surcharge(zu,wq,wu, gCost);
forward(surchargeq + u, subu − πu);
forward(q, subq + πu − surchargeq);

end

outcomes for these factors considered during different time
intervals.

A power network’s operation is a complicated problem that
can be divided into multiple phases. First, a process known
as ‘‘market clearing’’ is carried out on an hourly basis [45].
The market clearing is often a day-ahead marketplace which
is realized a day before the real-world energy provisioning.
Determining the energy harnessed through each source, the
energy utilized by each load, and the pricing needed to
clear the marketplace for each hour of the following day is
the goal of the market-clearing mechanism [46]. Moreover,

to satisfy the technological prerequisites of the generating
entities, electric loads, and transmission lines while adjusting
generation to the true requirements for consumption in each
time instant, short-time markets which can last anywhere
from a few minutes to several hours as an adaptation and
marketplaces for supplementary services, are cleared. Power
systemswithmany uncertain production entities and loads are
highly sought after by thesemarkets. It is pertinent to mention
here that the day ahead marketplace is where the maximum
energy trading is negotiated [47], [48].

The power harnessing through wind and photovoltaic
panels as well as power demand whether customary or related
to EV charging are the primary sources of unpredictability
that need to be consideredwhen scheduling the power system.
Stochastic processes segregated into a set of scenarios are
used to describe these unknown parameters. Such numerical
traits are deduced from the historical information [49]. The
uncertainty relates to the amount of time the electric vehicles
are plugged into the power grid and the initial state of charge
(SOC) of their batteries, which establishes the total amount
of energy they require and limits the amount of energy they
can supply. It is assumed that the users require the batteries
of their electric vehicles to be fully charged after the charging
slots [50], [51].

The following details highlight the degree of uncertainty
surrounding the batteries’ initial level of charge [51], [52]:
• Keeping in view historical data, a probability distribu-
tion is identified that describes the daily distance driven
by electric vehicles. A limited number of scenarios
comprise the discretized probability distribution. Every
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FIGURE 2. Schema of day-ahead scheduling network. Thermal power is produced through generating entities
1 and 2, while renewable power is harnessed through the generation entity 3. The electric vehicles are divided
into two types based on how long it takes to charge them.The EVs in group-1 are plugged in during 2nd and 3rd

periods while group-2 EVs are only plugged in during the final period.

scenario has a likelihood of occurrence based on the
information linked with the daily distance driven by
electric vehicles.

• The daily energy usage of every kind of electric vehicle
is calculated under different circumstances, taking into
account the average electricity consumption per driven
kilometer as well as the daily driven distance. This data
is used to calculate the batteries’ original state of charge
(SOC) at the start of the charging cycle.

Additionally, electric vehicles are divided into several
categories k ∈ K such that EVs with similar trends of usage
are treated as the same category. The mileage driven each day
and the times when EVs are accessible for charging define the
EV type. In this sense, it is believed that the original battery
state of charge and connecting durations of all EVs of the
same type will be similar.

The methodology for day-ahead market clearing ascertains
the following:
• The day-ahead generated power pG,D

gt and the high and
low backup capacities rG,CU

gt and rG,CD
gt for generating

entity g and time interval t.
• The energy sale and purchase in the day-ahead mar-
ketplace pEV,DD

kbt and pEV,CD
kbt as well as the high and

low backup capacities rEV,CU
kbt and rEV,CD

kbt for respective
vehicle group connected with a typical bus during a
specific time slot.

The highest amount of energy that generation entities and
electric vehicles are compelled for deployment if the electric

load or the generation of green energy varies from their
anticipated output during run time operation is represented by
the scheduled up and down backup capacity. Consequently,
this capacity is set aside for the deployment of the operating
backup, which is utilized to track hourly variations in
intermittent demand and production [53].

The procedure of market clearance is expressed as a
dual-phase stochastic programming problem, where the first
phase is the day ahead marketplace in which various market
actors are assigned distinct schedules for energy and backup
capacity. The second step of the run-time market operation
is characterized by the determination of backup deployment
for multiple realizations of the indeterminate parameters.
Energy and backup capacity can be co-optimized in the day-
ahead marketplace to give the system the flexibility to handle
sporadic renewable electricity and potential deviations in the
predicted demand [54], [55], [56].

IV. MATHEMATICAL MODELING OF ENERGY TRADING
The problem previously explained is fully formulated mathe-
matically in this part [57]. The following presumptions have
been taken into account:

• It is assumed that the goal of the System Operator (SO),
whose perspective is taken into account, is to minimize
the estimated production cost [58].

• It is believed that the demand is not elastic. Conse-
quently, it is also believed that EV owners want to charge
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Algorithm 2 Consensus Mechanism for Energy Schedul-
ing
Input : Delegation A
Step 1: First delegate (x) in delegation (A) is taken as the
leader p;
if x = d then

Step 2: Determine solution (z∗) and share it with all other
stakeholders in the market;

end
if x ̸= d then

if (z∗)d,x1,x2,...,xk is received before time duration T and
z∗ ̸⊆ Cx,r then

if z∗ is considered as an optimal solution then
Step 3: Cx,r ← Cx,r ∪ {z∗};
share (z∗)d,x1,x2,...,xk with all other delegates
except d, x1, x2, . . . , xk ;

end
end
if |Cx,r | > 0 then

Step 4: Sharing (z∗)d with all other stakeholders in
the market;
moving d in the last of A;

end
else

Step 5: Cx,b ← Cx,b ∪ {d};
remove p from A;
Step 6: go to step-1 (first delegate (x) in delegation
(A) is taken as the leader d);
Step 7: intelligent selection of delegate as a leader of
the delegation;
xi = d ;
if (miner xi’s previously mined blocks > blocks mined
by other delegates) then

if (miner xi’s erroneous mined blocks <
erroneous blocks mining by other delegates) then

if (miner xi’s time taken to mine block < time
taken by other delegates to mine blocks) then

if (miner xi’s age in network > average
age of other delegates) then

xi = d ;
end

end
end

end
end

end
Output: Solution z∗

their cars to a certain extent regardless of the cost of
electricity.

• The inclusion of unit commitment variables for thermal
entities enables the description of their minimum power
output as well as the costs incurred for starting up and
shutting down [59].

• It is assumed that the generation-side offer curves are
linear.

• Only dispatchable thermal entities, not intermittent
renewable entities can supply backup capacity. Because
of the flexibility offered by the batteries, EVs can also
offer power backup when they are plugged into the
network [60].

• The endogenous computation of backup capacity needs
is based on the situations under consideration. As a

Algorithm 3 Optimal Smart Contract and Energy
Scheduling
Input : λs, Numbs, 2s, 2, ω
for 2s ∈ 2 do

initiate z∗s =
−

z∗s = argmax
zs∈ω

λs;

end
while z∗s is an infeasible solution do

find an infeasible subsequence {
−

z∗n,
−

z∗n+1, . . . ,
−

z∗m};
assign the optimal demand as
z∗l = argmax

∑m
s=n λs(z), ∀l = n, n+ 1, . . . ,m;

end
for 2s ∈ 2 do

assignment of optimal cost �∗s ;
end
if Ebkp <

∑S
s=1 Numbs2sz∗s then

make adjustments to optimal contract;
end

Output: optimal contract φ = {(
∼
zs,
∼

�s)|∀2s ∈ 2}

result, limitations on determining minimum backup
requirements are ignored [60].

• A DC formulation is employed to depict the transmis-
sion system [47].

Eq. 1 expresses the objective function to be minimized.
Because of this inelastic system demand, minimizing the
predicted operation cost is the same as maximizing the
expected social welfare. This means that objective function
consists of the following: (i) the costs associated with
generating entities in the day ahead marketplace for starting
up, shutting down, planned energy, and high and low backup
capacity (ii) the energy stored and released to EVs planned in
the day ahead marketplace along with high and low backup
capacity to be provided (iii) the anticipated expenses of
deploying high and low backup by generating entities and
EVs in the run time market and (iv) the anticipated expenses
of the involuntary unserved load.

Minimizeθ∑
t∈T

∑
g∈G

(
cG,SU
gt + cG,SD

gt + cG,D
gt .pG,D

gt + c
G,RCU
gt .rG,CU

gt

+ cG,RCD
gt .rG,CD

gt

)
+

∑
t∈T

∑
b∈B

∑
k∈K

(
CEV,DD
kbt .pEV,DD

kbt − CEV,CD
kbt .pEV,CD

kbt

+ CEV,RCU
kbt .rEV,CU

kbt + CEV,RCD
kbt .rEV,CD

kbt

)
+

∑
t∈T

∑
ω∈�

πω

[ ∑
g∈GD

(
CG,RDU
gtω .rG,DU

gtω − CG,RDD
gtω .rG,DD

gtω

)
+

∑
b∈B

∑
k∈K

(
CEV,RDU
kbtω .rEV,DU

kbtω − CEV,RDD
kbtω .rEV,DD

kbtω

)
+

∑
b∈B

CUD.pUD,B
btω

]
(1)
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FIGURE 3. Day ahead energy scheduling. The demand power for each network bus and hour, energy scheduled
by producing entities and overall demand is depicted.

where, set of optimization variables is given as, 2 =

{cG,SU
gt , cG,SD

gt , pG,D
gt , rG,CD

gt , rG,CU
gt ; pG,B

gtω , pG,BS
gtω , rG,DD

gtω ,

rG,DU
gtω ; pEV,CD

kbt , pEV,DD
kbt , rEV,CD

kbt , rEV,CU
kbt , eEVkbtω, pEV,BC

kbtω ,

pEV,BD
kbtω , rEV,DD

kbtω ; rEV,DDC
kbtω , rEV,DDD

kbtω , rEV,DU
kbtω , rEV,DUC

kbtω ,

rEV,DUD
kbtω ; pL,D

ltω , pL,B
ltω ; θ

D
bt , p

UD,B
btω , θBbtω; ∀g ∈ G,∀t ∈ T ,∀ω ∈

�,∀k ∈ K ,∀b ∈ B,∀l ∈ L}.

A. DAY-AHEAD MARKET
The ensuing collection of day-ahead marketplace constraints
applies to the objective function. The energy balance is
enforced in each bus and time slot by the power balance
constraint (see Eq. 2).∑

g∈Gb

pG,D
gt +

∑
k∈K

(
pEV,DD
kbt − pEV,CD

kbt

)
−

∑
l∈LOb

pL,D
lt

+

∑
l∈LFb

pL,D
lt = PD,D

bt , ∀b ∈ B,∀t ∈ T (2)

Constraints (3a-3g) explain how generating entities work
technically. Constraint (3a) sets the lowest and highest limits
of power output for dispatchable entities based on the unit-
commitment paradigm. Constraints (3b) and (3c) enforce
the dispatchable entities’ ramping limits, both upward and
downward. Constraint (3d) restricts the power production of
sporadic renewable entities based on the renewable resource’s
availability factor considered for each hour. The startup and
shutdown prices are defined by constraints (3e-3g), taking
into account whether the generating entity switches between
on and off from one period to the next.

ugt.PGmin,g ≤ P
G,D
gt ≤ ugt.P

G
max,g (3a)

PG,D
gt − P

G,D
gt−1 ≤ P

G
UP,g (3b)

PG,D
gt−1 − P

G,D
gt ≤ P

G
DW,g (3c)

0 ≤ PG,D
gt ≤ A

D
gtd.P

G
max,g (3d)

cG,SU
gt = CG,SU

g ugt − ug,t−1 (3e)

cG,SD
gt = CG,SD

g ug,t−1 − ugt (3f)

cG,SU
gt , cG,SD

gt ≥ 0; ∀g ∈ GD,GI ,∀t ∈ T (3g)

The power charging and discharging planned in the day
ahead marketplace for specific time intervals is limited by
technical constraints (see Eqs. 4a and 4b).

0 ≤ PEV,CD
kbt ≤ NEV

kb .PEVmax,k (4a)

0 ≤ PEV,DD
kbt ≤ NEV

kb .PEVmax,k ; ∀k ∈ K ,∀b ∈ B,∀t ∈ T

(4b)

The restrictions on the backup capacity scheduled in
the day-ahead market are imposed by constraints (5a-5d).
Eq. (5a) limits the up backup capacity for the generating
entities while accounting for their capacity and the scheduled
energy, and (5b) sets the maximum down backup capacity
at the same level as the scheduled energy. Constraints (5c)
and (5d) impose the non-negativity of the up and down
backup capacities on the EVs respectively.

0 ≤ rG,CU
gt ≤ ugt.PGmax,g − P

G,D
gt (5a)

0 ≤ rG,CD
gt ≤ PG,D

gt (5b)

rEV,DU
kbt ≥ 0 (5c)

rEV,DD
kbt ≥ 0; ∀g ∈ GD,∀b ∈ B,∀k ∈ K ,∀t ∈ T (5d)

The power flow across the transmission lines is defined
by network power flow constraint (6a) taking into account
a DC representation of the network. Constraint (6b) sets a
highest and lowest power flow limits for each transmission
line, while (6c) states that the voltage angles must be greater
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than −π or less than π rad.

pL,D
lt =

θDO(l)t − θDF(l)t

Xl
(6a)

− PLmax,l ≤ p
L,D
lt ≤ p

L
max,l (6b)

− π ≤ θDbt ≤ π; ∀b ∈ B,∀l ∈ L,∀t ∈ T (6c)

B. BALANCING MARKET
The second set of constraints 7-12, is defined to explain the
run time functioning of the energy scheduling. The power
balance is enforced in each bus, time interval, and scenario
(see Eq. 7). The maximum unserved demand is constrained
by Eq. 8.∑

g∈Gb

pG,B
gtω +

∑
k∈K

(
pEV,BD
kbtω − pEV,BC

kbtω

)
−

∑
l∈LOb

pL,B
ltω

+

∑
l∈LFb

pL,B
ltω = PD,B

btω − P
UD,B
btω ; ∀b ∈ B,∀t ∈ T (7)

0 ≤ pUD,B
dtω ≤ pD,B

dtω ; ∀d ∈ D,∀t ∈ T (8)

The power generated by dispatchable entities in run time
operation is defined by constraint (9a), which takes into
account the energy planned in the day ahead marketplace and
the high and low backup committed in each scenario. Eq. (9b)
defines the entity’s capacity limits based on the functional
state decided in the day ahead marketplace, while Eqs. (9c)
and (9d) impose ramping restrictions. Constraints (9e) to (9g)
are related to intermittent renewable entities. For example,
Eq. (9e) stipulates that the energy provided and the released
energy in run time must equal the available potential in
respective circumstances. Constraints (9f) and (9g) denote
the nonnegativity of the provided and released green power,
respectively.

pG,B
gtω = pG,D

gt + r
G,DU
gtω − rG,DD

gtω (9a)

ugt.PGmin,g ≤ p
G,B
gtω ≤ ugt.P

G
max,g (9b)

pG,B
gtω − p

G,B
gt−1,ω ≤ P

G
UP,g (9c)

pG,B
gt−1,ω − p

G,B
gtω ≤ P

G
DW,g (9d)

pG,B
gtω + p

G,BS
gtω = ABgtω.PGmax,g (9e)

pG,B
gtω ≥ 0 (9f)

pG,BS
gtω ≥ 0; ∀g ∈ GD,GI ,∀t ∈ T (9g)

The energy level of the electric vehicles in group k is
specified by the expression (10a) for the interval before
the charging period. Here, the random parameter α

EV,SI
kω

has a distinct value for every case. The charging state of
the EV batteries during run time operation is modeled by
Constraints 10b. It is thought that by utilizing the vehicle-
to-grid capability, EV energy may also be utilized to add
energy to the system. EVs can engage in this process as either
producers or consumers of power, based on whether they are
charging or discharging. This could occur at the times when
EVs represented by set Tk are linked to the network. In this

manner, the amount of energy in the specific time slot is equal
to the amount in the preceding time slot plus the amount
of energy charged in that typical time slot while accounting
for charging losses, less the amount of energy released while
accounting for process losses.

As indicated by Eq. (10c), the lowest energy level is
enforced at the end of the charging session. The final status
of the battery is represented in this instance by the parameter
α
EV,SE
kω . The battery’s lowest and maximum energy levels

throughout the charging time are limited by constraint (10d).
The definition of the power that the EVs in group k charge
and discharge is given by expressions (10e-10f). In the run
time scenario ω, the power charged is equivalent to the power
planned in the day ahead marketplace, less the high backup
that is committed by decreasing battery charging and the
low backup that is deployed by raising battery charging.
Conversely, the power discharged is equivalent to the power
to be planned in the day ahead marketplace plus the high
backup that is committed by increasing battery discharging
minus the low backup that is committed by decreasing battery
discharging. Constraints (10g-10h) limit the amount of the
power that EVs may charge and discharge in real-time. The
energy capacity rate of the chargers in group k is indicated by
the parameter PEVmax,k .

The total high backup capacity used by electric vehicles in
group k , is specified by equation (10i), which includes the
up backup used in both the charging and discharging phases.
The high backup committed from the charging can not exceed
the energy to be charged in the day ahead marketplace,
according to constraint (10j). The amount of backup to drain
the batteries as indicated by Eq. (10k) required to be less than
the group k ′s entire battery capacity less the energy to be
discharged planned in the day ahead marketplace. The down
backup committed is equal to the total of the backup deployed
when charging and discharging, as stated in Eq. 10l. The
down backup used during the charging process is restricted by
constraint 10m to the full capacity of the group k batteries less
the power planned for charging in the day ahead marketplace.
The low backup committed from the discharging can not be
greater than the energy to be discharged in the day ahead
marketplace, according to constraint (10n).

eEVkbtω = NEV
kb .α

EV,SI
kω .eEVmax,k (10a)

eEVkbtω = eEVkbt−1ω + ηEV.pEV,BC
kbtω −

1
ηEV

.pEV,BD
kbtω (10b)

eEVkbtω ≥ N
EV
kb .α

EV,SE
kω .eEVmax,k (10c)

NEV
kb .α

EV,SMIN
kω .eEVmax,k ≤ e

EV
kbtω (10d)

pEV,BC
kbtω = pEV,CD

kbt − rEV,DUC
kbtω + rEV,DDC

kbtω (10e)

pEV,BD
kbtω = pEV,DD

kbt + rEV,DUD
kbtω − rEV,DDC

kbtω (10f)

0 ≤ pEV,BC
kbtω ≤ NEV

kb .PEVmax,k (10g)

0 ≤ pEV,BD
kbtω ≤ NEV

kb .PEVmax,k (10h)

rEV,DU
kbtω = rEV,DUC

kbtω + rEV,DUD
kbtω (10i)

0 ≤ rEV,DUC
kbtω ≤ pEV,CD

kbt (10j)
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0 ≤ rEV,DUD
kbtω ≤ NEV

kb .PEVmax − p
EV,DD
kbt (10k)

rEV,DD
kbtω = rEV,DDC

kbtω + rEV,DDD
kbtω (10l)

0 ≤ rEV,DDC
kbtω ≤ NEV

kb .PEVmax − p
EV,CD
kbt (10m)

0 ≤ rEV,DDD
kbtω ≤ pEV,DD

kbt ; ∀k ∈ K ,∀b ∈ B,∀t ∈ T (10n)

Constraints (11a-11d) restrict the generating entities’ and
EVs’ up-and-down backup to the backup capacity planned for
the upcoming day.

0 ≤ rG,DU
gtω ≤ rG,CU

gt (11a)

0 ≤ rG,DD
gtω ≤ rG,CD

gt (11b)

0 ≤ rEV,DU
kbtω ≤ rEV,CU

kbt (11c)

0 ≤ rEV,DD
kbtω ≤ rEV,CD

kbt ; ≥ 0; ∀g ∈ GD,∀b ∈ B,∀t ∈ T

(11d)

Finally, a set of constraints (12a-12c) specify the run time
limits of the power flow through the transmission lines.

pL,B
ltω =

θBO(l)tω − θBF(l)tω

Xl
(12a)

− pLmax,l ≤ p
L,B
ltω ≤ p

L
max,l (12b)

− π ≤ θBbtω ≤ π; ∀l ∈ L,∀b ∈ B,∀t ∈ T (12c)

V. CASE STUDY
The problem previously formulated is fully implemented
through ‘Scientific Python Development Environment (Spy-
der 5.4.3)’ as the basic platform for the development of
prosumer-centric distributed ledger smart contracts and ‘IBM
ILOG CPLEX Optimization Studio’ to find the optimized
solution of supply and demand through CPLEX solver
while effectively incorporating electric vehicles in the peer-
to-peer energy trading market. We take a power network
consisting of three buses, each with a generating entity
and a demand, connected via three transmission lines (see
Fig. 2). The generating entities’ capacity, minimum power
harnessing, high/ low ramp capability, and operating costs,
are shown in Table 2. Thermal power production makes up
generating entities 1 and 2, while renewable power harnessing
is represented by generating entity 3. The shutdown expenses
are estimated to be half of the start-up expenses, which
are 8,500$ and 11,200$ for generating entities 1 and 2,
respectively. The start-up expenses are equivalent to the
expenses of operating at full capacity for a single day
i.e. 18,300$ and 25,200$ for generating entities 1 and 2,
respectively. It is believed that backup services cannot
be rendered by intermittent renewable sources. By using
generating entities 1 and 2, the cost of scheduling up/down
backup services is 3 $/MW and 4 $/MW, respectively.
Generating entities 1 and 2 have generation costs of 8 $/MWh
and 16 $/MWh for up backup and 6 $/MWh and 12 $/MWh
for down backup, respectively.

Three hours are taken into consideration during the plan-
ning phase. Every hour, the renewable source’s availability
factors are 0.3, 0.8, and 0.7, respectively. The unmet demand
is attributable to involuntary means 800 $/MWh in costs. The

TABLE 2. Salients of generating entities.

FIGURE 4. Down backup scheduled by electric vehicle groups in the day
ahead energy trading marketplace for each time slot.

transmission lines have 180MWcapacity and a 0.0006 Ohms
reactance. The electric vehicles are divided into two types
based on how long it takes to charge them. Group 2 is only
plugged in during the final time slot, while Group 1 is plugged
in during the 2nd and 3rd time slots. Each network bus has
both of the EV groups. The battery has a 45 kWh capacity
and a maximum charging/discharging power of 13 kW.When
it comes to EV charging and discharging, the efficiency
rate is 0.79. The battery has a minimum energy level of
9 kWh. When the connection time expires, the battery needs
to be fully charged. The set points for the execution of the
proposedmodel while using the distributed ledger technology
are shown in Table 3.

TABLE 3. Experimental set points.

The only variable under consideration is the battery’s initial
charging state, which is represented as an unknown quantity
using two possible scenarios. In scenario w1, the battery state
at the start of the charging time slot for each EV ensemble
is assumed to be 60 % and 80 %, respectively. Whereas,
in scenario w2, these are assumed to be 70 % and 90 % for
the two groups of EVs. The discharging cost groups 1 and
2 are assumed to be 11 $/MWh and 13 $/MWh, whereas the
cost to charge the EVs is none. In the day ahead marketplace,
scheduling backup up or down cost is 2 $/MWh. In the
run-time operation, deploying down backup costs 7 $/MWh,
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FIGURE 5. Energy stored in the batteries of EVs in the real-time operation.

FIGURE 6. Day-ahead scenarios of energy trading.

whereas deploying up backup for EVs group 1 and 2 cost
11 $/MWh and 13 $/MWh, respectively.

The optimized total cost comes to be 3660.6$. In the day
aheadmarketplace, costs of the power that production entities
schedule equals 3663.6$. Due to the deployment of down
backup from EVs, the expenses of the backup planned for
the day ahead is 108.7$. The demand power for each network
bus and hour, energy scheduled in the day ahead marketplace

by producing entities and the overall load is shown in Fig. 3.
Given the renewable entity’s lower cost compared to the
other two dispatchable entities, producing entity 1 meets
a significant portion of the energy requirements, reaching
peak performance in the final hour. Both the electricity that
EVs are scheduled to discharge or charge in the day ahead
marketplace and the backup scheduled by generating entities
are zero at all times.
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The down backup capacity scheduled by EVs for the
day ahead marketplace is shown in Fig. 4. The EVs are
linked when the down backup capacity is scheduled. There
is no scheduled high backup capacity. The SOC (state of
charge) and energy discharged (charged and discharged) of
the EV batteries are described in Fig. 5 for each real-time
operation scenario. For example, in hour 2 and scenario 1,
the energy level in group 1’s batteries at bus b3 is equivalent
to 24.2 MWh, resulting from charging 8.5 MWh in hour 1,
which is 17.6 MWh. It is pertinent to mention here that the
power being charged is subject to the charging efficiency rate.
Lastly, Fig. 6 shows the down backup due to EV batteries
being charged in the run time operation.

VI. CONCLUSION
In this paper, we developed a comprehensive blockchain-
enabled peer-to-peer prosumer-centric energy exchange
model of a power system with an effective and dynamic
incorporation of a significant number of electric cars and
intermittent green generation sources both in the day
ahead and run-time energy trading markets. The proposed
framework prevents energy crisis while offering a dynamic
grid regulation mechanism and facilitating EV owners with
an effective provision of high-pool energy storage systems.
Here, we employed a novel PoI consensus mechanism for
a two-stage stochastic programming problem representing
the hybrid power system and achieved accurate and reliable
optimized results through the seamless execution of smart
contracts. Blockchain can assist in managing peak shaving
by providing incentives for EV drivers to sell energy to
the grid. It can also improve EV driver satisfaction by
enabling the sale of energy from local communities and
private EV charging station owners, hence reducing costs
by eliminating middlemen. Various availability levels of
renewable intermittent production have been investigated
in the case study. The primary findings derived from this
numerical analysis include (i) EVs have been observed as
not selling their energy in the day ahead energy marketplace.
It suggests that EVs are more likely to engage in the reserve
market because it is simpler for them to adjust how their
batteries are charged and discharged to provide backup
services rather than committing to sell energy in the day
ahead marketplace, which would require run-time operation
in every scenario. (ii) EVs are more likely to participate
in down backup than up backup; therefore, it is relatively
more advantageous to the power network to charge the
EVs’ batteries through commitment of low reserve while
ensuring the energy balance. (iii) Diesel-generating entities
are less expensive than petrol units; on the other hand,
renewable generation may be able to lessen the impact of
fossil fuel installations on the environment. (iv) Overall
running expenses rise in direct proportion to the number of
EVs. Nevertheless, it is important to remember that EVs’
active involvement in the system contributes to lower overall
costs. We plan to expand this study for the development and
execution of smart contracts associated with multi-operator

competitive market, while analysing the significant impact
on the system’s overall performance and scalability in the
dynamic peer-to-peer energy trading market.
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