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ABSTRACT Restoring a high-quality image from a noisy version poses a significant challenge in computer
vision, particularly in today’s context where high-resolution and large-sized images are prevalent. As such,
fast and efficient techniques are required to address noise reduction in such images effectively. Deep
CNN-based image-denoising algorithms have gained popularity due to the rapid growth of deep learning
and convolutional neural networks (CNNs). However, many existing deep learning models require paired
clean/noisy images for training, limiting their utility in real-world denoising scenarios. In this paper,
we propose a fast residual denoising framework (FRDF) designed based on zero-shot learning to address
this issue. The FRDF first employs a novel downsampling technique to generate six different images
from the noisy input, which are then fed into a lightweight residual network with 23K parameters. The
network effectively utilizes a hybrid loss function, including residual, regularization, and guidance losses,
to produce high-quality denoised images. Our innovative downsampling approach incorporates zero-shot
learning principles, enabling our framework to generalize to unseen noise types and adapt to diverse noise
conditions without needing labelled data. Extensive experiments conducted on synthetic and real images
confirm the superiority of our proposed approach over existing dataset-free methods. Extensive experiments
conducted on synthetic and real images show that our method achieves up to 2 dB improvements in PSNR
on the McMaster and Kodak24 datasets. This renders our approach applicable in scenarios with limited data
availability and computational resources.

INDEX TERMS Deep learning, image denoising, self-supervision, downsampling, zero-shot learning.

I. INTRODUCTION

Image denoising is a critical area of research in low-level
vision and image processing, to recover high-quality images
from their noisy pairs [1]. This task presents a significant
challenge due to the inherent difficulty in distinguishing
fine textures and details from the noise. Noise interference
during image acquisition and transmission is an unavoidable
factor that can severely impact the visual quality of images,
underscoring the importance of noise removal for various
image processing tasks [2], [3], [4].
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Noise in different images can originate from several
sources, including sensor limitations, environmental condi-
tions, and transmission artifacts [S]. Common types of noise
include Gaussian noise, which is additive and follows a Gaus-
sian distribution, and Poisson noise, which arises from photon
counting processes and is commonly encountered in low-light
imaging conditions [6]. The presence of noise can degrade
image quality, reduce the peak signal-to-noise ratio (PSNR),
and hinder the performance of subsequent tasks such as object
detection, segmentation, and recognition [7], [8], [9].

Denoising methods aim to obtain a clean image (p) by
effectively eliminating the noise component (n) from its
noisy observation (y), as represented by p = y — n.
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Traditional denoising techniques include spatial filters such
as Gaussian smoothing, Median filtering and Wiener filter,
which operate on pixel intensities or local neighbourhoods
to reduce noise while preserving image details [10], [11].
However, traditional methods, such as BM3D [12], may not
always be effective in handling complex noise patterns or
preserving fine details in high-resolution images [13].

Recently, deep learning-based methods have been demon-
strated to be powerful tools for image denoising, leveraging
the capacity of CNNs to learn hierarchical representations
directly from data [14]. Deep CNN-based denoising algo-
rithms have demonstrated superior performance compared to
traditional methods, particularly in scenarios with complex
noise characteristics and limited availability of labelled
data [15], [16]. By training on large datasets of noisy-
clean image pairs, deep learning models can effectively learn
to distinguish between signal and noise, enabling them to
generalize well to unseen data and noise types [17], [18].

Despite the success of deep learning approaches, chal-
lenges remain in adapting these models to real-world denois-
ing scenarios such as medical imaging [19], surveillance
footage [20], or low-light photography [21]. Many existing
deep learning models require paired clean and noisy images
for training, which may be impractical or costly to obtain
in certain applications such as medical imaging [22], [23],
remote sensing [24], or historical document restoration [25].
Moreover, deep learning models trained on specific noise
distributions may struggle to generalize to unseen noise
types or adapt to varying noise conditions encountered in
practice [26], [27].

In light of these challenges, there is a growing demand
for self-supervised learning methods that operate without
needing a clean image, meaning they can generate a denoised
image solely based on a set of noisy images. For instance,
in the Neighbor2Neighbor [27] method, multiple samples are
generated from a single noisy image, and during training,
these images are used as input and output for the network.
In self-supervised models, the denoising performance is
lower compared to models trained on clean/noisy image pairs.
However, self-supervised models are more suited for use in
real-world image-denoising applications because they don’t
need to prepare a large number of image pairs. Recently, there
has been a lot of attention given to a specific type of self-
supervised learning model called the zero-shot method. These
models do not require a specific dataset during training and
only use one noisy image for denoising. However, many of
these models face challenges, including high computational
costs [28], limited noise types [29], and low accuracy [30].
Our goal in this research is to develop a model that achieves
good accuracy with fewer parameters and does not rely on a
specific type or noise level. To do this, we generated multiple
image samples from a noisy image at different stages without
using a clean image at any stage. In summary, the proposed
method utilizes a lightweight model with only about 23,000
parameters. Therefore, compared to all current models, the
proposed method has a low execution time and can be easily
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run on a CPU. Additionally, due to the use of many down-
sampled images from the noisy image and their application
during the calculation of network hybrid loss, the denoised
output image also has relatively good quality.

Our three key contributions are as follows:

1) We introduce a new downsampling strategy that
generates multiple sub-sampled noisy images from a
single noisy input. This approach allows our framework
to leverage zero-shot learning principles, enabling it to
generalize to unseen noise types and adapt to diverse
noise conditions without the need for labelled data.

2) We design an effective hybrid loss function that
includes residual loss, regularization loss, and guidance
loss. This innovative loss function helps the network
to better capture and reduce noise, while preserving
essential image details, thereby enhancing the overall
denoising performance.

3) We conduct extensive experiments on both synthetic
and real image denoising tasks using various noise
types. Our results with three diverse well-known
datasets illustrate superior performance compared to
state-of-the-art.

Il. RELATED WORK

Image-denoising models encompass three distinct categories.
The subsequent discussion aims to provide a comprehensive
overview of each category, with a specific focus on single
image-based denoising methods.

A. DENOISING MODELS TRAINED ON CLEAN/NOISY
IMAGE PAIRS

The prevailing dominance of CNNs in contemporary image
processing tasks is undeniable. This popularity is underscored
by their ability to achieve state-of-the-art performance, where
networks are trained to map noisy images to clean ones
in an end-to-end manner. In real-world applications, when
the noise level in test images varies substantially from the
training noise level, the denoising effectiveness of these
models declines. This limitation is attributable to the nature
of Deep Neural Networks (DNNs), which heavily rely on
the training data for generalization. To address these issues,
Zhang et al. introduced the Fast and Flexible Denoising
Network (FFDNet) [31]. FFDNet distinguishes itself by
incorporating an adjustable noise level map as the model
input. FFDNet is notable for incorporating an adjustable noise
level map as part of its input, enabling it to manage a wide
array of noise levels effectively. This feature allows FFDNet
to adapt to spatially varying noise, making it capable of
handling changeable or non-uniform noise maps.

The Dual-branch Residual Attention Network (DRANet)
[32], addresses challenges faced by traditional deep convolu-
tional neural networks (CNNs) when dealing with spatially
variant noise. Unlike previous approaches that increase
network depth, DRANet improves performance by expanding
network width and incorporating attention-guided feature
learning [33], [34]. The model features two parallel branches
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with Residual Attention Blocks (RABs) and Hybrid Dilated
Residual Attention Blocks (HDRABs) designed to capture
complementary features and filter out unimportant ones.

Residual Wavelet-Conditioned Convolutional Autoen-
coder (Res-WCAE) [35] with Kullback-Leibler divergence
regularization has been proposed specifically for fingerprint
image denoising. Res-WCAE integrates two encoders—an
image encoder and a wavelet encoder—and a single decoder,
utilizing residual connections to preserve spatial details. The
wavelet encoder enhances the model by processing both
approximation and detail subimages in the wavelet-transform
domain.

B. DENOISING MODELS TRAINED ON NOISY IMAGES
While deep neural network denoising techniques, trained
on sets of clean and noisy images, have demonstrated
exceptional performance in numerous denoising applications,
the acquisition of clean ground truth images is often
impractical or unattainable due to cost constraints in real-
world scenarios. In response to this challenge, researchers
have begun exploring methods to address image denoising
without relying on clean data. Consequently, several DNN
image denoising approaches have been introduced, focusing
on training with pairs of noisy images or multiple noisy
images.

The Noise2Noise [36] method, introduced by Lehti-
nen et al. in 2018, demonstrates impressive performance by
utilizing two noisy images of a static scene for training,
without requiring corresponding ground truth images. It is
interesting to note that with zero-mean noise, training a
network can map a noisy image to another one of the
same scene with a performance similar to the ground truth.
Although acquiring pairs of noisy images of identical scenes
could be difficult in real-world situations, Noise2Noise has
inspired further investigation into self-supervised methods.

Context-aware denoiser [37] leverages a dual-branch
structure, incorporating global and local feature extraction
through Context-aware Denoise Transformer (CADT) units.
Additionally, a Secondary Noise Extractor (SNE) block is
introduced for secondary global noise extraction, enabling
two-stage denoising.

LG-BPN [38] employs a self-supervised training approach,
enabling it to learn from unlabeled data without the need
for paired noisy-clean image pairs. By leveraging self-
supervised training, LG-BPN can effectively exploit the
spatial correlation statistics of real-world noise and model
long-range dependencies within the image.

C. DENOISING MODELS BASED ON VISUAL
TRANSFORMERS

In recent years, there has been notable progress in the
development of image recovery techniques using visual
transformers. Image denoising models based on Vision
Transformers (ViT) exhibit the ability to capture extensive
dependencies among image pixels through global self-
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attention, leading to remarkable performance improvements.
Transformers rely solely on the attention mechanism,
eliminating the need for convolution operations. Moreover,
in comparison to numerous deep convolutional neural
network denoising models, transform-based models demand
less training time while delivering competitive and promising
performances.

DenSformer [39] integrates both Transformer and con-
volutional layers to capture local and global features,
significantly improving denoising performance. It comprises
a preprocessing module, a local-global feature extraction
module with Sformer blocks, and a reconstruction module.

The Lightweight Image Denoising Transformer (LID-
Former) [40] incorporates Triple Multi-Dconv Head Trans-
posed Attention (TMDTA) and Discrete Wavelet Transform
(DWT). LIDFormer reduces computational complexity by
transforming the input image into a low-frequency space
using DWT. This transformation maintains performance
while minimizing the computational burden.

TransCT-net [41] introduced transformers for high-
frequency and low-frequency inference but still relied on
convolutional operations. Addressing this gap, they propose
a convolution-free Transformer Encoder-decoder Dilation
network(TED-net) that leverages Token-to-Token (T2T)
vision transformers for LDCT denoising.

D. DENOISING MODELS TRAINED ON SINGLE NOISY
IMAGE
As a notable advancement in denoising models trained
on noisy images, there has been a growing interest in
models relying solely on a single noisy image in recent
years [42]. The constraint of deep neural networks requiring
a sufficient amount of sample data for effective training
poses a limitation. However, zero-shot models, which do
not necessitate the preparation of training image pairs, have
emerged as a promising solution. This type of denoising
model is particularly well-suited for practical denoising
applications in real-world scenarios.

Ulyanov et al. introduced the deep image prior (DIP) [30],
a denoising model utilizing untrained convolutional neural
networks for image restoration. DIP involves adapting a gen-
erative neural network to map a random input to a specified
degraded image, aiming to denoise the image through training
with early stopping. Despite its straightforward approach,
the performance of DIP is often unsatisfactory and can be
sensitive to the iteration number, making it challenging to
determine the optimal value for effective denoising.

Noise2Fast [43] is an efficient method for referenceless
denoising in single images. The acceleration of this method
is achieved through the training process involving four
downsampling images. However, Noise2Fast drops pixel
values during downsampling, leading to a degradation in the
quality of the produced images.

Traditional non-learning-based methods like BM3D [12]
and WNNM [44] perform well with Gaussian and Poisson
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noise, respectively, and rely on the input of the noise level for
optimal functionality.

In summary, image denoising models fall into four main
categories, each with its strengths and limitations. Models
trained on pairs of clean and noisy images, like FFDNet, per-
form well but struggle with generalization when noise levels
in test images differ significantly from those in the training
set. Models trained on noisy images, such as Noise2Noise,
bypass the need for clean data but may encounter difficulties
in obtaining pairs of noisy images for training. Transformer-
based models, exemplified by Uformer, offer promising
performance but may face challenges with deep architectures
and computational costs. Models trained on a single noisy
image, like DIP and Noise2Fast, address practical denoising
scenarios but may suffer from performance issues and
sensitivity to hyperparameters. Our approach aims to mitigate
these challenges and enhance the effectiveness of single-
noisy-image denoising.

lll. METHODOLOGY

In the realm of image denoising, various approaches are
utilized to mitigate the diverse effects of noise in images.
These methods can be categorized into supervised, self-
supervised, and zero-shot denoising approaches.

Supervised methods typically employ neural networks
represented as Ny, which map a noisy image y to an estimate
Ng(y) of the clean image p. These supervised denoising
methods are conventionally trained on pairs of clean images
and their corresponding noisy measurements y = p+n where
n represents the noise.

Self-supervised methods involve training neural networks
on various noisy observations of the same clean image.
In Noise2Noise [36], a network is trained to effectively map
noisy images to one another. Acquiring sets of noisy images
depicting identical static scenes can pose difficulties. For
instance, the subject being photographed may exhibit move-
ment or lighting conditions could undergo rapid changes.
Neighbor2Neighbor [27] is a self-supervised approach that
builds upon Noise2Noise by enabling training solely with
individual noisy images. This is achieved by extracting sub-
samples from a noisy image to generate pairs of noisy images
and training on many images.

Zero-shot methods, often referred to as dataset-free
approaches, differ fundamentally from self-supervised and
supervised methods by not requiring a large-scale dataset for
training. Instead, they operate on a single image, meaning
that the training and inference phases occur simultaneously.
By integrating the training and inference processes, zero-
shot methods can quickly adapt to new images without the
need for retraining on a separate dataset, making them highly
efficient and versatile for real-world applications. ZS-N2N is
a zero-shot denoising network that produces a pair of noise
maps [45] from a noisy image and employs these maps for
denoising purposes.

Our research builds upon the concepts introduced by ZS-
N2N [45] and Neighbor2Neighbor [27] by introducing a
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novel approach that allows training using only a single noisy
image.

There are discernible differences between the pixel charac-
teristics of a clean, natural image and those of random noise.
By intentionally manipulating the pixel lattice and modifying
the relationships between neighbouring pixels, we effectively
denoise images in a self-supervised manner. Specifically,
the neighbouring pixels in a clean image typically display
strong correlation and similarity in their values, whereas
the pixels representing noise lack organization and operate
independently [45]. By generating various downsampled
versions of a single noisy image where noise lacks corre-
lation across different positions within subsets, we utilize
these downsampled images as both input and output for
training a neural network. The rationale behind utilizing
a downsampled pair of noisy images lies in the inherent
characteristics of clean and noisy pixels. In clean images,
neighbouring pixels exhibit strong correlation and similarity
in values, whereas noise pixels lack structure and operate
independently. Consequently, the downsampled pair retains
similar signal characteristics but independent noise patterns.
This allows the pair to approximate two noisy observations
of the same scene, with one serving as the input and the other
as the target for denoising.

From a theoretical perspective, using noisy downsampled
images as both input and output can achieve the same
performance as a supervised approach where the input is
noisy and the output is clean. Assume D and D; are two
downsampled images derived from a noisy image y, and p is
a clean image. In our approach, the network N (@) learns to
map D to D;, while in the supervised approach, the network
learns to map y to p. By proving Equation (1), our approach
can reach the same performance as supervised methods if the
dataset size is infinitely large. In practical scenarios, zero-shot
approaches fall slightly short of supervised methods.

argmin E [ |5 (D1 —pll3
= argmin E [ |\G(D1) — s3] M

Proof of Equation (1) is provided in the supplementary
material.

Our Fast Residual Denoising Framework (FRDF) relies on

three main elements:

1) Down-sampling technique: this step generates sub-
sample noisy images that are used to train our network.

2) Fast residual network: this network is designed to learn
and extract noise from a single noisy input image.

3) Filter operator: utilising a Gaussian filter, this step
is designed to guide the model to capture noise
information and to retain low-frequency background
consistency, especially in images with complex scenes.

A. FRAMEWORK OVERVIEW

In this section, we introduce FRDF, which is based on
our zero-shot approach. Denoising models, leveraging deep
neural networks, have become instrumental in achieving high

VOLUME 12, 2024



S. Rezvani et al.: Single Image Denoising via a New Lightweight Learning-Based Model

IEEE Access

denoising
network

Down sampling
kernels

Down sampled images (Sp)

Down sampling
kernels

Down sampled images (Dy)

/

Loss Te, iulurizution
9 Losspes;,
S ﬂ
N

e

/stuge 1 stage 2 stagex

2
i

g% Concatenation

dn

Down sampling
kernels

Loss, Guidence

l Conv + Leaky ReLU

\lkesnet block /

\
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1

Filter operator

FIGURE 1. Architecture of the proposed lightweight zero-shot network.

accuracy across various applications. However, the training
demands associated with these models, including the need for
extensive datasets and significant computational resources,
pose challenges. The denoising process in such models
is notably time-consuming. In practical scenarios such as
autonomous vehicles [46], surveillance systems [20] and
live video streaming [47] where computational resources
are often limited, there is a growing demand for real-time
denoising methods compatible with both CPU and GPU
platforms. Our proposed network distinguishes itself with a
modest architecture, comprising around 23000 parameters.
This lightweight design contrasts with deep networks, which
typically boast millions of parameters. This approach takes a
single noisy image as input and produces a denoised version
of that input.

Fig.1 illustrates the workflow for the training process.
Initially, down-sampled images (D,) are generated from
a single noisy image (y) using a down-sampling kernel
(details in Section III-B). These down-sampled images are
then fed into the residual denoising network. The output
of this stage (S,) is used to calculate our hybrid loss
(details in Section III-C). Specifically, the residual loss is
calculated using Dy and S, while the regularization loss is
calculated using the generated down-sampled images from
the network output (Dp) and S,. Additionally, the guidance
loss is calculated using S, and the low-pass downsamplers
(Dr), which are generated from D), (details in Section III-C).
The training process continues until the network converges,
typically requiring 1.5K iterations. After training finishes, the
network extracts noise from the input image. The denoised
image can then be obtained by subtracting the output of the
network (Np) from the input image y:

p=y—No() (2)
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Ilustrated in Fig. 1, our residual network consists of
three stages, each incorporating a ResNet block alongside a
convolutional layer. The fundamental building block of our
lightweight residual block comprises two convolution layers,
conv1 and conv2, employing leaky ReLU activation functions
with a negative slope of 0.2. This design choice allows for
the passage of some negative values, enhancing the network’s
adaptability. The output of the second convolutional layer
is combined with the residual connection. The network’s
operation begins with a single noisy image fed into the initial
part. As the process unfolds, each subsequent section receives
the concatenated output of the preceding part, strengthening
the network’s ability to capture fine textures.

To facilitate visual understanding of the network output,
we present some exemplary outputs of the network in Fig. 2.
As can be observed, Fig. 2(a) shows the noisy image (y) with
Gaussian noise at a level of 75 and a PSNR of 12.28 dB.
Fig. 2 (b) displays the output of the network before the start
of training. As evident from Fig. 2 (c) and (d), the network
extracts noise during training. Finally, the denoised image is
obtained by subtracting the noise extracted from the network
(i.e., Fig. 2 (d)) from the noisy image (Fig. 2 (a)), resulting in
a PSNR of 19.45 dB.

B. DOWNSAMPLING TECHNIQUE

Our model needs to learn the denoising process directly
from noisy images without explicit supervision from clean
reference images. Nearby pixels in a clean image are
highly correlated, reflecting the underlying structure of the
scene, while noise patterns are unstructured and operate
independently [45]. Therefore, we innovatively create three
downsampler pairs ((d1, d2),(d3, d1),(ds, dg)) to generate
downsampled images that retain similar signal content but
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(b) Iteration=0

(a) Input image (y)

(c) Iteration = 1000

(d) Iteration = 2000 (e) Denoised (p)

FIGURE 2. Visual comparison of the proposed denoising process. (a) Noisy image. (b),(c) and (d) are network outputs in
different epochs. (e) is the denoised image which is obtained by subtracting the network’s output from the noisy image.

exhibit independent noise patterns. Our network Ny, where
0 represents network weights, is trained to learn mapping:

No(dy) — d>
No(d3) — ds
Ny(ds) — dg 3)

Downsampling enables our model to exploit characteristics
of noise present in the image. By generating downsampled
versions of the noisy input, the model can focus on learning
denoising patterns.

The key idea behind using downsampling to achieve
independent noise patterns lies in the fact that when an
image is downsampled, the spatial resolution is reduced,
causing a redistribution of pixel values. Noise, being
unstructured and independent, does not retain its spatial
correlation after downsampling. Consequently, the noise
patterns in downsampled versions of the image are less
correlated with each other compared to the original
noisy image.

To perform downsampling, initially, 6 fixed kernels with
different dimensions are created. These kernels (k) are then
convolved with the image y (di = ki ® y) where ®
denotes the convolution operator. This operation is applied
channel-wise and is performed on all channels of the image
(h x w x ¢), where h is the height, w is the width, and c is the
number of channels. Fig. 3 illustrates how the downsampling
is performed for d; and d».

Table 1 provides detailed information about each pair of
downsamplers. It is evident that in producing images for
each pair, we utilized kernels where one generates diagonal
pixels while the other generates non-diagonal pixels. This
approach to kernel selection results in the production of non-
overlapping downsamplers in each pair. This strategy ensures
that the similarity of the downsampled images is maintained
and effectively spreads out the noise across different pixels
in the downsampled images, reducing the likelihood that
noise in one downsampled image will correlate with noise
in another. Each downsampled image thus represents a
different, independently sampled subset of the original
noisy data.

Furthermore, by ensuring that these kernels do not
overlap in the regions they sample from the original image,
we enhance the independence of the noise patterns. This
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FIGURE 3. Visual exemplification of the different steps involved in
generating two downsampled images (d;, d,). Here, y represents the
input noisy image, and K1 and K2 are our kernels. By applying kernels
with a stride of 2, as shown in Table 1, each [2, 2] pixel block convolves
with the kernels. Notably, the values 0.25 and 0.65 are from our first
kernel in the proposed method. As a result, our downsampled images
have dimensions of h/2 x w/2 x c.

TABLE 1. The specifications of six distinct down samplers (denoted as d1
to d6). Each down sampler is characterized by its kernel configuration,
responsiveness to dilation parameters, and suitability for a stride of 2.

Downsampler Kernel Dilation=1  Stride=2
[0 0.35]
di 1065 0 |
X v
[0.35 0 |
d2 | 0 0.65]
[0 0.50]
d3 1050 0 |
v v
[0.50 0 ]
dd | 0 0.50]
0 05 0
d3 [0.5 0 0}
X v
05 0 O
d6 [0 0.5 O}

means that the noise observed in one downsampled image
will not influence the noise in another downsampled image,
making the noise patterns truly independent.
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Algorithm 1 The Proposed FRDF Method
Input: A single noisy image y;
Denoising network Np;

1 while not converged do

2 Generate down-samplers D:
3 Dy =
{(d1(), d2(0)), (d3(y), da(y)), (d5(y), de(Y)};
4 For the network input subset of D, ranging
from 1 to 6: Ng(d;(y));
5 Derive a denoised result of the network from

down-sampler D:
6 | Sp; =di(y) — No(di(y));

7 Calculate lossSyes:
8 10SSpes =
1 _ 2 o 2).
6 (Z, |d() Spi+1| + 1d()ix1 Spil ),
9 Derive a denoised result of the network from y:
p=y—No(y)
10 Generate down-samplers according to the
denoised input image p:
11 D, =

P
{(di(p), d2(p)), (d3(p), da(p)), (d5(p), ds(P))}:

12 Calculate 10Sspeg: 108Sreg = % Z?:l ld(p)i — Sp;|?;

13 Generate low-pass down-samplers by Gaussian
filters GF:

14 | Dy = GFy5=3915(Dp);

15 Calculate lossgyiq:
108Sguid = ¢ >0 1d ()i — Spils

16 Update the denoising network Ny by minimizing

the objective 10SSres + 10SSreg + 10SSguid;

Our downsampling approach is crucial for our denoising
method because it allows the network to learn to distinguish
between the structured, correlated signal of the clean image
and the unstructured, independent noise. By training on these
downsampled images, the network can effectively learn to
predict and remove noise, leveraging the fact that the noise
patterns are independent and thus easier to identify and
eliminate.

C. LOSS FUNCTION

In the domain of deep learning, the choice of loss function
plays a critical role in guiding the optimization process and
ultimately shaping the performance of the model. The loss
function serves as a measure of dissimilarity between the
predicted denoised image of the model and downsampled
images. Through the minimization of this discrepancy during
training, the model endeavours to converge towards accurate
predictions of noise patterns and, consequently, produce a
denoised image.

Inspired by recent advancements in self-supervised learn-
ing [45], [48], [49], we explore the efficacy of symmetric loss
functions in the context of image denoising. Symmetric loss
functions, as the name suggests, exhibit a balanced behaviour

VOLUME 12, 2024

wherein the penalty incurred for predicting one value when
the ground truth is another is symmetrically equivalent to
predicting the second value when the ground truth is the first.
Based on Equation (3), in our case, these values correspond
to our three downsampler subsets.

The procedure of network optimization is shown in
algorithm 1. First, we produce denoised downsampled
images:

Dy = {(d1(y), d2(y)), (d3(y), da(¥)), (d5(y), ds(¥))}

4
No(diy)i=1,2,..,6 5)
Sp; = di(y) — No(di(y)) (6)

where Dy, represents our six downsampled noisy images, and
Ny represents our network. 8 denotes the network weights.
Spi is the denoised version of the downsampled images.
As shown in Fig. 2, the network Ny extracts noise during
training, and the denoised downsampled images (Sp;) are
obtained by subtracting the noise extracted from the noisy
image (Dy).

For training the network, we employ two types of losses:
residual loss and regularization loss. The residual loss,
serving as our symmetric loss, is computed by evaluating
the mean squared error (MSE) between each subset of
downsampled noisy images (Dy) and their corresponding
denoised counterparts (Sp;):

1
10SSres = 3 (Z |[d(»)i — Sp;y1 2+ 1d3)ip1 — Spi|2)
;

i=1,35 (N

We also add regularization loss which serves as a means
to prevent overfitting and promote generalization. In this
function, unlike the residual loss, we downsample the output
of the network (D)) (Equation (2)):

First, we generate 6 downsamples of the noisy input image,
and then the regularization loss is calculated with the help of
the denoised versions of the downsampled images (Sp;):

p=y—No(y) (8)
D, = {(d1(p), d2(p)), (d3(p), da(p)), (d5(p), de(p))} (9)

6

1085reg = é Zl d(p)i — Spil’ (10)

Additionally, we incorporate a guidance loss to further
reduce high-frequency noise by preserving essential low-
frequency content. To do this, we first feed the D, image
set into the Gaussian low-pass filter. Then, the guidance
loss is calculated using the sp; images and the output of the
filters Dy:

Dy = GF5=3,9,15(Dp) (11)
6
i
lossguia = ¢ > d(f)i — Spif? (12)
i=1
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Finally, the total loss function can be obtained through
summation of three functions described above:

lossfinal = B1108Sres + B2108Sreg + B3108Sguid (13)

In this study, we employ the gradient descent (GD) method
to minimize [ossfinq, resulting in the optimization of the
network parameters 6. In Equation (13), 8 denotes the scalar
regularization parameter, which has been defined empirically
through our experiments.

D. FILTER OPERATOR

In images with high levels of noise, the model may
mistakenly interpret background variations as noise, leading
to suboptimal denoising performance. To address this issue,
we employ Gaussian low-pass filters. These filters serve a
dual purpose: they preserve essential low-frequency content
while effectively reducing high-frequency noise, resulting
in smoother images that better represent the underlying
scene [50]. By integrating these filters into our denoising
process and utilizing the L2 norm for loss calculation, the
model is directed to prioritize the extraction of crucial
image features over the noise components. This ensures that
the denoising process is guided to focus on retaining the
structural integrity and essential details of the image, thus
improving overall denoising performance.

In the filter operator phase, we apply Gaussian filtering to
the downsampled images generated from the network output
(p) of a single noisy image (y). The formula for the Gaussian
filter expression is as follows:

¥2 +_V2

S,y = me 202 (14)

In the formula, f (x, y) is the value of the Gaussian function at
the coordinate (x, y). o represents the standard deviation of
the Gaussian distribution. Empirically, we use three different
kernel sizes: 3, 9, and 15 (see Fig. 4). The values of these
kernels are obtained using Gaussian filters and then applied
to the image via 2D convolution.

IV. EXPERIMENTS

In this section, we initially outline the experimental settings.
Subsequently, for assessing efficacy, the proposed approach
undergoes a comparison with state-of-the-art denoising
methods. Additionally, ablation studies are performed to
scrutinize the effectiveness of the proposed method.

A. EXPERIMENTAL SETTINGS
We conduct a comprehensive comparison involving five
state-of-the-art models, encompassing a variety of method-
ologies, including supervised, self-supervised, and zero-shot
techniques. This comparative analysis aims to evaluate the
proposed method against established denoising approaches.
With regard to supervised methods, we compare the pro-
posed method with a modified version of UNet as the current
state-of-the-art denoising algorithm. UNet, renowned for its
exceptional performance, has become the standard choice
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Filter
=3

Filter
=9

FIGURE 4. The process of generating filtered images with different kernel
sizes (3, 9, and 15) from the noisy image d;(p), wherei =1,2,...,6,
to the filtered images dj (f).

in recent denoising studies [27], [29], [51], showcasing
its effectiveness in capturing complex image features and
preserving important details during the denoising process.
We also compare the proposed method with Noise2Void [29],
Neighbour2Neighbour [27], Noise2same [52] and Noisy-
As-Clean [53] as self-supervised methods. These models
exhibit proficiency in managing unknown noise distributions,
enabling their evaluation on real-world datasets.

In terms of zero-shot methods, we compare our approach to
deep learning algorithms such as DIP [30], Self2Self [28] and
Self2Self+ [54]. Additionally, we also compare our method
to the classical algorithm BM3D [12].

To thoroughly assess the effectiveness of the proposed
method, we explore its performance under different noise
conditions. Specifically, we consider Gaussian and Poisson
noise, characterized by noise levels o and A, respectively. The
fixed noise levels chosen for our experimentation are ¢ =
10, 25 and 50 for Gaussian noise, and A = 10, 25 and 50 for
Poisson noise. The o values representing Gaussian noise
align with pixel values within the range of [0, 255], whereas
the A values associated with Poisson noise correspond to
values within the interval [0, 1].

TABLE 2. Summary of datasets used in our work.

Dataset No. of images  Size of images Real noise
Kodak24 24 768 x 512 X
MacMaster18 18 500 x 500 X
SSID 300 256 x 256 v
cC 15 512 x 512 v
FMDD 240 512 x 512 v

As shown in Table 2, a detailed summary of the dataset
characteristics, including the number of images, image sizes,
and the presence of real noise, is provided. We employed both
real-world and synthetic datasets to provide a comprehensive
evaluation of the proposed method. The models are rigorously
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TABLE 3. Average PSNR (dB) of the denoised images from the Top seven Models on Kodak24 summarizes the performance of various denoising methods,
including Unet, Noise2Void, Neighbour2Neighbour, DIP, Self2Self, Noise2Same, Noise-As-Clean, BM3D, and our proposed method. The evaluation is based

on different levels of Gaussian and Poisson noise.

Method Gaussian noise Poisson noise
=10 0=25 o0=50 XA=50 A=25 A=10
Unet 33.5 28.3 25.67  29.45 27.3 26
Noise2Void 29.84 26.18 23775 27.84 2562 23.77
Neighbour2Neighbour 32.2 279 24.9 29.4 2695  25.36
DIP 32.15 27.3 24.7 27.56  25.82 2375
Self2Self 29.64 28.5 26.37 28.9 28.38  27.38
Noise2Same 32.15 2996 2694 3045 2898 27.53
Noise-As-Clean 33.35 2947  26.43 30.08 27.21 25.14
BM3D 32.72 28.5 23.84  28.31 26.54  24.18
FRDF(ours) 33.89 30.02 2627 30.74 29.1 27.2
TABLE 4. Average PSNR (dB) of the denoised images from the Top nine Models on McMaster18 dataset.
Method Gaussian noise Poisson noise
=10 0=25 o0=50 X=50 A=25 A=10
Unet 32.86 28.4 2596 29.85 28.28  26.25
Noise2Void 30.5 26.47 23.8 28 25.78  23.45
Neighbour2Neighbour 33 28.14  25.18 29.7 27.6 25.68
DIP 33.72 27.25 22.9 28.5 27.46 24.9
Self2Self 30.9 29.1 25.13  30.11 2943 27.75
Noise2Same 34.03 29.32 2644 30.84  28.11 27.68
Noise-As-Clean 33.87 2898  26.23 30.36 27.5 27.44
BM3D 33.48 28.51 23.5 2734 245 22
FRDF(ours) 34.67 29.55  25.21 31.15 28.6 27.43

tested on two synthetic datasets: Kodak24 and McMaster18
[55]. Additionally, to simulate real-world scenarios, the
models are tested on the SSID dataset [56], CC dataset [57]
and FMDD [58], enhancing the robustness of the evaluation
process.

B. COMPARISON WITH STATE-OF-THE-ART MODELS
1) QUANTITATIVE EVALUATION
In Tables 3 and 4, we present the denoising effectiveness
of various methods. In Table 3, we test the methods on
the Kodik24 dataset, while in Table 4, we test them on
the MacMaster18 dataset. We trained Unet, Noise2Void,
and Neighbour2Neighbour on 700 images using two dif-
ferent approaches. First, we trained them with an unknown
noise level, and second, trained on that exact noise level
between [10, 50]. Finally, we averaged the results from
both approaches and recorded them in two tables. Based
on the information from Tables 3 and 4, our approach
consistently performs well for both Gaussian and Poisson
noise, particularly at low noise levels. However, when
considering Gaussian noise with a level of (¢ = 50),
Noise2same method achieves better results than our approach
in both datasets.

As seen from the results of Tables 3 and 4, other
zero-shot methods work well for specific noise levels

VOLUME 12, 2024

and types. For example, BM3D exhibited lower scores in
the Poisson noise distribution. In contrast to alternative
zero-shot techniques, our method stands out as the sole
dataset-independent denoising algorithm capable of deliver-
ing effective performance across diverse noise distributions
and levels.

To assess the performance of our model on authentic noisy
images, we performed testing on three different datasets,
i.e., SSID, CC and Fluorescence Microscopy Denoising
dataset (FMDD). SSID comprises images taken by various
smartphone cameras, showcasing diverse lighting conditions
and noise patterns. The CC contained 15 real noisy images of
different ISO, i.e., 1,600, 3,200 and 6,400. Additionally, the
FMDD contains real-world noisy fluorescence microscopy
images with various noise levels, obtained using commer-
cial two-photon, confocal, and widefield microscopes. The
dataset includes raw images with high noise levels and images
with lower noise levels created through image averaging.
Particularly, images are averaged within sequences in the
same field of view (FOV) of 50 images. By averaging S
(where S = 2,4,8,16) raw images, lower noise levels
are achieved. Ground truth images are effectively obtained
by image averaging, and noisy images are created at five
different noise levels: raw (no averaging), and averaged with
S =2,4,8, and 16.
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FIGURE 5. Quantitative comparison of 3 for our hybrid loss. The
evaluation was conducted on MacMaster 18 dataset.

Firstly, we performed testing on a set of 300 images
sourced from the SIDD dataset. Our result achieves the
highest performance with a PSNR score of 34.43 dB, closely
followed by DIP with 34.35 dB. However, BM3D shows a
sharp drop in performance when compared to synthetic noise
as the comparison is shown in Table 5.

For the CC dataset, our model achieves a PSNR of
35.74 dB, slightly lower than the highest score of 36.38 dB
achieved by the S2S+ model. However, our model outper-
forms BM3D, which has a PSNR of 35.19 dB, and is close
to S2S with a PSNR of 36.1 dB, indicating competitive
performance on real noisy images across different ISO levels.

In the FMDD dataset, our model shows a strong perfor-
mance with a PSNR of 35.89 dB. Although S2S+ achieves
the highest PSNR of 36.14 dB, our model surpasses DIP,
which has a PSNR of 33.18 dB, and BM3D, which scores
32.16 dB. This demonstrates the robustness of our approach
in handling real noisy fluorescence microscopy images,
maintaining high performance across diverse biological
samples and microscopy techniques.

Moreover, it is noteworthy that the parameter number of
S2S+ is around 1.2 million, while our model has significantly
fewer parameters, approximately 23K, which is about 1/50 of
the parameters of S2S+. This highlights the efficiency of our
model in achieving comparable or superior performance with
a substantially reduced computational complexity. According
to the quantitative comparison in Fig. 5, to determine the
weight of different loss in Equation (13), we set 81 = 0.5,
B> =0.25, B3 = 0.25.

TABLE 5. Average PSNR (dB) of the denoised images from the zero-shot
models on real-world noise.

Dataset FRDF(ours) DIP S2S  BM3D  S2S+
SIDD 34.43 3435 3385 28.05 34.11
CC 35.74 35.69 36.1 3519  36.38
FMDD 35.89 33.18 3572 32.16 36.14

2) QUALITATIVE EVALUATION
Fig. 6, 7 shows the denoising results of our method and
four various models with 3 different noise levels 10, 25 and
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50. We can find that the other zero-shot methods like
BM3D generated blurred results while, our method has good
robustness to both high-level and low-level noise to recover
the actual texture and structures. Self-supervised method
N2N does not perform well and exhibits a more than 2 dB
drop in performance compared to our approach.

Our approach and Self2Self demonstrate comparable
scores, slightly surpassing other baseline methods. Despite
the similarity in performance metrics, a visual inspection
of the denoised images reveals distinctions: Our method
yields visually sharper images and retains slightly more
details, whereas Self2Self produces relatively low-quality
images. This distinction is particularly evident in images
containing fine details, such as MRI images. In Fig. 8§,
showcasing a prostate image from the fastMRI [59] dataset,
it is evident that our method successfully preserves all pixel
values during downsampling. Moreover, our method exhibits
superior image quality compared to the Self2Self method.

TABLE 6. FRDF's performance under different settings.

Setting Residual
number block Parameters PSNR (dB)
1 v 264 27.697
X 84 25.081
2 v 6885 29.176
X 747 28.165
3 v 23109 29.584
X 5955 29.151
4 v 39333 29.589
X 11163 29.408

C. ABLATION STUDY

In this section, to further evaluate the effectiveness of our
zero-shot method FRDF, we conducted ablation studies using
the McMaster18 dataset contaminated with Gaussian noise of
o =50.

To illustrate the impact of network architecture on
denoising performance, we specifically analyse two critical
factors: the number of network stages and the presence
of residual blocks. The quantitative comparison results are
reported in Table 6. Our investigation aims to provide insights
into achieving optimal image quality while striking a balance
between performance and complexity.

Each stage in our network consists of a convolutional
layer alongside a residual block (as depicted in Fig. 1).
We evaluate the PSNR under various configurations to
understand how these architectural choices affect denoising
results. Including a residual block tends to yield higher
PSNR values. These residual connections facilitate learning
identity-like mappings, leading to improved image quality.
For instance, consider the network with just one stage: with
a residual block (264 parameters), the PSNR is 27.697 dB,
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Noisy 28.8 dB DIP 31.5dB N2N 33.8 dB

BM3D 34.58 dB

DIP 28.35 dB

7

S$2S29.93 dB BM3D 28.63 dB FRDF(ours) 30.74 db

Noisy 13.8 dB DIP 21.82 dB N2N 22.73 dB

Ground Truth

S2S 23.59 dB BM3D 23.04 dB FRDF(ours) 24.19 dB

FIGURE 6. Qualitative comparison of Gaussian denoising for different methods along with the corresponding PSNR. Upper row: o = 10,
middle row: ¢ = 25, lower row o = 50.

whereas without the block (84 parameters), the PSNR drops As we increase the number of network parts, the PSNR
to 25.081 dB. Similar trends are observed across different generally improves. However, increasing the number of
stages. parameters (as seen in the network with four parts) does
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DIP 28.55 dB

s

Ground Truth BM3D 25.1 dB

Noisy 21.82 dB DIP 25.86 dB

Ground Truth $2530.77 dB BM3D 2378 dB  FRDF(ours) 30.96 db

Noisy 15.2 dB DIP 17.39 dB N2N 25.05 dB

5‘

Ground Truth $25 29.48 dB BM3D 22.86dB  FRDF(ours) 30.19 dB

FIGURE 7. Qualitative comparison of Poisson denoising for different methods along with the corresponding PSNR. Upper row: A = 50, middle
row: A = 25, lower row A = 10.

not result in a substantial PSNR gain. Specifically, the (29.589 dB vs. 29.584 dB). Our findings emphasize the
PSNR for four network parts with a residual block (39,333 importance of thoughtful network design. Optimal denoising
parameters) is only slightly higher than that for three parts results can be achieved by strategically choosing the right
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clean

noisy = 25.20 dB

528 =27.86 dB

FRDF(ours) = 28.53

FIGURE 8. Visual comparison between FRDF and self2self for denoising Gaussian noise on a prostate image. Red and green regions are examples of

enlarged regions for clearer inspection.

TABLE 7. Ablation study on the impact of different downsampling strategies using various kernel configurations. Each row represents the performance

(PSNR) achieved using different combinations of downsampling kernels.

Number of Kernels PSNR (dB)
kernels
4 [0.35 0 } [ 0 0.35} [0.5 O} [O 0.5] [ 0.5 O] [0.5 0 0} [0.25 0 ] [ 0 0.25] 4
0 0.65 0.65 0 0 0.5 05 0 05 0 0 0 05 0 0 0.75 075 0

2 v v X X X X X X 24.53
2 X X v v X X X X 24.63
2 X X X X X X 24.58
2 X X X X X X v v 23.7
4 v v v v X X X X 25.88
4 v v X X X X v v 25.63
4 X X v v X X v v 25.78
4 v v X X v v X X 25.84
6 v v v v v v X X 25.96
6 X X v v v v v v 25.81
6 v v v v X X v v 25.27
8 v v v v v v v v 2591

combination of network stages and residual blocks while
avoiding unnecessary parameter inflation.

We conducted an ablation study to evaluate the impact of
different downsampling strategies on the performance of our
method. Specifically, we analyzed how varying the number
and combination of downsampling kernels affects the PSNR
of the denoised images.

Table 7 presents the results of this ablation study. Each row
in the table corresponds to a different set of downsampling
kernels used during training, with the PSNR values indicating
the denoising performance of the network. The columns
under “kernels” display the specific kernel configurations
used for downsampling. From the table, we observe that
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using different pairs of kernels shows varying levels of
performance. As the number of downsampling kernels
increases, the PSNR generally improves. For example, using
four kernels instead of two leads to better performance
(25.88 dB vs. 24.53 dB). This indicates that having more
diverse downsampling kernels helps in better capturing
the noise patterns and enhancing the denoising process.
Furthermore, utilizing all eight downsampling kernels results
in a PSNR of 25.91 dB, which is close to the highest
performance observed in our experiments. This demonstrates
that employing a comprehensive set of downsampling
strategies can significantly enhance the network’s ability to
denoise images effectively.
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FIGURE 9. Parameters and inference time study on image denoising using a noise level of o = 50 from the MacMaster test set. (a) Parameter size

comparison and (b) Inference time comparison.

Furthermore, utilizing 6 downsampling kernels (row 9 of
Table 7) results in a PSNR of 25.96 dB, which is the highest
performance observed in our experiments. This demonstrates
that employing selected downsampling kernels can enhance
the network’s ability to denoise images effectively.

To investigate computational complexity, we examine
both denoising processing time and memory requirements,
as indicated by the number of network parameters. Denoising
time is assessed on both CPU and GPU platforms, with the
GPU tested on an NVIDIA GeForce RTX 3060 laptop and the
CPU on an Intel Core i7 11730 H. Fig. 9 illustrates the size
of trainable parameters and the time required for denoising a
single image from the MacMaster dataset.

In Fig. 9(a), despite our model’s superior performance, its
parameter size is smaller compared to most models, except
for BM3D. The S2S model, while achieving slightly better
results than our approach, has a parameter count 60 times
larger. Moving on to Fig. 9(b), the runtime evaluation demon-
strates that our proposed model achieves competitive speeds
with outstanding performance, especially when deployed on
a CPU. Notably, compared with S2S, our method exhibits
significant speed improvements. On the CPU, our approach
takes 8.2 minutes to denoise a single image with size 256
x 256, whereas S2S requires approximately 230 minutes.
Only BM3D denoises faster than our approach, attributed to
BM3D’s non-utilization of deep networks and reliance on
traditional methods.

V. CONCLUSION

We introduced an innovative zero-shot image denoising
algorithm that operates without the need for training exam-
ples or information about the noise model or level. Our
approach utilizes a lightweight three-stage network with
just 23K parameters, facilitating efficient denoising within
a relatively short time, even without GPU acceleration. The
method demonstrates strong performance on both simulated
noise and actual camera noise in real-world scenarios.
Compared to existing dataset-free methods, our approach
strikes a favourable balance between denoising quality and
computational efficiency.
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Our method employing an innovative downsampling
technique to create pairs of downsampled images, allowing
our network to learn effective denoising mappings without the
need for clean reference images. Additionally, we introduce
a hybrid loss function that combines residual loss, regular-
ization loss, and guidance loss, which enhances the model’s
ability to differentiate between noise and important image
features, improving the overall denoising performance.

While our method shows promising results, there are
still some limitations. One area for improvement is the
reduction of network parameters and the acceleration of the
denoising process. This could be achieved by incorporating
a variety of filters, such as bilateral filters, which might
enhance the denoising performance while reducing the
computational load. Additionally, further research could
explore the optimization of the loss function to improve the
model’s ability to distinguish between noise and essential
image features. By addressing these limitations, future work
can enhance the robustness and efficiency of zero-shot image
denoising methods.
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