
Received 7 August 2024, accepted 24 August 2024, date of publication 28 August 2024, date of current version 12 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3450920

An Intelligent Retrieval Method for Audio and
Video Content: Deep Learning Technology
Based on Artificial Intelligence
MAOJIN SUN
CEICloud Data Storage Technology (Beijing) Company Ltd., Beijing 101111, China

e-mail: samuelconz1@mail.com

ABSTRACT To address the challenges of efficient intelligent retrieval and cross-modal analysis brought by
the surge in audio-video data, this study proposes an intelligent retrieval method for audio-video content
based on deep learning techniques, aimed at improving retrieval efficiency and accuracy. This method
extracts audio features using the Visual Geometry GroupNetwork (VGG) and employs an adaptive clustering
keyframe extraction algorithm (SKM) to extract video features. By integrating cross-learning within an
embedding network, it enhances retrieval efficiency and accuracy. The test results on the CMU-MOSEI
dataset demonstrate that our method outperforms traditional models such as Principal Component Analysis
(PCA), Canonical Correlation Analysis (CCA), and state-of-the-art deep learning models like Deep Canon-
ical Correlation Analysis (DCCA) and Domain-Adversarial Neural Network (DANN) in multimodal data
processing and real-world retrieval tasks. In video processing, the average fidelity is 0.693, and the average
compression ratio is 0.936, representing improvements of 30.75% and 7.09%, respectively, compared to
traditional methods. Through the application of deep learning technology, this study not only optimizes the
processing of single modalities but also enhances the handling of cross-modal data through a cross-learning
framework.

INDEX TERMS Audio-video content retrieval, deep learning, feature extraction, cross-modal retrieval,
intelligent retrieval.

I. INTRODUCTION
As the core of the next generation of mobile communi-
cations, 5G technology has demonstrated immense poten-
tial and influence worldwide since its commercialization
in 2019. The ultra-high speed, ultra-low latency, and mas-
sive connectivity capabilities of 5G communication networks
provide robust technical support for emerging applications
such as the Internet of Things (IoT), smart cities, and
autonomous driving. The academic community has con-
ducted extensive research on 5G applications. Tyokighir et al.
provide a detailed analysis of the latest advancements
in 5G mobile communication technology and systemati-
cally introduce the application prospects of technologies
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such as millimeter-wave (mmWave), massive multiple-input
multiple-output (MIMO), small cells, and mobile edge com-
puting (MEC) [1]. In the field of 5Gmobile communications,
Xia et al. (2024) proposed a novel mmWave tilted beam
phased array antenna to address the shielding issue of
mmWave radiation by the metal frame of smartphones.
This study resolves the impedance mismatch and radia-
tion distortion issues in smartphones, significantly enhancing
the performance of 5G smartphones [2]. In terms of 5G
network management and optimization, Yeh et al. (2024)
explored the application of deep learning techniques in 5G
open RAN, proposing an intelligent network application
(xApp) for network slicing, achieving automated and intelli-
gent deployment while maintaining service level agreements
(SLA) [3]. Regarding 5G communication network position-
ing technology, Zhou et al. proposed an indoor positioning
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method utilizing the multi-beam characteristics of a single
5G base station. The study shows that this method sig-
nificantly improves positioning accuracy in various indoor
scenarios, with an average absolute error of 1.55 meters, a
54.7% improvement over traditional single-beam methods.
This research provides new insights for the application of 5G
technology in indoor positioning, demonstrating the potential
of 5G in enhancing positioning accuracy and reliability [4].

In the development of 5G technology applications, the
internet and mobile internet have notably benefited, with
significantly increased network speeds for smartphones and
continuous advancements in emerging internet media tech-
nologies [5]. The number of self-media platforms has
increased, making the self-media market more active [6].
These factors collectively reduce the difficulty of audio-video
content creation and enhance convenience, greatly stimulat-
ing the enthusiasm of content creators [7]. Consequently,
the volume of audio-video content data we face has also
increased, and the diversification of audio-video content
imposes new requirements on regulation [8]. Audio-video
content retrieval, as a key aspect of regulation, is not only
a necessary infrastructure for multiple audio-video portal
websites but also a core business component for relevant
government departments [9]. Nonetheless, many audio-video
content retrieval tasks still rely on manually established
retrieval dictionaries [10]. Especially when searching for spe-
cific individuals, specific scenes in a large number of videos,
or specific sentences in extensive voice content, there is a lack
of mature solutions. The application of artificial intelligence
analysis shows potential to address these issues [11]. How-
ever, limited by technical capabilities and development costs,
relevant entities have yet to form a mature solution based on
artificial intelligence analysis. Therefore, this study proposes
to introduce deep learning technology into the retrieval of
audio-video content to address the challenges of rapid and
accurate retrieval, developing an intelligent retrieval method
for both audio and video content, thereby improving the
efficiency of audio-video content retrieval.

Research on audio and video content retrieval has been
explored by computer scientists both domestically and inter-
nationally since the early stages. Initial retrieval methods
were based on visual features within multimedia files, such
as color, lines, and human posture, to extract characteris-
tics like color distribution, proportion, texture, shape, and
angles [12], [13]. A landmark achievement in the field of
audio and video content retrieval is IBM’s (International
Business Machines Corporation) QBiC (Query By Image
Content) system, introduced in the 1990s. This system
focused on the retrieval of graphic and video content [14].
QBiC not only included image and video search capabilities
but also pioneered the commercialization of content-based
image retrieval technology. The system first analyzed the
input image or video frames, extracting features such as out-
lines, object textures, colors, structures, and shading. It then
selected the most appropriate query method based on user

preferences for highly matched feature processing. In addi-
tion to QBiC, other systems such as Excalibur’s Retrieval
Wave [15], Virage’s Virage [16], and Columbia University’s
VisualSEEk [17] adopted advanced retrieval concepts. These
systems transformed images into features based on human
vision, constructing highly correlated indices to accomplish
retrieval tasks. Tsinghua University’s TV-FI system [18]
and Microsoft Research Asia’s iFind system [19] demon-
strated robust comprehensive performance and advanced
technology. These systems utilized advanced technologies
such as MIRC (Medical Imaging Resource Center) and
MIRES (Maritime Information Retrieval and Exchange Sys-
tem), achieving remarkable results in text, image, and video
retrieval domains.

In practical applications, various technical approaches
have emerged in the field of audio and video content retrieval.
On the theoretical research front, scholars have conducted
in-depth discussions on audio and video content retrieval,
although existing studies are often relatively independent.
In audio content retrieval, research mainly focuses on two
primary directions: content-based retrieval and template-
based retrieval. Content-based retrieval methods emphasize
classification and recognition using high-level information
from audio. This includes keyword retrieval and audio index-
ing research, aiming to achieve accurate classification and
retrieval through analyzing audio content characteristics [20].
Specific applications in this area include the new deep video
action clustering network proposed by Peng et al. and the
Group Discovery Machine (GDM) filter-based feature selec-
tion algorithm [21]. Xu et al. discussed the applicability
of collaborative representation learning methods in their
study, providing new insights into cross-learning framework
research for audio feature extraction [22]. Vujošević and
Dukanović, contributed to audio classification and anno-
tation, classifying audio data into pure speech, non-pure
speech, audio, and environmental sounds, and establish-
ing a set of audio classification annotation standards [23].
On the other hand, template-based retrieval methods, or fixed
audio retrieval, involve providing a predefined audio template
and searching for the most similar audio segments in the
audio library, returning these as retrieval results to the user.
This method is particularly effective in practical applica-
tions, especially in scenarios with clear search targets [24].
In specific research and system implementations, Hao et al.
(2021) used Long Short-Term Memory (LSTM) networks
and attention mechanisms to construct a Chinese isolated
word recognition system based on Triphones. This study
enhanced the model’s accuracy in recognizing audio slices,
achieving more effective speech recognition and information
retrieval [25]. Furthermore, Xie et al. (2023) evaluated the
relevance of text-based audio retrieval through crowdsourced
evaluations. The study results indicated that using binary
relevance generated from audio descriptions in contrastive
learning is sufficient for effective audio retrieval without the
need for crowdsourced evaluations [26]. These studies not
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only advance audio retrieval technology but also provide
more possibilities for audio data management, classifica-
tion, and utilization, while reducing misrecognition rates and
improving the accuracy of audio classification.

Compared to research on audio content retrieval, video
content retrieval presents more significant challenges and
has undergone various stages of development with tech-
nological advancements. Early methods for video content
retrieval typically relied on low-level visual features, such
as color and texture features [27]. As research progressed,
retrieval techniques gradually shifted from static low-level
visual features to high-level motion features [28]. Liu et al.
(2021) proposed a perceptual quality model based on ref-
erence reduction and applied it to point cloud-based video
compression rate control. This model enhanced the percep-
tual quality of video point cloud compression by reducing
reference information, effectively controlling the compres-
sion rate and improving the efficiency and quality of video
transmission [29]. Zhong and Chang used optical flow meth-
ods to simulate motion vectors for each pixel and clustered
pixel trajectories to locate regions of relevant motion in video
content [30]. Sikha & Soman (2021) explored the use of
saliency maps extracted using a dynamic mode decomposi-
tion framework. By highlighting attention-grabbing parts of
images and combining them with a salient edge detection
model, this method accurately identified image texture and
color features, thereby constructing high-dimensional feature
vectors for image retrieval [28]. Hu & Li (2023) proposed a
robust visual SLAM (Simultaneous Localization and Map-
ping) system. This system employed ORB-SLAM2 (Oriented
FAST and Rotated BRIEF Simultaneous Localization and
Mapping 2) for a two-stage coarse-to-fine tracking process
to improve system localization accuracy in dynamic envi-
ronments [31]. Zheng et al. (2024) conducted an empirical
study on the correlation between the fairness of deep neu-
ral networks and neuron coverage criteria. Their findings
indicated a significant correlation between neuron coverage
criteria and the fairness of deep neural networks, providing
new perspectives and methods for evaluating the fairness of
deep learning models, which is crucial for improving the
accuracy of video retrieval [32].

Additionally, methods that combine static visual features
with high-level motion features have been developed to
enhance the accuracy of video content retrieval. Lu et al.
(2021) proposed a distance-based video anomaly detection
method using Locality-Sensitive Hashing (LSH) to map sim-
ilar samples into the same bucket. This method integrates
optimized hash functions and contrastive learning strate-
gies, allowing semantically similar samples to be closer,
effectively achieving video anomaly detection in dynamic
environments and with imbalanced data [33].Wu et al. (2023)
proposed a real-time stereo matching method based on spa-
tial attention-guided upsampling. By introducing a spatial
attention mechanism, this method improved the accuracy
of stereo matching and enabled real-time processing [34].

Jin et al. introduced an unsupervised discrete hashing (UDH)
method, which optimizes binary constraints in an unsu-
pervised framework using graph-based semantic loss and
orthogonal consistency loss, effectively mitigating the impact
of quantization errors [35]. The advantage of this unsuper-
vised hashing algorithm lies in its ability to train the hash
mapping function without requiring labeled data for super-
vised learning.

With advancements in deep learning technology, the field
of video content retrieval has undergone significant inno-
vations, particularly in key frame extraction and feature
matching. Deep learning has made it more efficient and
accurate to automatically extract key frames from videos
and analyze their image features [36]. Naik & Soni (2021)
developed a 3D convolutional neural network for video clas-
sification that simultaneously learns the spatial and temporal
features of video frames, offering particular advantages for
video content classification. This method demonstrated out-
standing performance and efficiency when handling complex
video datasets [37]. Furthermore, Kızıltepe et al. (2021)
proposed a model combining convolutional neural networks
(CNN) and recurrent neural networks (RNN). This model
optimizes video classification performance by identifying
informative regions in each frame and selecting key frames
based on the similarity of these regions, significantly improv-
ing video classification accuracy and proving the method’s
effectiveness in practical applications [38]. Chen et al. (2023)
introduced a traffic prediction method based on visual quan-
tization features, achieving accurate traffic flow predictions
by extracting visual quantization features. This method holds
high reference value for applications of visual feature extrac-
tion technology [39]. Additionally, the disparity multi-scale
fusion network detection method proposed by Chen et al.
is valuable for research on multimodal data processing and
the extraction of audio and video features in a shared feature
space [40]. Pan et al. (2023) studied explainable multimodal
neural networks, achieving accurate estimations of gamer
engagement by integrating multimodal information such as
video, audio, and text. This estimation method provides an
effective reference for implementing multimodal retrieval
tasks [41]. These studies demonstrate that the application
of deep learning, particularly convolutional neural networks,
in video key frame extraction and content retrieval can signif-
icantly enhance efficiency and accuracy.

Although substantial research has been conducted on
audio-visual content retrieval, there remains a significant
research gap in handling cross-modal data. Current methods
predominantly rely on single-modal feature extraction, which
fails to fully exploit the multimodal characteristics of audio-
visual data, thereby limiting retrieval efficiency and accuracy.
Additionally, existing deep learning models face challenges
in computational resources and time costs when processing
large-scale data, lacking effective real-time retrieval solu-
tions. Furthermore, many current approaches overly depend
on metadata, such as keywords, titles, or descriptions, which
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prove impractical in large-scale datasets [42]. Moreover,
less popular multimedia data often lack corresponding meta-
data. Commonly used mapping functions in metadata-based
retrieval methods are typically rigid and fixed, employing
hard-coded mechanisms, which constrain their broader appli-
cability [43].

Addressing this issue, this paper proposes a processing
framework based onAI-driven error correction and collabora-
tive video super-resolution to tackle the problem of enhancing
degraded video quality. Innovatively, this research combines
the VGG network-based audio feature extraction method
with the adaptive clustering keyframe extraction algorithm
(SKM) for video feature extraction, addressing the limitations
of single-modal feature extraction. Additionally, an embed-
ding network is designed to map audio and video features
into a shared feature space, enabling comparative analytical
learning across modalities and significantly improving the
handling of cross-modal data. The design of this embed-
ding network is innovative in its effective integration of
multimodal data, particularly by introducing cross-modal
contrastive learning, which further enhances the model’s
retrieval performance. Experimental data demonstrate that
this approach effectively improves the efficiency and quality
of audio-visual content retrieval, offering a new perspective
for audio-visual content retrieval.

The structure of this paper is arranged as follows: Firstly,
the research background, objectives, and the main challenges
currently faced in the related field are introduced, along
with the proposed research methods. Subsequently, a review
of the cutting-edge research in this domain is conducted.
Following this, the paper provides a detailed description of
the key components, such as the network structure of the
AI-driven error correction and collaborative video super-
resolution framework. In the results analysis section, the
effectiveness and usability of the proposed method are val-
idated through comparisons with various approaches under
different dataset conditions. The discussion section compares
and contrasts the proposed method with existing methods
in the field, highlighting its differences and advantages, and
outlining its research contributions. Finally, the conclusion
section provides a comprehensive summary of the research
findings and innovative approaches to video quality enhance-
ment, identifies the limitations of the study, and suggests key
directions for future improvement and research.

II. DESIGN OF AUDIO-VISUAL CONTENT RETRIEVAL
MODEL
Building on existing research, this chapter will provide a
detailed introduction to our proposed intelligent retrieval
model for audio-visual content. Utilizing deep learning tech-
niques, we aim to achieve more efficient and accurate
retrieval of audio-visual content through the extraction and
integration of audio and video features. The following sec-
tions will systematically elaborate on various aspects of
the model design, including the audio feature extraction
algorithm, the video feature extraction algorithm, the design

of the audio-visual embedding network, and the optimization
methods for the loss function.

A. AUDIO FEATURE EXTRACTION ALGORITHM
After inputting the audio signal, a frame is extracted per
second, and the VGG network is used to analyze and extract
features from each frame of the audio signal. Studies have
shown that consecutive audio segments often exhibit sim-
ilar characteristics, such as emotional attributes. Next, the
extracted audio feature sequence is evenly divided into t data
blocks, and the emotional information of each data block is
assessed. Finally, the s data blocks with the most prominent
emotional attributes are selected to represent the features of
the entire audio for subsequent training. The detailed process
is shown in Figure 1.

FIGURE 1. Basic process of the audio feature extraction algorithm.

Additionally, the model consists of two main components:
one part is the Long Short-Term Memory (LSTM) network
with a bidirectional extension mechanism, whose specific
computational model is described below; the other part
is the attention mechanism-based computational layer. The
LSTM network maintains long-term gradient flow through
an autoregressive mechanism, with its internal weights being
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updated in real-time based on contextual information. This
dynamic adjustment according to the input sequence is
achieved by the following nodes within the LSTM structure.

(1) The update of the input unit state depends on the
current input vector xi and the previous hidden state ht−1.
The specific formula is as follows:

st = σ (bi +W xi xt +Whi ht−1 +W ci ct−1) (1)

In the equation, st represents the cell state at the current
time step; σ denotes the sigmoid activation function, which
controls the flow of information; bi is the bias vector for
the input unit; W xi is the weight matrix of the input unit for
the current input xt ; xt is the input vector at the current time
step, representing the input data; Whi is the weight matrix
of the input unit for the hidden state ht−1 from the previous
time step; ht−1 is the hidden state vector from the pre-
vious time step, containing information passed from the
previous time step;W ci is the weight matrix of the input unit
for the cell state ct−1 from the previous time step; ct−1 is
the cell state vector from the previous time step, containing
information passed from the previous time step.

(2) The function of the forget gate is to control the infor-
mation passed from the previous cell state ot , determining the
amount of information to retain or discard. The calculation
formula is as follows:

fι = σ (bf +Wxf xι +Whf hι−1 +Wcf cι−1) (2)

In the equation, ft represents the information retention
degree of the forget gate; σ denotes the sigmoid activation
function, which controls the flow of information; bf is the
bias vector for the forget gate; Wxf is the weight matrix of
the forget gate for the current input xt ; xt is the input vector
at the current time step; Whf is the weight matrix of the
forget gate for the hidden state ht−1 from the previous time
step; ht−1 is the hidden state vector from the previous time
step; Wcf is the weight matrix of the forget gate for the cell
state ct−1 from the previous time step; ct−1 is the cell state
vector from the previous time step. This process ensures that
the network can forget unnecessary accumulated information,
thereby optimizing the memory process.

(3)The update formulas for the output unit ot and the
hidden state ht are as follows:

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (3)

In the equations, ot represents the output vector; σ is the
activation function; Wxo is the weight matrix for the output
unit; xt is the input vector at the current time step;Who is the
weight matrix for the hidden state of the output unit; ht−1
is the hidden state vector from the previous time step; Wco
represents the current state of the output unit; ct is the cell
state vector at the current time step; bo is the bias vector for
the output unit.

ht = ot tanh(ct ) (4)

In the equation, ht represents the hidden state vector at the
current time step; ot denotes the output vector; tanh is the

activation function; ct is the cell state vector at the current
time step.

In the first layer of this model, the activation function acts
as a feature ‘‘scoring’’ mechanism, providing a quantitative
assessment of the concentration of features in the input data.
The specific calculation formula can be expressed as follows:

ut = WTtanh
(
W f htf +Wb htb + β

)
(5)

In the formula, htf and htb represent the forward and back-
ward output vectors of the LSTMnetwork, respectively, while
WT,W f ,Wb, and β are the weights and bias parameters
of the scoring function. This scoring mechanism effectively
identifies key information in the data by evaluating the con-
centration of features.

The second layer of the network uses the softmax function
to process the output scores from the first layer, converting
these scores into values between 0 and 1, which reflect the
concentration of features in each data block. The formula is
as follows:

pt =
eut∑
k
euk

(6)

In the formula, pt represents the probability distribution
after being processed by the softmax function, used to mea-
sure the feature concentration of each data block relative to
others; ut is the quantitative assessment result of the feature
concentration of the input data; eut is the exponent of the
quantitative assessment result of the feature concentration
of the input data;

∑
euk is the sum of the exponents of the

feature scores of all data blocks, serving as the normaliza-
tion factor. This approach allows the model to identify and
select data blocks with the highest feature concentration,
thereby improving the overall accuracy and efficiency of the
experiment.

B. VIDEO FEATURE EXTRACTION ALGORITHM
This study proposes an improved k-medoids clustering
algorithm named SKM(SOFM-k-medoids). The algorithm
features a preprocessing step that automatically calculates
the number of clusters and the initial cluster centers, which
are directly applied in the k-medoids clustering process.
Initially, the algorithm performs feature analysis on image
frames using a developed image saliency region deep fea-
ture extraction algorithm. This step allows for the automatic
determination of the number of clusters based on changes
in inter-frame similarity, addressing the issue of inaccurate
keyframe counts that can arise from a fixed number of clusters
in traditional methods. Subsequently, the SOFM algorithm
is used to pre-cluster the initial data, yielding more precise
cluster centers. This approach mitigates the problem of slow
convergence and excessive iterations caused by improper
initial cluster center selection. After the preprocessing stage,
the determined number of clusters and cluster centers serve
as input parameters for the k-medoids algorithm, which then
performs the final clustering operation. By optimizing param-
eter settings through preprocessing, this method effectively
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avoids performance fluctuations caused by manually setting
the number of clusters and cluster centers, thereby signifi-
cantly enhancing the efficiency and stability of the clustering
algorithm.

This study utilizes deep features of salient regions in
images to measure inter-frame similarity. The specific imple-
mentation steps are as follows:

(1) For the input of n frames, the image saliency region
feature extraction algorithm is applied to each frame individ-
ually to extract the deep features of the salient regions Xi of
each frame, representing the features of each frame.

(2) Cosine distance is used to calculate the distance
D = {d1, d2, · · · , dn−1} between each frame and its adjacent
frame. The specific distance calculation formula is as follows:

di = distance(Xi,Xi+1) (7)

In the formula, di represents the cosine distance between
the i th frame and its adjacent frame; distance is the function
used to calculate the cosine distance between two frames.

A statistical analysis is conducted on the distance values in
the set D to compute the mean µ and standard deviation σ of
the inter-frame similarity, using the following formulas:

µ =
1

n− 1

n−1∑
i=1

di

σ 2
=

1
n− 1

n−1∑
i=1

(µ− di)2
(8)

In the formulas, µ represents the mean of inter-frame sim-
ilarity; σ is the standard deviation of inter-frame similarity;
n is the total number of frames.

Based on the comparison between the inter-frame similar-
ity value di and the threshold µ+δσ , the moments of content
change are determined. δ is a preset parameter used to adjust
sensitivity. Each time di exceeds the set threshold, it indicates
a significant change in frame content. Finally, the number of
detected content changes is used as the number of clusters K.
Thismethod effectively adapts to the changes in video content
to determine the number of clusters, improving the accuracy
and efficiency of keyframe extraction.

When using SOFM for clustering, the algorithm process
mainly includes the following steps:

(1) Adaptively determine the number of neurons in the
output layer, which is the number of clusters K. The topo-
logical structure of the output layer is designed as K × 1,
and the weight parameters of each neuron are initialized to
be consistent with the input layer dimensions.

(2)Process the deep feature vectors Xi of each image
region. By comparing the similarity between the weight vec-
tors of the neurons and the input data, the neuron with the
highest similarity is identified as the winning neuron.

(3) After determining the winning neuron, calculate the
weight update values for its neighboring neurons. The update
value is based on the distance between two neurons and is
inversely proportional to the distance to the winning neuron.

The calculation expression is as follows:

Tj,N = exp(−S2ij/2σ
2) (9)

In the formula, Tj,N represents the weight vector of the
neurons surrounding the winner; sij is the distance between
neuron i and neuron j.

(4) Based on the above calculations, first update the
weights of the winning neuron, then gradually update the
weights of its neighboring neurons as follows:

1wji = η(t)Tj,N (t)(xi − wji) (10)

In the formula, 1wji represents the weight update amount
for the winning neuron j with respect to the input vector i;
η (t) is the learning rate; Tj,N (t) is the neighborhood function
of neuron j at time t; xi is the input vector i; wji is the weight
vector of neuron j at the input vector i.
(5) If the iteration limit is reached or the neural network sta-

bilizes, proceed to the next step; otherwise, return to step (2)
and continue.

(6)Finally, according to the clustering results C =

{C1,C2, · · · ,CK } of SOFM, obtain the center ui of each
cluster.

Through the above steps, SOFM can adaptively com-
pute the cluster centers based on the input data without
presetting the cluster centers.

The goal of the k-medoids clustering algorithm is to divide
a set of image feature sets into a predetermined number
of k clusters, maximizing the similarity within the same
cluster and minimizing the similarity between clusters. The
algorithm achieves this by minimizing the total squared error
function (SSE), which represents the sum of the distances
between the image feature vectors and their cluster centers
across all clusters. The specific expression is as follows:

SSE =

k∑
i=1

∑
xeCi

∥ distance(x, ui) ∥
2 (11)

In the formula, x represents the image feature vector;
Ci corresponds to each cluster; ui is the cluster center;
distance(x, ui) represents the cosine distance between x
and ui.

The algorithm flow is illustrated in Figure 2, and the spe-
cific content is described as follows:

(1) Obtain the initial cluster centers from the SOFM clus-
tering algorithm results {u1, u2, · · · , uk}, use these centers as
the initial cluster centers for the k-medoids algorithm, and
adaptively determine the number of clusters K;

(2) Initialize each cluster C to Ci = φ, i = 1, 2, · · · ,K ;
(3)Traverse each image feature vector Xi, calculate its

cosine distance to each cluster center, and assign it to the
cluster with the nearest center Xi;

(4) For each cluster, compute the pairwise distances of all
points within the cluster and select the image feature vector
that minimizes the total distance to the cluster center as the
new cluster center;
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FIGURE 2. Flowchart of video feature extraction.

(5) If all cluster centers remain unchanged, the clustering
has reached a stable state; proceed to the next step, otherwise,
return to step (3);

(6) After the iteration is complete, use the cluster centers
of the K clusters as the result for keyframe extraction.

C. AUDIO AND VIDEO EMBEDDED NETWORK DESIGN
After performing feature selection on audio and video data,
an embedding network was designed to enable comparative
analytical learning of these two different types of data. This
network aims to map audio and video feature vectors into a
shared feature space using neural network techniques, hence
referred to as the embedding space. The network primarily
comprises three components: a label prediction classifier,
a sample mining network, and a feature mapping network.
The inclusion of the label prediction classifier aims to max-
imize the proximity of similar data and the separation of
different data in the space when both modalities are mapped
into the common subspace, achieving the principle of ‘‘sim-
ilarity closeness and difference separation.’’ Through this
design, each modality retains its semantic information in
the common space, maintaining semantic distinction. This
ensures that cross-modal data of the same type can match
each other, while different types can highlight their dif-
ferences, thereby ensuring the accuracy of matching while
increasing its flexibility and diversity.

In the subspace network embedding, a feedforward net-
work with a softmax activation function is introduced as a
classifier. The core function of this structure is to process
the input audio and video features. Based on the input train-
ing data, this classifier outputs the probability distribution
of the semantic categories corresponding to each data item.
The expression for the semantic discrimination loss function
within the classifier modality is as follows:

Llp = −
1
n

n∑
i=1

(
yi

(
log p̂i (vi)+ log p̂i (mi)

))
(12)

In the formula, Llp represents the multi-class cross-entropy
of the semantic classification model; n denotes the number of
samples in each training batch; yi represents the label infor-
mation of the sample; p̂i (vi) and p̂i (mi) are the probabilities
predicted by the model for the semantic categories vi and mi
of the i-th sample, respectively.

Before discussing sample mining, it is essential to under-
stand the concept of metric learning. Metric learning aims
to optimize algorithms that rely on nearest-neighbor strate-
gies by using an appropriate distance function. Deep metric
learning, a specific form of this approach, is closely related
to embedding network learning. In this method, entities are
mapped into an embedding space, and the distance function
is trained on all samples within the subspace to ensure similar
entities cluster together while different entities are spread
apart. The core of deep metric learning lies in the proper
selection of a loss function, which often involves integrating
specific sample information. However, constructing a large
number of sample pairs during training not only increases
the data processing burden but also includes many low-
information, ineffective samples that contribute minimally to
gradient updates. This necessitates an optimized processing
strategy to avoid slow training speeds or getting stuck in local
optima.

To improve training efficiency and model accuracy, this
study introduces a hard sample mining technique before per-
forming the mapping computation. This technique effectively
accelerates algorithm convergence and enhances learning
efficiency. Initially, through feature selection and classi-
fier classification processing, the video features for each
video-audio pair are selected as the anchor, the same class
audio features are chosen as positives, and different class
features are defined as negatives. In the constructed triplets,
based on the distance relationship between the negative
examples and the anchor, they can be classified into easy,
semi-hard, and hard triplets. Given that easy triplets con-
tain low information and are easy to identify, this study
focuses on training with hard and semi-hard triplets. By opti-
mizing the loss function, the distribution of samples in the
encoding space is adjusted so that the distances between
same-class samples are minimized, and distances between
different-class samples are maximized. The sample mining
operation involves inputting all training data into the neural
network, obtaining the encoding for each sample, calculating
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the distances between anchors and positives/negatives, and
determining the difficulty category of the triplets based on
these distances (see Figure 3). The calculation formula is as
follows:

cos (ν,m) =

N∑
k=1

νkmk√√√√ N∑
k=1

ν2k

√
N∑
i=1

m2
i

(13)

L = max {0,m+ cos (ψν, ψm+)− cos (ψν, ψm−)}

(14)

In the formula, ν and m represent the sample vector and
the reference vector, respectively; νk and mk denote the k-th
components of vectors v andm, respectively; N represents the
dimension of the vector; L represents the loss value; m repre-
sents the set margin value; cos (ψν, ψm+) and cos (ψν, ψm−)

represent the cosine similarities between the positive/negative
samples and the reference sample, respectively.

FIGURE 3. Positional relationships among triplets.

D. LOSS FUNCTION
In designing the loss function, two core elements were pri-
marily considered: inter-modal similarity and intra-modal
consistency. Inter-modal similarity provides theoretical sup-
port for cross-modalmatching, while intra-modal consistency
ensures that the features within the subspace maintain struc-
tural stability in the original feature space. Focusing solely
on inter-modal relationships may result in the feature data
losing the characteristics of their respective modalities during
training. Therefore, this study elaborates on the construction
method of the loss function from both inter-modal and intra-
modal dimensions.

In this paper, considering the inherent defects of the
tri-state loss function, X = {(xi, yi)}Ni=1 is introduced to
represent the training sample set, where (xi, yi) is the sam-
ples and the labeling information corresponding to them. All

samples consist of class c, expressed as yi ∈
[
i, 2, . . . , c

]
,

and {xci }
N
i=1 denotes all samples. In order to realize the effec-

tive distinction between positive and negative samples, the
distance between the baseline query and the negative exam-
ples is greater than the threshold value α, and the distance
between the baseline query and the positive examples does
not exceed α − m i.e., the spacing between the positive and
negative samples is at least m. Therefore, it is necessary to
design the corresponding function f, and through training to
make the distribution of positive and negative samples in the
subspace to meet the above distance relationship. Therefore
the maximum loss function is defined as follows:

Lm = (1 − yij)[α − dij] + yij[α − m] (15)

The above equation, when yi = yj, can be obtained from
yij = 1, otherwise yij = 0; dij is the Euclidean distance
between f (xi).

The loss function makes use of such a sampling strategy
that positive samples are clustered within a sphere of radius
size α − m, and negative samples are spaced m apart from
the positive samples, as shown in Figure 3 below. Given
a benchmark vector xci , and the other samples are ranked
according to the similarity. In this sorting result, there are
Nc−1 positive samples and the number of negative samples
is

∑
k ̸=c

Nk . Each benchmark is as close as possible to the set

of positive samples and there is an interval of m between it
and the set of negative samples, and it is also desirable that
the distance between the ANCHOR and the negative samples
is greater than the boundary α, so for the positive samples the
loss function is.

LP
(
xci ; f

)
=

1
| P∗

c,i |

∑
xcj ∈P

∗
c,j

Lm (16)

In the formula, P∗
c,i represents the positive sample set; |

P∗
c,i | denotes the size of the positive sample set; Lm represents

the loss value.
For the negative sample LN (xci ; f );

LN (xci ; f ) =

∑
xkj ∈N∗

c,i

wij∑
xkj ∈p∗

c,j

wij
Lm (17)

In the formula, N ∗
c,i represents the negative sample set.

The overall loss function Linter(xci ; f ) is defined as:

Linter(xci ; f ) = LP(xci ; f ) + LN (xci ; f ) (18)

To avoid losing these key characteristics during training
and thereby affecting the accuracy of the experiments, this
study introduces an intra-modal structure-preserving loss
function. This loss function aims to maintain the structural
integrity of the data within each modality during model
training, ensuring that the distance between similar features
remains small while the distance between different features
is relatively large.

VOLUME 12, 2024 123437



M. Sun: Intelligent Retrieval Method for Audio and Video Content: Deep Learning Technology

FIGURE 4. Structural changes in the feature space after loss function
training.

In the audio modality, to preserve its intra-modal structure,
the feature data should satisfy the following relationship:

d
(
mi,mj

)
< d (mi,mk)

if d
(
m̃i, m̃j

)
< d (m̃i, m̃k) (19)

where mi,mj and mk represent the audio feature data in
the subspace, respectively. m̃i, m̃j and m̃k represent the
unmapped audio features. Considering that thematching rela-
tionship between audio and video needs to be more flexible,
the maximum threshold distance function is not directly cho-
sen to be applied in this study, but redefined on the basis of
this, and its expression is:

Lintra = λ1

∑
i ̸=k ̸=j

cijk (v)
(
vTi vj − vTi vk

)
+ λ2

∑
i ̸=k ̸=j

cijk (m)
(
mT
i mj − mT

i mk
)

(20)

cijk (x) = sign
(
xTi xj − xTi xk

)
− sign

(
x̃Ti x̃j − x̃Ti x̃k

)
(21)

To enhance the flexibility of the constraints, a sign function
was introduced in the study. Here, xi, xj and xk represent the
feature data in the common subspace; x̃i, x̃j and x̃k denote
the feature data before mapping; λ1 and λ2 are the weight
parameters in the loss function; cijk (ν) and cijk (m) are the
coefficients between the triplets i, j, and k based on v and m,
respectively.

The application of the sign function is particularly cru-
cial in multimodal learning, as it introduces nonlinearity to
avoid the rigidity and singular matching results that may
arise from loss functions dependent on Euclidean distance.
By combining inter-modal and intra-modal loss functions,
this study forms a comprehensive loss function framework
for training sample data within the subspace. In this frame-
work, feature data are first mapped to the target subspace
through an embedding network, and then the sample data are
integrated into triplet form for training. This method effec-
tively integrates the characteristics of different modalities and
optimizes interactions between data, thereby enhancing the
overall performance and matching accuracy of the model.
In this process, four forms of triplets, (νi,mi,mj), (mi, νi, νj),
(νi, νj, νk ), and (mi,mj,mk ), are constructed. The overall
multimodal training loss function is defined as:

Lmulti−modal = λ1Linter + λ2Lintra (22)

III. EXPERIMENTAL RESULTS
After designing and implementing the intelligent audio-video
content retrieval model, we conducted extensive experiments
to verify its effectiveness. This chapter provides a detailed
introduction to the experimental setup, the selection and
processing methods of the dataset, and the analysis and
discussion of the experimental results. Through these experi-
ments, we evaluated the model’s performance under different
conditions and compared its advantages and disadvantages
with existing methods.

A. DATA SET COLLECTION AND PROCESSING
In this study, the CMU-MOSEI dataset was selected for
cross-modal analysis and comparison of the original video
and audio data. The dataset’s video and audio resources
include both Chinese and English parts, with English
resources primarily sourced from YouTube and Chinese
resources from platforms such as Youku, Bilibili, and
Ximalaya. The video content encompasses various types,
including interviews, speeches, daily conversations, and film
clips. Video data is stored inMP4 format, maintaining consis-
tent resolution and frame rate to ensure data uniformity and
processability. Audio data is stored in WAV format with a
sampling rate of 16kHz to ensure high-quality audio for anal-
ysis. A total of 6,859 paired audio-video files were obtained
based on retrieval requirements.

To establish the pairing relationship between video and
audio, we referred to the FLICKR30K image-text retrieval
database model, where each video segment corresponds to
five audio clips. Each audio clip is assigned a weight p based
on its matching degree with the video p(0.45, 0.25, 0.15,
0.1, 0.05). The annotation work was carried out by students
and faculty with relevant professional knowledge, ensuring
consistency and accuracy in the annotations.

Regarding data cleaning and preprocessing, both video and
audio data underwent rigorous cleaning and preprocessing
steps, which included removing noise and irrelevant data, and
unifying the formats and resolutions of the video and audio
files to ensure standardization in the processing. In terms
of leveraging multimodal characteristics, the study utilized
the multimodal features of video, audio, and text (through
speech transcription) to enhance the model’s performance in
cross-modal retrieval tasks. The dataset contains sufficiently
diverse scenarios and content, improving the model’s gener-
alization ability.

Due to the limited research on cross-modal retrieval and
the lack of a unified evaluation method, this study employed
evaluation metrics including Recall@K and Mean Average
Precision (MAP). Recall@K refers to the proportion of test
data where at least one standard video pair is included in the
top K results for each video query. Different K values were
used to comprehensively evaluate the model’s performance.
Mean Average Precision (MAP)measures the average perfor-
mance of all test query results, ensuring comprehensive and
accurate evaluation. During MAP calculation, all possible

123438 VOLUME 12, 2024



M. Sun: Intelligent Retrieval Method for Audio and Video Content: Deep Learning Technology

matching results were considered to avoid data bias. The
formula for calculating MAP is as follows:

Map =
1
N

k∑
j=1

p∗
j rel(j) (23)

Among them, pj is the weight based on audio quality, N is
the number of audio files similar to the query video, and rel(j)
is a binary function indicating whether the audio is within the
annotation range.

B. DATASET TRAINING
To evaluate the model’s performance, training and testing
were conducted on the CMU-MOSEI dataset. The dataset
was divided into 90% for training and 10% for testing.
For cross-validation, a 5-fold cross-validation method was
employed to assess the model’s performance. The dataset was
split into five equal parts, with different parts used as the
validation set in each experiment, while the remaining parts
were used for training. This ensured that each part of the data
was used for validation once, providing a robust assessment
of the model’s performance. To prevent overfitting, an early
stopping strategy was adopted. The current highest validation
accuracy was recorded, and if there was no improvement in
validation accuracy after an additional 10 epochs of training,
the training was stopped. Based on relevant literature in the
field [44], [45], [46] and the specific data requirements of
this study, the optimal hyperparameters were determined as
follows: a learning rate of 0.001, a batch size of 128, 40 itera-
tions, 2 LSTM layers, 1024 neurons per layer, and a dropout
rate of 0.2. During hyperparameter tuning, multiple experi-
ments with different combinations of hyperparameters were
conducted to determine the best parameter settings. Table 1

TABLE 1. Hyperparameter tuning results.

presents the specific hyperparameter tuning results, where
the optimal hyperparameter settings effectively enhanced the
model’s performance.

In the ablation study, system components were removed to
evaluate their contributions to model performance, as shown
in Table 2. Removing the LSTM network resulted in an 8%
decrease in recall and a 7% decrease in average precision.
Eliminating the attention mechanism led to a 5% decrease
in recall and a 6% decrease in average precision. Removing
the SKM algorithm caused a 10% drop in fidelity and an
8% reduction in compression ratio. These results indicate
that each component plays a crucial role in enhancing model
performance.

TABLE 2. Ablation study results.

The experiments were conducted on a system equipped
with an NVIDIA GTX 2070 GPU, using the average results
from five runs as the evaluation standard for model perfor-
mance. During the data preprocessing stage, audio and video
data were divided into equal-length segments. Input features
were selected and then entered into a common subspace
through the combined efforts of a classifier, sample mining,
and a mapping network. Further training and adjustments
were carried out using a loss function. Finally, the model’s
performance was evaluated using the test set. The system
generated an audio list based on the input video as retrieval
results, calculating the average recall and average precision
accordingly.

In the experimental setup, for processing video data, the
network adopted a structure with two fully connected layers,
with the number of nodes set to 2048 and 512, respectively.
For audio data processing, a fully connected network was
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constructed with nodes set to 2048, 1024, and 512 sequen-
tially. The activation functions chosen were sigmoid and tanh,
aiming to enhance the model’s nonlinear processing capabil-
ities through different functional characteristics. To address
the imbalance in the magnitude of audio and video data
features and prevent model overfitting, L2 normalization was
introduced in the experiment. Regarding the tuning of the
training process, the optimal batch size was determined to
be 550, with a total training period of 40 epochs, achieving
the best balance between training efficiency and result accu-
racy. Additionally, the model used the ADAM optimizer for
parameter optimization, with the learning rate set to 0.001 and
a dropout probability of 0.2 to further enhance the model’s
generalization ability.

C. DATASET TRAINING
1) GENERATION OF ADVERSARIAL EXAMPLES
To validate the robustness of the model under adversarial
examples, additional adversarial experiments were designed
and conducted. This study utilized FGSM (Fast Gradient Sign
Method) and PGD (Projected Gradient Descent) adversar-
ial attack methods to generate adversarial samples. These
methods generate adversarial examples by adding subtle per-
turbations to the input data to test the model’s robustness.
Multiple sets of adversarial samples were generated for dif-
ferent types of input data to ensure the comprehensiveness
and representativeness of the experiments.

2) EXPERIMENTAL SETUP AND METHODS
To comprehensively evaluate the model’s robustness under
different attack intensities, three levels of perturbation
strength were set: 0.01, 0.1, and 0.3, representing mild, mod-
erate, and severe adversarial attacks, respectively. The same
dataset used for model training was selected for testing to
ensure consistency in the generation and testing environment
of the adversarial samples. The dataset was preprocessed to
ensure uniform format and features for each sample.

The specific experimental steps were as follows:
(1) For each perturbation strength, adversarial samples

were generated using FGSM and PGD methods.
(2) The generated adversarial samples were input into the

model, and the model’s output and accuracy on these samples
were recorded.

(3) The performance difference of the model on normal
samples and adversarial samples was compared to analyze the
model’s robustness under different perturbation strengths.

(4) Accuracy was used as the evaluation metric to quantify
the model’s robustness. The accuracy changes of the model
on normal samples and adversarial samples were compared
to assess the model’s performance under different attack
intensities.

D. RESULTS ANALYSIS
1) COMPARATIVE ANALYSIS OF KEY FRAME EXTRACTION
ALGORITHMS
To validate the effectiveness of the proposed SKM-based
key frame extraction algorithm, this study compares it with

three traditional key frame extraction methods: the shot
boundary-based extraction method (Method 1), the inter-
frame difference-based extraction method (Method 2), and a
clustering-based algorithm (Method 3). The advantages and
disadvantages of these four methods in practical applications
are summarized in Table 3.

The results obtained from the comparative analysis are
shown in Table 4.

From the data analysis in Table 4, Method 1 demonstrates
the most outstanding performance in terms of compression
ratio, achieving an average compression ratio of 96.6%, the
highest among all methods. However, its fidelity is the lowest,
with an average of only 53%. In stark contrast, Method 2
excels in fidelity, reaching 70.9%, the highest of all methods,
but its compression ratio is relatively low at 87.4%. Method
3 shows a balanced performance in both aspects, with an
average fidelity of 64.5% and an average compression ratio
of 93.1%. Meanwhile, the algorithm proposed in this paper
also exhibits good balance, achieving a fidelity of 69.3% and
an average compression ratio of 93.6%.

The comparison curves of key frame extraction results are
shown in Figures 5 and 6.

According to Figure 5, it can be observed that the curve
for Method 2 is at the highest position, indicating its opti-
mal fidelity. Following in order are the proposed algorithm,
Method 3, and Method 1, with Method 1 having the low-
est fidelity. The specific data show that the average fidelity

FIGURE 5. Comparison of video fidelity among different types of
algorithms.

FIGURE 6. Comparison of video compression.
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TABLE 3. Comparison of advantages and disadvantages of different key
frame extraction methods.

of the algorithm proposed in this study is 0.693, which is
2.26% lower than that of Method 2, 7.45% higher than
that of Method 3, and 30.75% higher than that of the shot
boundary-based Method 1.

FromFigure 6, it can be seen thatMethod 1 ranks highest in
terms of compression ratio, followed closely by the proposed
algorithm, thenMethod 3, andMethod 2with the lowest com-
pression ratio. Detailed data analysis reveals that the average
compression ratio of the algorithm in this study is 0.936,
which is 3.11% lower than Method 1, 0.54% higher than
Method 3, and 7.09% higher than Method 2. These results
confirm that the SKM-based key frame extraction algorithm
has a significant advantage in overall performance.

2) COMPARATIVE ANALYSIS OF MULTIPLE MODELS
This study compares the proposed model with existing audio-
visual cross-modal retrieval models and conducts experi-
ments on the CMU-MOSEI dataset. These models can be
categorized into linear and nonlinear types based on their
processing mechanisms. Linear models, such as PCA and
CCA, mainly explore linear correlations between modalities.
Nonlinear models, such as DCCA and DANN, are suitable
for different application environments. Although DCCA is
typically used for image-text retrieval, it has been applied to
audio-visual cross-modal retrieval in this study, demonstrat-
ing outstanding performance.

Figure 7 shows the experimental results, indicating that
traditional linear models perform poorly in cross-modal
retrieval, whereas nonlinear models using deep neural net-
works exhibit higher performance. Our proposed model
utilizes a similarity loss function, which not only enhances
effectiveness but also facilitates convergence during training.
The PR curves of the five models on the dataset, displayed in
Figure 7, clearly reveal the performance differences among
themodels. Notably, the newmodel demonstrates exceptional
performance on the CMU-MOSEI dataset.

FIGURE 7. PR Curves of different models on the CMU-MOSEI dataset.

To further investigate the computational efficiency of
the models, this study compares the runtime and resource
utilization of different models. The runtime and resource
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TABLE 4. Comparison of different types of key frame extraction algorithms.

consumption of various models on the CMU-MOSEI dataset
are shown in Table 5.

From the results in Table 5 and Figure 8, it can be observed
that both linear models PCA and CCA, as well as nonlinear
models DCCA andDANN, have runtimes exceeding 100 sec-
onds on the dataset. This is primarily due to the complex
computational processes these methods rely on when han-
dling multimodal data. In contrast, the proposed method in
this study has a runtime of only 90 seconds, significantly
reducing the processing time.

As shown in Figure 9, compared to the CPU and GPU
utilization rates of both linear and nonlinear models, the
proposed model demonstrates overall lower utilization levels.
Specifically, the CPU utilization is 70% and the GPU utiliza-
tion is 50%, indicating more optimized resource usage.

The results in Figure 10 show that in terms of resource
consumption, the proposed research model consumes only
7GB of memory. This indicates that while maintaining effi-
cient retrieval, the proposed method significantly reduces
resource consumption. This improvement not only enhances
the real-time performance and accuracy of retrieval but also
provides a more efficient solution for large-scale data pro-
cessing.

E. ROBUSTNESS TEST RESULTS ANALYSIS
The robustness test results of the model are shown in
Figures 11 and 12.

From the results in Figure 11, it can be seen that under
FGSM attack, the model demonstrates good robustness with

123442 VOLUME 12, 2024



M. Sun: Intelligent Retrieval Method for Audio and Video Content: Deep Learning Technology

FIGURE 8. Comparison of runtime among different models.

FIGURE 9. CPU and GPU utilization of different models.

FIGURE 10. Comparison of resource consumption among different
models.

an accuracy of 95% when the perturbation intensity is 0.01.
As the perturbation intensity increases to 0.1, the model’s
accuracy drops to 91%.With a further increase in perturbation
intensity to 0.3, the model’s accuracy decreases to 85%.
These results indicate that while the model maintains high
accuracy under low-intensity attacks, its robustness gradually
weakens with increasing perturbation intensity.

For PGD attack (Figure 12), the model’s accuracy is 90%
at a perturbation intensity of 0.01. When the perturbation
intensity increases to 0.1, the accuracy drops to 85%, and
at an intensity of 0.3, the accuracy falls to 80%. Compared
to FGSM attacks, the model performs worse under PGD
attacks, particularly at higher perturbation intensities, where
the accuracy significantly decreases. This indicates that PGD

FIGURE 11. Robustness test results of the model under FGSM attack.

FIGURE 12. Robustness test results of the model under PGD attack.

TABLE 5. Comparison of runtime and resource consumption of different
models on the CMU-MOSEI dataset.

attacks have amore pronounced impact on the model, making
it more vulnerable to such attacks.
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Overall, the model can maintain high accuracy under low-
intensity perturbations, and although its performance declines
under high-intensity perturbations, the accuracy remains
above 80%, demonstrating good robustness. Specifically,
under FGSM attacks, the model shows high accuracy across
different perturbation intensities, indicating strong resistance
to this type of attack. Under PGD attacks, despite the more
significant drop in accuracy, the model still maintains a high
level of accuracy at 80%, showing that the model retains a
certain degree of robustness against more complex attacks.

IV. DISCUSSION
In the context of the massive growth of multimedia data,
intelligent retrieval technology for audio and video con-
tent has gained increasing attention. This study proposes
an intelligent retrieval method for audio and video con-
tent based on deep learning. By comprehensively applying
audio and video feature extraction techniques, the method
utilizes the VGG network to extract audio features and
employs the self-adaptive clustering key frame extraction
algorithm (SKM) to extract video features. Combined with
a cross-learning framework of embedding networks, this
approach significantly enhances retrieval efficiency and accu-
racy. The test results on the CMU-MOSEI dataset indicate
that this method outperforms traditional PCA and CCAmod-
els as well as the latest DCCA and DANN deep learning
models in multimodal data processing and actual retrieval
tasks. The proposed method achieved an average fidelity of
0.693 and an average compression ratio of 0.936, which rep-
resent improvements of 30.75% and 7.09% over traditional
methods, respectively.

Traditional retrieval techniques often rely on metadata
and simple visual or audio features, such as basic attributes
of color, texture, or sound. Existing studies, including the
method combining deep triplet neural networks and clus-
tered canonical correlation analysis (CCA) proposed by
Zeng et al. [47] and the multi-resolution audio-video feature
fusion (MRAV-FF) method by Fish et al. [48], have made
progress in specific functionalities. However, their perfor-
mance in practical applications, especially in cross-modal
audio-video data processing, has been suboptimal. This study
leverages long short-term memory (LSTM) networks and
attention mechanisms to process audio data, and employs
adaptive clustering algorithms and deep feature extraction
techniques for video data. This comprehensive approach
not only optimizes the processing of individual modalities
but also enhances cross-modal data processing capabilities
through a cross-learning framework. Experimental results
on the CMU-MOSEI dataset indicate that, compared to tra-
ditional methods like PCA, CCA, and deep models such
as DCCA and DANN, the proposed model demonstrates
superior performance in multimodal data processing and
retrieval tasks, with improved recall and mean average
precision (MAP).

In current similar research, the Transformer-based fea-
ture fusion network for cross-modal retrieval proposed by

Zhang & Cao (2023) holds certain value. However, its
extraction and processing of audio features are relatively
simplistic, leading to deficiencies in audio-video matching
accuracy [49]. In contrast, the method proposed in this
paper achieves greater accuracy in matching by perform-
ing fine-grained analysis and processing of audio and video
features. On another front, the large-scale video retrieval
method based on convolutional neural networks (CNN) pro-
posed by Zhang et al., which implements keyframe extraction
and feature aggregation strategies to achieve low storage
costs and high search efficiency, shows practical value but
faces computational efficiency challenges when handling
large-scale data [50]. Addressing such issues, this study
combines adaptive clustering algorithms with deep feature
extraction techniques to significantly improve the efficiency
of large-scale data processing while also enhancing the accu-
racy of feature extraction.

In terms of video feature extraction, the proposed adaptive
clustering keyframe extraction algorithm (SKM) addresses
the issue of fixed cluster numbers potentially leading to
inaccurate keyframe quantities in traditional methods by
automatically calculating the number of clusters and ini-
tial cluster centers. Comparative analysis shows that the
proposed method outperforms several traditional meth-
ods in both fidelity and compression ratio, demonstrating
higher overall performance. Compared to the dynamic mode
decomposition-based feature extraction method proposed by
Sikha and Soman, the extraction method in this study exhibits
greater robustness and efficiency in handling complex video
data [28].

This study theoretically introduces new approaches for
intelligent retrieval of audio-visual content, achieving effi-
cient multimodal data processing through a cross-learning
framework. This method not only optimizes single-modality
processing but also significantly enhances retrieval perfor-
mance by enabling comparative analysis of cross-modal data
through a feature embedding network. The study improves
the efficiency and accuracy of audio-visual content retrieval
and provides new theoretical and technical references for
the development of future cross-modal retrieval technologies.
By applying deep learning techniques, this study demon-
strates strong potential and broad applicability in handling
large-scale multimedia data, offering valuable insights and
experiences for researchers and developers in related fields.
Experimental results on the CMU-MOSEI dataset confirm
the feasibility and effectiveness of the proposed method in
practical applications, offering a new perspective for intelli-
gent multimodal data retrieval.

Despite the significant progress made, there are several
limitations to this study. Firstly, the current method incurs
high computational resources and time costs when process-
ing large-scale and diverse datasets, which may significantly
impact its application in resource-constrained real-world
scenarios. Future research should focus on optimizing algo-
rithms to reduce computational complexity, exploring par-
allel computing and distributed processing techniques, and
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utilizing hardware acceleration technologies such as GPUs
and FPGAs to enhance computational efficiency. Secondly,
there is a need to further improve real-time retrieval capabili-
ties. Future studies should develop more efficient real-time
processing algorithms, explore more effective data struc-
tures such as inverted indexes or hash tables to accelerate
the retrieval process, and design synchronous processing
frameworks for multimodal data to reduce latency. Lastly,
the model’s preprocessing requirements for audio-visual
data are relatively high, which may increase the complex-
ity and preparation time of practical applications. Although
the model performs well in experiments, its robustness and
generalizability need further validation and improvement
when handling more diverse and noisy data. Future research
could enhance the model’s robustness by incorporating more
advanced preprocessing techniques, explore generalizabil-
ity across more varied datasets, and develop more efficient
real-time and parallel processing algorithms to improve com-
putational efficiency and processing speed, thereby better
meeting practical application needs.

V. CONCLUSION
This paper presents an intelligent retrieval method for
audio-visual content based on deep learning, aiming to
enhance the efficiency and accuracy of such content retrieval.
The method employs long short-term memory (LSTM) net-
works and attention mechanisms for fine-grained feature
extraction of audio data. Compared to traditional meth-
ods, the combination of LSTM and attention mechanisms
significantly improves the precision of audio feature extrac-
tion. Additionally, an adaptive clustering keyframe extraction
algorithm (SKM) is proposed, which addresses the issue
of inaccurate keyframe numbers in traditional methods by
automatically calculating the number of clusters and initial
cluster centers. In experiments, this method demonstrates
superior performance in terms of fidelity and compression
ratio, with average fidelity and compression ratio values of
0.693 and 0.936, respectively, representing improvements of
30.75% and 7.09% over traditional methods. In multimodal
data processing, audio and video features are mapped to a
shared feature space through an embedding network, effec-
tively enhancing cross-modal data processing capabilities.
Experimental results on the CMU-MOSEI dataset indicate
that, compared to traditional PCA and CCA models as well
as recent DCCA and DANN models, the proposed method
achieves significant improvements in recall andmean average
precision (MAP).

This method holds substantial practical significance for
organizations requiring efficient management and retrieval
of large volumes of audio-visual data, such as multimedia
content providers, video surveillance systems, educational
and training platforms, research institutions, and enter-
prises. It not only significantly reduces the search time
for audio-visual content and enhances user experience but
also enables more comprehensive retrieval and analysis
by handling cross-modal audio and video data, making it

applicable in various real-world scenarios. Moreover, the
method demonstrates robustness and efficiency in processing
complex video data, indicating strong potential for practical
applications.
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