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ABSTRACT The semantic segmentation of high-resolution remote sensing images is widely used in various
precision agriculture, urban planning, and environmental detection are some examples of these industries.
Convolutional neural networks (CNNs) are excellent in the semantic segmentation of remote sensing images.
CNN excels in extracting local feature details but lacks the ability to model global context data. Therefore,
to obtain rich local-global information about context, we describe in this work a semantic segmentation
network design technique for remote sensing, based on an encoder-decoder structure, which is named
Multiscale Fully Attention Fusion Network for Remote Sensing Image Semantic Segmentation (MFAFNet).
In particular, to improve the segmentation efficiency, the encoder’s extractor of features was ResNet18,
after which the explicit visual center module EVC and the full attention network FANB are intended to
retrieve the detailed global context data. Finally, the gated channel attention fusion module (GCF) tries
to augment channel interaction information in the decoder stage while fusing low-level characteristics for
efficient aggregation. During our research and testing, we used the publicly available Vaihingen and Potsdam
datasets from the International Society for Photogrammetry and Remote Sensing (ISPRS), as well as the
LoveDA dataset. Meanwhile, it demonstrates that MFAFNet outperforms other well-liked methods in terms
of competition. We further validated the efficiency of the network components in the study by conducting
ablation experiments on the Vaihingen dataset.

INDEX TERMS Semantic segmentation, remote sensing, global-local context, attention mechanism.

I. INTRODUCTION
Given how quickly remote sensing technology is developing,
obtaining images is becoming easier and easier. high-
resolution remote sensing images, which provide a wealth
of geographical and semantic information. Due to the quick
growth of high-resolution remote sensing images, semantic
segmentation has emerged as a key approach for feature
recognition and area statistics of high-resolution remote
sensing images [1]. Currently, urban planning [2], [3],
precision agriculture [4], [5], [6], disaster assessment [7],
[8], land resource management [9], [10], and environmental
detection [11], [12], [13] depend heavily on the semantic
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segmentation of remote sensing images. Nevertheless, high-
resolution remote sensing images include complex back-
grounds. The majority of little targets, and also suffer from
sample imbalance [14]. Traditional approaches to semantic
segmentation, include thresholding [15], clustering-based
methods [16], edge detection methods [17], and conditional
random fields [18], [19], which mainly use shallow semantic
information, such as color, and texture, for segmentation,
have problems such as poor generalization ability [20] and
insufficient deep feature extraction [21]. Exploration that
relies solely on superficial information can no longer meet the
requirements of remote sensing images in application areas
because of the complexity of the background of remote sens-
ing images. Therefore, raising the accuracy and efficiency
of semantic segmentation in high-resolution remote sensing
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images is indeed a challenging job. As deep learning develops
greater popularity, specialists working on studies have
developed various typical semantic segmentation models,
which create a strong basis for remote sensing-based high-
resolution semantic segmentation. Among them, Long et al.
[22] suggested applying a fully convolutional network. As the
first network model in the field of semantic segmentation,
FCN uses an encoder-decoder structure to build a deep
learning network. Additionally, it’s the first attempt at
semantic segmentation using CNN. It solved the pixel-level
segmentation of images problem by converting the fully
connected layer of CNN to a layer that uses convolution. After
FCN, CNN-based methods dominate semantic segmentation
of remotely sensed images [23], [24], [25], [26], but the FCN
decoder is too simplified, which leads to low segmentation
accuracy and easy loss of detailed information. Taking
this into consideration, U-Net [27] proposed a working
encoder-decoder arrangement. By fusing low and high-level
characteristics using jump connections, we can increase the
segmentation accuracy. In order to get back the structure
of the spatial and contextual information lost in the feature
map, the encoder-decoder is a derived model that uses an
encoder to extract the details of the features of an image
from the feature map and a decoder to reassemble this feature
information. After that, the encoder-decoder framework
becomes the remote sensing image segmentation mainstream
structure [28], [29]. In an effort to increase the segmentation
accuracy and inference speed of high-resolution remote
sensing images, Wang et al. [30] created a lightweight
encoder-decoder structure. Since remotely sensed images are
characterized by complex backgrounds, small targets, and
fuzzy boundaries, there have been significant advancements
in the field of semantic segmentation of remotely sensed
images using convolutional neural networks (CNNs) as the
codec approach. Cui et al. [31] proposed a U-Net based
semantic segmentation method that incorporates a channel
attention mechanism and sub-pixel convolution method in
the encoder-decoder to better capture feature information.
However, the convolutional operation of CNNs with fixed
sense fields leads to a lack of ability to extract global
contextual information and to model distant dependencies,
and the segmentation results are often ambiguous if only
local information is modeled in semantic segmentation
tasks [32].

To address the problems mentioned above, ERFNet [33]
uses residual concatenation and decomposition convolution
to ensure segmentation accuracy while improving inference
speed. BiSeNet [34] proposes a bilateral segmentation
network that combines spatial information and contextual
paths. DABNet [35] extracts local information and contextual
information simultaneously with asymmetric convolution
and dilation convolution with comparable accuracy and infer-
ence speed. SPANet [36] solved the foreground-background
imbalance problem by designing spatial adaptive convolution
in the decoder. These networks though achieve a certain
balance between performance and speed. But still, they

cannot get rid of the dependence on the CNN backbone
network, so much so that they cannot effectively extract
global context information.

The accuracy and efficiency of semantic segmentation
can be greatly increased by incorporating multi-scale feature
fusion approaches with the aim of further enhancing the
model’s performance. Literature [37] points out that the
Feature Pyramid Network (FPN) is an excellent strategy
for combining multi-scale features, and for generating
accurate predictions, a combination of high-resolution low-
level features with high-level features with high semantic
information is employed. By utilizing a pyramid pooling
module to extract global contextual information, Zhao et
al. [38] created a powerful multi-scale feature fusion Pyramid
Scene Parsing Network (PSPNet) to increase segmentation
accuracy. Chen et al. [29], [39], [40], [41] designed the
DeepLab series of algorithms, among which DeepLabV3
[42] improved the hollow space pyramid pooling module
by using hollow convolution using various expansion rates
to record the target information at various scales and its
related context. To capture the intended information as well
as the contextual data to further mine the feature information
at different scales and improve the segmentation effect.
Chen et al. [41] created the kernel pyramid pooling (LKPP)
module to extract different scale information to solve the
feature extraction problem and optimize the boundaries with
a new loss function. Wang et al. [43] used the dynamic
multiscale dilation convolution to extract the features at
different scales. Liu et al. [44] designed a dual-channel ASPP
module for feature extraction. Wu et al. [45] proposed a
multi-scale attention fusion module. Liu et al. [46] designed
design context aggregation to capture multi-scale features
through a pyramid network and region extractor. Cao et
al. [47] captured important feature information by designing
a multi-scale pyramid module. Although these methods can
capture multi-scale features of remote sensing images, they
do not adequately extract global information in terms of
global information modeling.

Self-attentionwas initially used inmachine translation [48]
to capture remote features, and compared to the excessive
computational effort of convolutional neural networks on
remote sensing images, self-attention is able to ensure model
expressiveness while reducing the computational effort.
Combining the attention mechanism with convolutional
neural networks can better utilize the model’s productivity.
Since then, the field of semantic segmentation has made
extensive use of it. It has major benefits for building
global contextual semantic information because it is based
on modeling feature correlations in spatial and channel
dimensions.

Recently, mechanisms of attention have also been incor-
porated into the study of semantic segmentation of remotely
sensed images. Li et al. [49] designed the attention bilateral
network ABCNet to model global remote dependencies
with lightweight CNN spatial paths and contextual paths.
A2FPN [50] enhances the model’s multiscale features with
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the attention aggregation module. DANet [51] proposes two
attention modules modeling the feature dimensions of space
and channel respectively, which improves the utilization of
global information. Zhao et al. proposed a MANet [52] to
obtain global context dependencies by extracting features
through the attention module. Li et al. [53] pointed out a
Multi-Level Attention Network (MAResU-Net) using the
Linear Attention Mechanism (LAM) to establish long-range
dependencies. Li et al. [54] proposed a fusing spatial
and channel attention network SCAttNet, using lightweight
spatial and channel attention for adaptive feature refinement,
it even verified that the attention network is extremely
valuable for improving accuracy. Bai et al. [55] proposed
a dual-attention network DCAttNet with a DANet, which
was designed to learn the spatial interdependence of features
in the position attention module (PAM) and capture the
channel interdependence in the channel attention module
(CAM), enhanced the segmentation outcomes by simulating
intricate contextual relationships with local characteristics.
Wang et al. [56] suggested creating a bilateral awareness
network (BANet) that combines contextual, global, and
spatial information when constructing the attention feature
aggregation module. Wang et al. [57] and others designed
directed attention networks to learn orientation features and
global semantic information of real objects. Lin et al. [58]
designed spatial linear attention and channel linear attention
mechanisms to capture global contextual remote dependen-
cies. Song et al. [59] suggested the Full Attention Network
(FLANet), which uses global contextual features to preserve
spatial features when computing channel feature maps.

Inspired by the above literature, we propose a multi-
scale full-attention fusion network (MFAFNet) based on
an encoder-decoder structure for semantic segmentation of
remote sensing images. In this paper, we design an explicit
visual center (EVC) module, which captures local-global
information. Lightweight pre-trained ResNet18 [49] was
used as an encoder to extract local information. Then, a Full
Attention Network (FANB) is designed to encode both
channel and spatial attention simultaneously by introducing
spatial interaction into the attention channel mechanism to
obtain comprehensive worldwide contextual data. In order to
appropriately fuse multi-scale variables and, thus, adequately
capture contextual and spatial aspects, the study eventually
adds the Gated Channel Attention Fusion (GCF) module into
the decoder stage. Specifically, our principal contributions
can be summed up as follows:

1) We propose a new semantic segmentation network,
MFAFNet, to extract rich local-global contextual infor-
mation and realize multi-scale feature fusion based on
low computational cost.

2) In the feature encoding stage, we propose the EVC
module and FANB network in conjunction with
ResNet18 in the encoder to model global remote
dependencies and capture local-global contextual
information.

3) In order to effectively combine and extract high-level
and low-level feature mappings with multi-scale
features, we present the gated attention fusion module
(GCF), which fuses information collected from several
encoder and decoder stages together.

II. MATERIALS & METHODS
We will present the overall architecture and component
modules of MFAFNet in this section. We first will give the
general architecture of the network, and then explain the
Explicit Visual Center module (EVC), the Fully Attentional
Network block (FANB), and the Gate Channel Fusion
Module (GCF) in detail.

A. OVERALL STRUCTURE
To cope with the semantic segmentation challenges of
remotely sensed images in urban environments. We give
a Multiscale Fully Attention Fusion Network for Remote
Sensing Image Semantic Segmentation (MFAFNet). The
MFAFNet architecture is displayed in Fig. 1, and the general
structure consists of two parts: the encoder-decoder. For
the encoder, to lower the computational cost of collecting
multi-scale semantic information, we adopt ResNet18 with
pre-trained weights as the feature extractor. Obtaining
multi-scale semantic information by downsampling at a
minimal computational cost. ResNet18 includes four stages,
every stage with a scale factor of 2 to acquire four
feature maps of varying sizes for the resolution: H/4×W/4,
H/8×W/8, H/16×W/16 and H/32×W/32. The intricate
spectral data and textural composition of urban remote
sensing images, as well as irregular feature boundaries, these
features put high demands on the extractor of features.
Therefore, the detailed feature maps produced at the end
of the encoder stage are used to further acquire global
information through the EVC and FANB modules to make
up for the insufficiency of local information. Furthermore,
the feature maps generated in the remaining stages be
employed for acquiring rich global information at multiple
scales through the FANB module. The four feature mappings
produced by the encoder are fused with the feature mapping
GCF produced by the decoder during the decoder stage.
By using a 1 × 1 convolution operation, the fusion process
is unified to a 64-channel dimension. Specifically, the
high-level semantic characteristics produced by the decoder
are merged and weighted with the semantic features produced
by FANB. The weighted summing operation adaptively
adjusts the magnitude of the weights according to the
contributions of these two features, which can be expressed
as:

FU = αFANB+ (1 − α) · GCF (1)

where FU denotes the fused feature, FANB stands for
the feature Generated by the FANB Module, and GCF
represents the feature produced by the Gate Channel Fusion
Module.
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FIGURE 1. Overall network structure of the MFAFNet.

FIGURE 2. Illustration of the EVC module.

B. EVC MODULE
While current methods primarily concentrate on the interac-
tions between features at different layers, they do not address
the conditioning of features within the same layer, even
though studies have demonstrated the advantages of using
intra-layer feature rules in visual identification tasks. In our
work, inspired by the work of [60], we propose Explicit
Visual Centre EVC. specifically, we adopt a parallel learnable
center method to collect local corner regions of high-level
features produced by ResNet18, and a lightweight MLP
to collect global contextual information. As Fig. 2 shows,
our proposed EVC mainly contains two parallel connected
blocks: the lightweight MLP and the learnable visual center
LVC, where the lightweight MLP gets the global information
of the high-level feature X4 while reducing the computational
cost, but to minimize the loss of local information, we use
the LVC learnable visual center mechanism on the high-level
feature X4 generated by ResNet18 to preserve local corner
regions by aggregating localized features of the region within
the layer. The output feature maps of these two blocks are

connected along the channel dimensions as input to FANB.
The above process can be represented as:

FX = cat(MLP(X4),LVC(X4)) (2)

where FX is the EVC output and cat(·) are denoted as two
blocks of feature maps concatenated localized features of
the region within the layer, and are denoted as the feature
maps output using the lightweight MLP and the learnable
mechanism LVC respectively. They are described in detail
next.

The lightweight MLP in the EVC module is mainly
to record high-level features’ global remote dependencies,
which is mainly composed of two sections: the channel
MLP-based convolution and the depth convolution-based
module [61], where the depth convolution module is the input
to the channel MLP module. Strengthening the robustness
and generality of the features, we implement the channel
scaling operation [62] and the DropPath operation at the end.
Specifically, X4 is the first input to the deep convolution,
which is processed by group norming. This is followed

VOLUME 12, 2024 123391



Y. Dang et al.: MFAFNet for Remote Sensing Image Semantic Segmentation

by channel scaling and DropPath, and then finally the
residual concatenation of X4 is performed. Compared with
the traditional spatial convolution, the deep convolution
used in this paper not only lowers computing costs but
also enhances the capacity for feature representation. The
procedures mentioned above can be expressed as:

XD = DWConv(GN (X4)) (3)

X̃D = Drop(CS(XD)) + X4 (4)

where XD represents the output, GN(·) is the group normal-
ization and DWConv(·) is a depthwise convolution with the
kernel size 1× 1. Channel scaling (CS) and Drop (DropPath)
denote the output of the depth convolution-based module,
respectively. Afterward, we feed the resulting features into
the channel-based MLP module.

Specifically, the XD is first transported into the group
normalization, then the channel MLP [63] is put into
practice in the generated features, similar to the operation
of the depth-based convolution module, followed by channel
scaling and DropPath, and finally, the remaining connections
of the XD are added again to prevent overfitting. Compared
with spatial MLP, Channel MLP satisfies the needs of general
vision applications while also efficiently reducing computing
complexity [64]. The procedure mentioned above can be
written like this:

XM = CMLP(GN (X̃D)) (5)

X̃M = Drop(CS(XM )) + X̃D (6)

where CMLP(·) is the channel MLP. XM is the output of the
channel MLP, X̃Mdenotes the final output.
The encoder LVC has an internal dictionary, which can

preserve local corner regions and reduce the loss of local
information. LVC consists of two parts: Code-book: E =

{e1, e2, . . . . et}, and the scaling factor S = {s1, s2, . . . st}
are the learnable visual centers, where t represents the total
number of visual centers. The feature X4 after convolution,
after 1 × 1 and 3 × 3 convolutions, is transported into the
codebook E. In the codebook, we use a set of scaling factors
S to map make XK and Et sequentially to the corresponding
positional information, which is represented as follows:

X4 = Relu(BN (Conv7×7(X4))) (7)

X̃4 = Relu(BN (Conv3×3(Conv1×1(X4)))) (8)

C =

t∑
t=1

φ(
N∑
i=1

e−st∥x̃k−et∥∑t
j=1 e

−s∥
x̃k−et∥

2

t

(x̃k − et )) (9)

where x̃k is the k-th pixel point, et is the t-th learnable visual
code-word, xk−et is the information about each pixel position
relative to a codeword is a t-th scaling factor, and t represents
the total number of visual centers. N=H×W is the total
spatial number of the input features, where H and W denote
the feature map spatial size in height and width, respectively.
φ is used to calculate the entire codebook. C denotes the
whole codebook. Afterward, the output of the feature through

the codebook and scaling factor are then multiplied and
then summed with the initial features X̃4 through the fully
connected layer to get the final result of the LVC output. The
above processes are expressed as:

XLVC = X̃4 ⊕ X̃4 ⊗ FC(C) (10)

where FC(·) is the fully connection layer, ⊕ s channel-wise
multiplication, and ⊗ is the channel-wise addition. XLVC
denotes the final output.

C. FANB MODULE
Although non-local self-attention methods have been effec-
tive in capturing remote dependencies for semantic seg-
mentation in recent years, these methods usually compress
the spatial dimension or compress the similarity graph of
the channel dimension to express their feature relationships.
This approach tends to compress feature dependencies in
other dimensions, leading to poor segmentation results for
small/thin categories or inconsistent segmentation within
large objects. To attempt to tackle this problem, we sug-
gest a new approach, Full Attention Networks (FANB).
Specifically, to avoid adding extra computational cost, spatial
and channel attention are encoded in a single similarity
graph adding spatial interactions to the channel attention
mechanism and employing global average pooling as a global
context prior.

According to Figure 3, by taking the feature maps
generated by the ResNet18 or EVC module we input them
into the FANB module as its initial features, where C is the
number of channels and H and W represent the height and
width of the feature maps respectively. Firstly, we input the
feature map XF ∈ RC×H×W into Q, K, and V. Taking Q as
an example first, to acquire a comprehensive, contextualized
global prior, we input theXF into two parallel global average
poolings and choose two pooling windows that are unequal
in height and width, H × 1 and 1 × W pooling windows.
Then to ensure that each spatial location is connected to
the corresponding global prior with the same horizontal
or vertical coordinates, the choice is made to keep the
one-dimensional length constant and output the features.
Afterward, the global features Q̃h ∈ RC×H×W , Q̃w ∈

RC×H×W in the vertical and horizontal directions are then
obtained by repeating QH and QW , and the final feature map
Q ∈ R(H+W )×C×N is obtained by matrix multiplication of
Q̃H and Q̃W . In the same way, as for Q generation, generate
K ∈ R(H+W )×C×N and V ∈ R(H+W )×C×N .

The feature response from the larger context needs to
be approved for each specific spatial location before the
corresponding column node, we capture full attention through
an affine operation as follows:

Ai,j =
exp(Qi · Kj)∑C
i=1exp(Qi · Kj)

(11)

where Ai,j indicates the correlation dependency between the
ith and jth channel at a particular spatial location.
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Finally, we perform matrix multiplication of A and V
obtained through affine operation to update each channel
mapping, and then divide the obtained channel mapping into
two groups, each of size RC×H×W , and sum t the two groups
were gaining the information in the global remote context.
The obtained context information is multiplied by the scale
parameter γ , and the final feature map F ∈ RC×H×W

is obtained by summarizing each ingredient separately and
3 × 3 convolution with the initial feature map XF as shown
below:

F̃ =

C∑
i=1

Ai,j · Vj + XF (12)

F = Conv3×3(F̃) (13)

where F represents the final output.

FIGURE 3. Illustration of the FANB module.

D. GCF MODULE
Because of the wide variations in target sizes in
high-resolution remote sensing images, it is not viable
to efficiently use the multi-scale features of the feature
map when semantic segmenting remote sensing images.
Therefore, in order to more effectively integrate the multi-
scale features, we suggest the GCF module, and unlike
previous fusion methods, our proposed method utilizes a
gating mechanism to select useful information among a large
amount of invalid information, which improves the efficiency
and accuracy at the same time, as shown in Fig. 4.
In GCF, there are two input feature maps, Fhigh and Flow,

in which the low-dimensional feature map’s resolution is
half that of the high-dimensional feature map, and such
a setup restricts the propagation of information between
feature maps, which is advantageous for the merging of
information. Firstly, the feature map Fhigh is convolved 3 ×

3, in order for the two feature maps’ channel dimensions
to be consistent, and then the optimized high-dimensional
and low-dimensional feature maps of Fhigh and Flow are
aggregated and optimized by concat operation, and then
the 1 × 1 convolution sum and a Sigmoid activation
function. To better capture data from multiple scales in
the process of fusion and to improve the segmentation

FIGURE 4. Illustration of the GCF module.

accuracy, we designed a multi-sale separation enhancement
module (MSEM) in GCF. Specifically, since different sizes of
receptive fields imply different abilities to be able to record
distant dependencies, we first use the extended convolution
with expansion factors [3,5,7] to fully utilize the receptive
fields of the feature maps, and three different extended
convolution rates are used to capture multiscale information
and different ranges of dependencies. Then the resulting
feature maps are fed into the adaptive pooling and the original
features are residually concatenated and adaptively pooled
to prevent overfitting. Then, the obtained feature map is
input into the adaptive pooling and the original features are
connected by residuals to prevent overfitting and adaptive
pooling, the pooled results are weighted and operated with
the pooled results after extended convolution. Finally, the
attention weights are generated by linear transformation and
sigmoid activation function, and the generated weights are
multiplied with the original features element by element to
get the final output, which further improves the ability to
perceive the important information in the fusion process.
Next, the gating value G is transported to output GM in
the multiscale self-attention module MSEM to enhance the
gating representation and obtain rich multiscale information.
The feature map Fhigh is multiplied element by element with
the gating value GM , Flow, and 1-GM , respectively, to obtain
the featuremapsFHM andFLM , which can dynamically adjust
the weight distribution between them to better capture the
details that are difficult to be captured or the classifications
that are neglected in the segmentation process. Gating
operations are eventually followed by a weighted summing
on the feature maps to generate the fused processed feature
maps.

III. RESULTS
A. DATASETS
The ISPRS Potsdam, ISPRSVaihingen, and LoveDA datasets
are publicly accessible datasets that can be used for model
training and testing.
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The Vaihingen dataset, which was gathered in the German
region of Vaihingen and supplied by the ISPRS Working
Group III/4 under the framework of the ‘‘ISPRS Urban
Classification and 3D Building Reconstruction Test Project,’’
is the dataset utilized in this work. The dataset is made
up of 33 orthophotos, each measuring an average of
2494 × 2064 with a ground sampling distance (GSD) of
9 cm. Each image has three bands: red, green, and near-
infrared, along with the associated normalized DSM and
digital surface model (DSM). It consists of six categories:
impervious surfaces, buildings, low vegetation, trees, cars,
and clutter/background. In the experiment. We utilized ID:
2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35,
and 38 for testing, and the remaining 16 images for training.
Each image and label were manually cropped to a size of
1024 × 1024 pixels.

There are 38 orthophotos in the Potsdam collection, with
a ground resolution (GSD) of 5 cm and a pixel size of
6000×6000. Along with the matching Digital SurfaceModel
(DSM) and Normalized Difference of the Digital Surface
Model (NDSM), each image includes red, green, blue, and
near-infrared bands. This dataset, like the Vaihingen dataset,
is divided into six categories: automobiles, low vegetation,
impermeable surfaces, buildings, and clutter/background.
We utilized ID: 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15,
5_13, 5_14, 5_15, 6_13, 6_14, 6_15, 7_13 for testing, and
the remaining 23 images, except image 7_10 with error
annotations for training. In the experiments, we only used the
red, green, and blue bands, and we reduced the original image
tiles to 1024 × 1024 pixels.
LoveDA dataset is a surface cover classification dataset

proposed by the RSIDEA team, which contains 5987 0.3 m
high-resolution images originating from the cities of Wuhan,
Nanjing, and Changzhou. The resolution of each image is
1024 × 1024 pixels and the land cover categories include
building, road, water, wasteland, forest, agriculture, and
background, of which the number of images used for training
is 2522, the number of validations is 1669, and the number
of test is 1796. The dataset is challenging considering the
diversity and complexity of land cover types and background
samples in different scenes.

B. EXPERIMENTAL SETTINGS
All of the experiments were conducted using the PyTorch
framework on a Linux operating system and a single
NVIDIA 3090 GPU as the hardware foundation. We chose
the AdamW optimizer for the model training procedure to
guarantee the equity of the comparison findings. The initial
learning rate was 6e-4, the weight decay value was set to
0.01 and the learning rate was dynamically adjusted using the
cosine approach.

When training on the Vaihingen and Potsdam datasets,
we employed a random cropping strategy, randomly cropping
the images into 512 × 512 patches, to prevent overfit-
ting. We employed several data improvement strategies
during the training phase, such as random rotation, random

vertical flip, random horizontal flip, and random scaling
([0.5,0.75,1.0,1.25,1.5]). In the meantime, we established
a maximum of 110 training rounds and split the training
data into batches of eight samples each. We employed
the test time augmentation (TTA) technique in addition
to multi-scale [0.5,0.75,1,1.25,1.5] throughout the testing
phase.

C. EVALUATION INDICATORS
To comprehensively measure the effectiveness of the model
we have proposed, we used three evaluation metrics,
including overall accuracy (OA), the mean intersection over
union (mIoU), and the mean F1 score (mF1). Based on
the accumulated confusion matrix, OA, mIoU, and mF1 are
calculated as follows:

OA =

∑N
K=1 TPK∑N

K=1 TPK + FPK + TNK + FNK
(14)

mLOU =
1
N

N∑
K=1

TPK
TPK + FPK + TNK + FNK

(15)

precision =
1
N

N∑
K=1

TPK
TPK + FPK

(16)

recall =
1
N

N∑
K=1

TPK
TPK + FNK

(17)

F1 =
1
N
precision× recall
precision+ recall

(18)

where TPK , FPK , and TNK stand for the corresponding true
positives, false positives, true negatives, and false negatives,
for objects indexed as class k.

In addition, we use the number of floating-point operations
per second (Flops) and the number of parameters to evaluate
the complexity of the model.

D. PERFORMANCE COMPARISON
1) COMPARISON WITH STATE-OF-THE-ART METHODS ON
ISPRS VAIHINGEN
The experimental findings using the ISPRS Vaihingen
dataset, as indicated in Table 1, provide a comparison of
the various approaches. But as with earlier tests, there is
no reporting of the backdrop and clutter accuracy, The
best MeanF1/mloU/OA was achieved with our proposed
MFAFNet method. When compared to the suboptimal
technique, there was an improvement of 0.94% in MeanF1,
1.57% inmloU, and 0.85% inOA. Additionally, our approach
received the best ratings across all categories. It is noteworthy
that our method obtained an 89.23% F1 score on the ‘‘car’’
class, outperforming other networks by more than 0.67%.
We show the results of the visualization of each method on
the test set in Fig. 5. We show the visualization of each
method on the test in Fig. 5, and based on the segmentation
results, as we can see, our approach performs better than other
methods.
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TABLE 1. Quantitative comparison with state-of-the-art models on the ISPRS VAIHINGEN dataset. The best values in the columns are in bold. All scores
are expressed as percentages (%). Where the metric for all categories is F1 scores.

FIGURE 5. Qualitative comparison of the visualization results of our method with other methods on the Vaihingen dataset.

2) COMPARISON WITH STATE-OF-THE-ART METHODS ON
ISPRS POTSDAM
Using the ISPRS Potsdam dataset, we carried out a compar-
ative experiment of the widely used approaches in order to
further confirm the generalizability of the MFAFNet model.
Table 2 presents a list of the specific comparative results.
There is no report about clutter or background accuracy
in the Potsdam test set, which is similar to the Vaihingen
dataset. Table 2 illustrates that our MFAFNet model performs
satisfactorily on the Potsdam test set, achieving 92.51%
for F1, 86.27% for mloU, and 91.30% for OA. Compared
to the suboptimal method, MeanF1 improved by 0.59%,
mloU by 1%, and OA by 0.56%. And compared to other
methods, our method reached the highest scores in the
categories. For example, our method obtained a 95.93% F1
score on the ‘‘car’’ class, outperforming other networks by

more than 0.41%. In addition, we display the corresponding
visualization results in Fig. 6 to compare and illustrate
the differences between our suggested method and other
commonly used methods. It is evident from looking at Fig. 6
that the segmentation results using the method employed
in this paper have more distinct edge contours and more
information.

3) COMPARISON WITH STATE-OF-THE-ART METHODS ON
LoveDA
To further evaluate the effectiveness of the proposed
approach, we conducted comparative experiments on the
widely used methods in the LoveDA dataset. The specific
comparison results have been presented in Table 3. The
experiments show that our proposed MFAFNet model
achieves the best results on the LoveDA test set with an mIoU
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TABLE 2. Quantitative comparison with state-of-the-art models on the ISPRS POTSDAM dataset. The best values in the columns are in bold. All scores are
expressed as percentages (%). Where the metric for all categories is F1 scores.

FIGURE 6. Qualitative comparison of the visualization results of our method with other methods on the Potsdam dataset.

of 52.11%. Moreover, the visualization results obtained by
the corresponding method are also shown in Fig. 7. From the
visualization results, it can be clearly observed that in terms
of edge segmentation and target object segmentation, our
method performs more smoothly and accurately compared to
other methods.

E. ABLATION EXPERIMENTS
1) EFFECT OF EACH COMPONENT OF MFAFNet
We performed a series of ablation experiments on the
Vaihingen dataset to assess the performance of each com-
ponent in MFAFNet. We obtained the results displayed in
Table 4 by individually assessing each module’s operation.
We build the benchmark model in the baseline model
using ResNet18 with the U-Net as the backbone network.
Only local context information in the decoder is modeled.
The Fully Attentional Network block (FANB): Four Fully
Attention Network blocks were incorporated into the baseline

to build the Baseline+FANB. Performance improved for all
categories with the addition of the FANB module, as Table 4
demonstrates, Baseline+FANB achieves mloU growth of
6.36% on the Vaihingen test sets, which proves the positive
effects of the FANB module. The Explicit Visual Center
module (EVC): We inserted the Explicit Visual Center
module into Baseline +FANB as the decoder. As illustrated
in Table 4, the introduction of the EVC module improves
the mIoU of the network on the Vaihingen dataset by 0.27%,
demonstrating the EVCmodule’s efficacy. The Gate Channel
Fusion Module (GCF): The GCF module was made available
to construct the full MFAFNet network. As shown in Table 4,
the introduction of the GCF module improves the mIoU of
the network on the Vaihingen dataset by 0.1% and obtained
the highest MeanF1, mloU.

As seen in Fig. 8, we also display the results for each
module. When all modules are added, the network can
efficiently extract global-local contextual information and
multi-scale information to more closely match GT values.
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TABLE 3. Quantitative comparison with state-of-the-art models on the LoveDA dataset. The best values in the columns are in bold. All scores are
expressed as percentages (%).

FIGURE 7. Qualitative comparison of the visualization results of our method with other methods on the LoveDA dataset.

TABLE 4. Ablation study of each component of the MFAFNET. The best values in the columns are in bold. All scores are expressed as percentages (%),
where the metric for all categories is F1 scores.

2) EFFECT OF THE FANB MODULE
The functioning of spatial attention and channel attention
is examined in this section. Table 5 displays the results
of the experiment. There was a 0.7% decrease in mIoU, a
0.98 M reduction in parameters, and a 5.89 G decrease in
FLOPs when merely channel attention was added. Table 5
lists the results. When only spatial attention is added, the
mIoU decreases by 1.17%, the parameters are reduced by
1M, and the FLOPs are reduced by 5.9 G. This illustrates
the absence of both channel and spatial attention without
excessive computational cost overheads.

3) EFFECT OF EVC MODULE
The EVC module comprises two parts. connected in parallel:
lightweight MLP(LMP) and learnable vision center (LVC).
The experimental results are displayed in Table 6. We find
that the average intersection ratio mIoU decreases by 0.12%
when solely LVC is implemented. We disregarded the
parameter adjustments and FLOP operations at this point.
On the other hand, since LVC is not used when simply LMP is
added, the mIoU drops by 0.46%. This leads one to conclude
that when both operations are applied simultaneously, the best
segmentation accuracy can be guaranteed.
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FIGURE 8. Visualization of ablation experiments on the Vaihingen dataset.

TABLE 5. Results of ablation experiments on the VAIHINGEN dataset for
the FANB module.

TABLE 6. Results of ablation experiment on the VAIHINGEN dataset for
the EVC module.

4) EFFECT OF GCF MODULE
In the GCF Module, (separated and enhanced attention
module) MSEM Attention Module has a significant impact,
in whichMSEM is related to the size of the patch size. Table 7
shows the experimental data. When the patch size [1,3,5], the
mloU is reduced by 0.45%. When the patch size [2,4,6], the
mloU is reduced by 0.18%. It is obvious from the experiment
that when the patch size is [3,5,7], the effect is better and the
FLOPs reach 41.55G.

TABLE 7. Results of ablation experiment on the VAIHINGEN dataset for
the GCF module.

TABLE 8. Comparison of the complexities of our method with other
methods. The best values in the columns are in bold.

F. MODEL COMPLEXITIES
Table 8 of the results presented in this research lists the
parameter sizes and computational complexity for each
approach under identical operating conditions. Additionally,
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as the table illustrates, MFAFNet shows excellent results
compared to other methods and is less computationally
expensive compared to MAResU-Net and A2FPN.

IV. CONCLUSION
In this paper, we propose a Multiscale Fully Attention Fusion
Network for Re-mote Sensing Image Semantic Segmentation
(MFAFNet). MFAFNet uses lightweight ResNet18 for down-
sampling in the encoding stage, reducing the computational
cost while extracting local information. After that, the explicit
visual center module EVC and the full attention network
FANB are used to extract rich global context information
to improve the segmentation accuracy of the model. Finally,
the gated channel attention fusion module GCF is used in
the decoder stage, which not only enhances the channel
interaction but also realizes the fusion of low and high-
dimensional features, capturing multi-scale features. The
validity of the MFAFNet method proposed in this study was
confirmed by a combination of comparative tests and ablation
experiments using the Vaihingen, Potsdam, and LoveDA
datasets. The next research will focus on balancing efficiency
and segmentation accuracy, as well as further optimizing the
network structure.
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