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ABSTRACT The 3D object detection task is a crucial subtask of the environment perception module in
Automated Driving System (ADS). The accuracy of object detection directly impacts the effectiveness
of downstream autonomous driving tasks such as tracking, prediction, and planning. Existing 3D object
detection networks in ADS that rely on multi-sensor fusion lack the utilization of temporal information and
fail to fully consider the dynamic nature of the surrounding traffic environment. Therefore, we proposed
BEVTemporal for ADS, which fuses LIDAR point clouds and surrounding multi-channel images. Its
unique temporal module establishes the correlation between historical data and current data, effectively
leveraging the temporal information of surrounding objects. We train and validate BEVTemporal on the
nuScenes datasets. After incorporating temporal module, the Average Precision (AP) metrics of the network
improved by 0.3%∼1.7%, and mean Average precision (mAP) achieves 0.87% higher, nuScenes Detection
Score (NDS) increased by 0.46%. The validation results on subsets of occluded objects show that the
model effectively alleviates the problem of missed detection caused by sample occlusion, with significant
improvements observed for heavily occluded samples. In different scenarios (sunny, rainy, daytime, night),
mAP improvement ranges from 0.75% to 1.18%. Notably, in challenging scenarios such as rainy and night,
AP can be improved by up to 3.6%. The experimental results show that BEVTemporal not only improves
the accuracy of the 3D object detection network, but also significantly enhances the robustness of model in
various scenarios and recall of objects under low visibility conditions.

INDEX TERMS Temporal information, 3D object detection, multi-sensor fusion, automated driving system.

I. INTRODUCTION
In the context of rapid development in technologies such
as big data, the Internet of Things (IoT), and cloud com-
puting, the intelligent vehicle industry, as a crucial pillar of
the new round of technological revolution, contributes to the
advancement of artificial intelligence, and related fields [1],
[2]. The task of 3D traffic object detection serves as a key
technology for environment perception in automated driving
systems (ADS), providing reliable environmental informa-
tion for intelligent vehicles under complex traffic scenarios.

The associate editor coordinating the review of this manuscript and
approving it for publication was Miaohui Wang.

The essence of the 3D object detection task is to clas-
sify and localize objects in a given scene by sensors data.
It provides data support for perceptionmodule of autonomous
driving systems, as well as subsequent tasks such as tracking
and prediction. Therefore, as a critical task within the per-
ception module, improving the accuracy of detection network
enables intelligent vehicles to make accurate judgments and
select rational strategies.

Due to the complexity of the driving environment, many
researchers have primarily employed deep learning methods
to achieve accurate detection and recognition required for
ADS perception tasks [1]. Recently, people tend to designed
multi-sensor fusion networks to fully leverage the advantages
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of different sensors. Compared to traditional machine learn-
ing methods, deep learning networks do not require manual
feature engineering and can directly represent and capture
complex patterns in the data. In deep learning tasks, temporal
information is widely utilized to capture the important context
of data in terms of its sequential order and evolution. This
application of temporal information is prevalent in various
tasks such as speech recognition, weather forecasting, and
financial market prediction. Similarly, in the field of ADS,
temporal information is often employed for tasks like trajec-
tory prediction and intent prediction. However, there has been
relatively limited research on incorporating temporal infor-
mation in the context of 3D object detection tasks, mainly
focusing on single sensor data types such as image-based or
LiDAR-based approaches.

In the field of ADS, 3D object detection algorithms
typically employ various sensor-based methods, including
camera-based, LiDAR-based, and multi-sensor fusion net-
works. Compared to single modality netwoks, multi-sensor
fusion networks leverage the complementary information
from different sensors to provide more comprehensive infor-
mation for intelligent vehicles. Currently, in order to fully
exploit the advantages of different sensors, ADS primarily
use multi-sensor fusion to achieve 3D object detection tasks,
which has shown promising detection performance.

However, most of these networks treat sensors data as
independent entities and fail to establish temporal correla-
tions between consecutive frames. Due to the highly dynamic
and complexity of real-world traffic scenarios, the positions,
velocities, accelerations, and other attributes of various traf-
fic participants (including motor vehicles, non-motorized
vehicles, and pedestrians) surrounding an autonomous vehi-
cle change over time. Moreover, these objects frequently
occlude each other, further complicating the perception pro-
cess. Therefore, if the temporal information is not taken into
consideration, the model is susceptible to missed detections
due to occlusions. Additionally, traffic scenes often contain
a large number of repetitive static objects, such as road
curbs, barriers, and other structures. If model can be specifi-
cally optimized for the characteristics of road traffic scenes,
it may be capable of effectively handling the complexities and
dynamics inherent in real-world traffic environments.

Based on these considerations, we propose a LiDAR-
camera fusion network BEVTemporal to integrate temporal
information in bird’s-eye view (BEV). By fusing features
over a specific time window, the model can capture the
dynamic information of traffic participants more effectively
and understand the temporal characteristics of the traf-
fic scene. It also leverages the complementary information
between different sensors, fully exploiting the accuracy of
depth information provided by point clouds and the rich
semantic and textural features of RGB data.

A series of experimental results demonstrate that our
BEVTemporal model, which incorporates temporal informa-
tion by associating information from consecutive frames,
not only improves detection accuracy but also reduces the

issue of missed detections caused by occlusions. Addition-
ally, it exhibits better adaptability to weather and lighting
variations. In summary, our contributions are as follows:

• We propose a novel 3D object detection network
called BEVTemporal, which combines data from
surround-view cameras and LiDAR sensors. This net-
work effectively reduces the missed detection rate,
enhances the detection capability, and improves robust-
ness against various weather and lighting conditions.

• In order to capture the dynamic and structural character-
istics of traffic scenes, we introduce a temporal module
into BEVTemporal. By learning features from multiple
types and angles over a period of time, BEVTemporal
provides more accurate BEV local perception informa-
tion for intelligent vehicles.

• To validate the adaptability of BEVTemporal in dynamic
traffic environments for autonomous driving, we con-
ducted three different object detection experiments on
the nuScenes dataset: 3D multi-object detection experi-
ment, varying occlusion level detection experiment, and
different weather and light conditions detection experi-
ment.

The results of the experiments demonstrate that after con-
sidering temporal information, the model not only improves
detection accuracy but also reduces missed detection caused
by sample occlusion. Additionally, the model exhibits better
performance in handling weather and light variations.

II. RELATED RESEARCH
A. AUTOMATED DRIVING SYSTEM
ADS utilize sensor data and a combination of software and
hardware algorithms to control vehicles. They can perceive
the surrounding environment by using various sensors such
as LiDAR, cameras, Radar and so on. Through real-time data
processing and analysis, these systems enable functions such
as navigation, driving, and control of the vehicle. ADS have
the potential to enhance road safety and simplify driving
for both novice and experienced drivers. The development
of computing power and hardware since 2010 has greatly
contributed to the research of autonomous driving systems.
This has led to real-world testing of autonomous driving on
public roads by several companies. Currently, autonomous
driving technology is gradually becoming commercialized,
with companies like Tesla and Huawei introducing vehi-
cles with varying levels of automation. Different companies
often prefer different sensor configurations for building auto-
mated driving systems. For example, Tesla tends to rely on a
pure vision-based approach, while XiaopengMotors (Xpeng)
incorporates additional data from LiDAR.

Due to the large amount of sensor data that needs to be pro-
cessed, research on autonomous driving systems has focused
on optimizing data processing techniques for upstream tasks,
such as data compression [3], [4] and upsampling [5].
Another area of focus is improving the accuracy of subtasks
within autonomous driving systems by applying new tech-
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nologies. For instance,Wang and Tian [6] conducted research
on the hazard perception model for for ADS, while Xu and
Miyahara [7] designed an object recognition system for ADS
under hazy condition. Pre-CoAD [8] enables human drivers
to intervene in a validated existing ADS on public roads using
gaze-based input and visual output, thereby enhancing the
performance of the autonomous driving system.

B. 3D OBJECT DETECTION
1) CAMERA-BASED 3D PERCEPTION
In the early stages of camera-only 3D detection models, most
networks [9], [10], [11] focused on using monocular camera.
However, due to the absence of scale information, monoc-
ular approaches often predict 3D bounding boxes based on
2D bounding boxes and geometric constraints, which poses
challenges in accurate depth estimation. Therefore, some
works [12], [13] utilize stereo cameras to calculate disparity
which can be used to generate more accurate depth maps
and 3D bounding boxes. To obtain a more comprehensive
understanding of the environment, DETR3D [14] extends the
work of the DETR [15] to 3D space by employing surround-
view cameras. Recently, some research has discovered that
transferring features to BEV space can provide a unified
representation of the surrounding environment. Therefore,
BEVDet [16] and BEVFormer [17] further extend the work
of LSS [18] to BEV space, and achieve impressive results.
Image data contains rich details and textures, but it is

limited by the scale uncertainty. Therefore, estimating the
required depth information solely from 2D images imposes
constraints on the detection accuracy.

2) LiDAR-BASED 3D PERCEPTION
To address the challenges of sparse and unordered point
clouds, LiDAR methods convert the point cloud into a more
structured format, such as voxels [22], [29] or pillars [28].
These structured representations provide a grid-like structure
that allows for easier processing and feature extraction. How-
ever, there are also studies [19], [20], [21], that directly extract
features from the raw point cloud without any preprocessing.
This approach allows for a more fine-grained analysis of
the point cloud, but it may also require more computational
resources.

Compared to image data, LiDAR provides more accurate
depth information. However, due to the sparsity of point
clouds, LiDAR is more likely to lose details in 3D space.
Therefore, LiDAR-based networks often face challenges in
accurately detecting small-sized and distant targets.

3) MULTI-SENSOR FUSION
In order to complement different sensor and fully leverage
the advantages of various information, people have dedicated
their efforts to multi-sensor fusion networks. For instance,
MV3D [23] projects the 3D LiDAR point clouds onto images
to extract Regions of Interest (ROIs) features. However, these
features always contain irrelevant background information.

ContFuse [24] projects image features onto point clouds and
fuses information in feature level. Nevertheless, it may result
in the loss of image semantic information due to the sparsity
of point clouds. SFD [25] generates dense point clouds based
on 2D images to address the issue of projection, elevating the
data from 2D space to 3D space for more precise fusion.

Although the research mentioned above exhibit improved
detection accuracy compared to single-modal networks,
monocular image data only provides front-view and lacks
comprehensive environmental information. Therefore, Trans-
fusion [26] and BEVFusion [27] utilize both LiDAR point
cloud and surround-view image to provide BEV percep-
tion. It transforms the environmental information surrounding
vehicle onto a 2D plane, representing real road scene infor-
mation and further enhances the accuracy of detection tasks.
Recently BEV perception becomes a mainstream direction
for 3D object detection.

However, current research onmulti-sensor fusion networks
primarily focuses on instantaneous data, lacking sufficient
utilization of temporal information and optimization for
traffic scenarios. Therefore, we propose a model that can
effectively leverage temporal information to better han-
dle occlusion challenges and improve the robustness of
multi-sensor fusion detection networks in various weather
and lighting conditions.

III. METHODOLOGY
BEVTemporal employs multiple-view surround cameras and
LiDAR to accomplish BEV 3D perception tasks in traffic sce-
narios. Understanding the dynamic characteristics of traffic
objects via temporal attention mechanisms, the model can
effectively adapt to the specific attributes of traffic scenes,
thereby enhancing its performance.

We present the overall architecture of BEVTemporal in
Fig. 1. Our framework contains four fundamental modules,
which are 1) Raw data input and preprocessing, 2) Image and
point cloud feature extraction, 3) Feature scale transformation
and fusion, and 4) Detection head with temporal module.
In the subsequent sections of the article, we will provide
detailed explanations of the latter three modules.

A. IMAGE AND POINT CLOUD FEATURE EXTRACTION
First, we need to extract feature from image and LiDAR
point cloud. For point cloud feature extraction, we use Vox-
elNet [29] as backbone. VoxelNet is currently the most
mainstream backbone in voxelized LiDAR methods, and
therefore, we have chosen it as the backbone for extracting
features from LiDAR point clouds. This backbone voxelizes
the unordered LiDAR point cloud, and extracts features
within each voxel through operations such as grouping and
random sampling. Therefore, the point clouds can be con-
verted into an ordered representation. Meanwhile, it also
incorporates feature from different scales, effectively preserv-
ing abundant information.

For image feature extraction, we use Swin-Transformer
[30] as backbone. It processes six-channel input image data
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FIGURE 1. Overall architecture of BEVTemporal.

separately. Swin-Transformer achieves this by dividing each
channel of the image into overlapping image windows of
different sizes. This approach allows it to capture the rela-
tionships between different image patches more effectively
and expand the model’s receptive field, while keeping the
computational cost relatively low.

B. FEATURE SCALE TRANSFORMATION AND FUSION
Due to the inconsistent feature dimensions between RGB
image and LiDAR point cloud, overcoming the challenge
of fusing information from different dimensions is indeed
necessary. In terms of dimension selection, RGB images
provide a front-view perspective and lack depth information,
which causes object deformations. On the other hand, BEV
representation preserves the scale of objects and avoids object
distortion issues. Meanwhile, it better represents road scene
information and facilitates more effective learning of 3D
features by convolutional networks [23]. Therefore, we tend
to transform 2D image features into BEV space to merge the
information from different sensors.

FIGURE 2. Feature projection illustration. (N, H, W, D).

The relationship between image features and depth infor-
mation is not simply linear. Meanwhile, factors such as road
conditions and camera vibration during data collection can
cause significant errors by merely using camera intrinsic and

extrinsic parameters to estimate depth. Taking inspiration
from the BEVFusion model [24], in this paper, we discretize
the features along the camera rays into D points and perform
scaling and quantization operations. We predict the prob-
abilities of image features appearing at different depths in
3D space. As shown in Figure 2, we obtain features with
dimensions (N, H, W, D), where N represents the number of
camera channels (i.e., the number of cameras in the nuScenes
dataset is 6, so N is set as 6 in our experiments), H × W
represents the size of the feature map, D represents the num-
ber of scales. Furthermore, we apply BEV pooling to process
features within each grid in the spatial domain, mapping
them to the BEV representation.We leverage precomputation
and downsampling operations to accelerate the BEV pooling
process [32]. After unifying the representation scales, fea-
tures from different sensors are fused to obtain BEV features.
These BEV features are then connected to correspo nding task
heads, enabling the completion of various perception tasks.

C. TEMPORAL INFORMATION MODULE DESIGN
1) OVERALL MODULE STRUCTURE
Current multi-sensor fusion perception networks are limited
to detect 3D object mostly based on instantaneous features.
However, it is evident from human perception that drivers
often make judgments by comprehensively considering both
the historical and current road environments [33]. By refer-
encing historical data, it is possible to mitigate false positives
or false negatives caused by occlusions between objects,
facilitating the model’s understanding of dynamic charac-
teristics of traffic scene. Moreover, aggregating temporal
information into the model typically improves the robustness
of the 3D object detection network across different scenarios,
enabling autonomous vehicles to better respond to various
environmental challenges.

Therefore, we propose a detection head with a temporal
self-attention layer which comprehensively consider both his-
torical BEV features and current BEV features, as shown in
Fig. 3. By referencing historical features, we aim to improve
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the model’s ability to learn the dynamic characteristics of
each objects in the traffic scene, thereby enhancing the overall
performance of the model.

FIGURE 3. Temporal module structure.

2) CALCULATE TEMPORAL SELF-ATTENTION
To compute the temporal self-attention, object queries need
to be initialized. Firstly, we concatenate the point cloud fea-
tures and image features under the BEV representation to
obtain the BEV feature map BGlobal . Based on this feature
map, we predict the probabilities of the center points for
various object classes. We then generate a heat map, Ĥ ∈

RX×Y×K , where X × Y represents the feature dimensions,
and K represents the number of object categories. By using
the heat map to represent the center points and bounding
boxes of objects, we can effectively address the issue of object
overlap. Additionally, without the need for predefined anchor
boxes, we can reduce the computational overhead of the
network [34].

We select the top N candidates from each of the K cate-
gories in the heatmap as the initial object queries, denoted
as Qobject , under the BEV space. We embed the category
into Qobject to obtain the feature queries Qfeatures. Unlike
traditional convolutional layers that possess local correlation
and translation invariance, attention mechanisms only focus
on the value of different elements in the sequence, without
considering the relative positional information between ele-
ments. Therefore, we embed position into the sequence and
use positional information of the candidate boxes to initialize
the position queriesQposition to capture the positional relation-
ships within the sequence.

For the second frame and afterward (t ̸= 0), the temporal
module needs to utilize both the Qfeatures at time t , as well as
the historical BEV features Bt−1 at time t−1. By concatenat-
ing Qfeatures and Bt−1. The attention calculation formula is as
follows:

Attention (Q,K ,V ) = softmax
(
QKT
√
dk

)
V (1)

where dk represents the vector length, and Q,K ,V are equal
in the self-attention operation, denoted as

Q = Qfeatures ⊕ Bt−1 (2)

The output of self-attention is combined by addition with
the concatenated result of Qfeatures and Bt−1. It then goes
through a Layer Normalization (LN) layer to obtain Qself .
The LN layer normalizes each feature dimension across
samples, improving the model’s generalization ability and
reducing internal covariate shift. By using Qself as the
query and feature values in BGlobal as keys and values,
the Multi-Head Cross Attention (MHCA) operation is per-
formed. This operation is utilized to softly associate the
LiDAR and image features with query, enabling BEVTem-
poral to adaptively determine what to choose and where to
choose in BGlobal . The MHCA calculation between Qself and
BGlobal is denoted as (3).

MHCA
(
Qself ,K ,V

)
= Concat (head1, . . . ,headn)WO

(3)

where WO are learnable parameters satisfying WO
∈

Rdmodel×ndv , head i refers to the attention calculation result of
each head.

head i = Attention
(
QselfW

Qself
i ,KWK

i ,VWV
i

)
, iϵ (1,n)

(4)

In (4), K ,V refer to BGlobal . W
Qself
i ∈ Rdmodel×dk , WK

i ∈

Rdmodel×dk , WV
i ∈ Rdmodel×dv are the different parameter

matrices corresponding to Qself ,K ,V , respectively. dk , dv,
and dmodel satisfy the following relationship:

dk = dv =
dmodel
n

(5)

After normalization, the result of multi-head cross atten-
tion needs to be retained as Bt for temporal attention
calculation with the corresponding Qfeatures at time t + 1.
At the same time, Bt is input to a Feed Forward Net-
work (FFN) layer. The FFN layer comprehensively integrates
LiDAR point cloud and image information to generate the
final prediction bounding boxes, which are further used for
subsequent loss calculation and parameter updating.

For data at t = 0, since there are no historical BEV
features, the temporal self-attention operation degenerates to
self-attention ofQfeatures. The remaining parts of the temporal
module remains. Q in (1) needs to be modified to

Q = Qfeatures ⊕ Qfeatures (6)
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This module can help BEVTemporal complete perception
tasks based on current and historical data. By extracting
temporal information from previous features, it comprehen-
sively considers the influence of historical information on the
current environment and the dynamic characteristics of traffic
object over time. This enables BEVTemporal to learn and
analyze feature information over a period of time, incorpo-
rating temporal context for more comprehensive perception.
Cv x

IV. EXPERIMENTAL RESULTS ANALYSIS
A. EXPERIMENTAL DATASET AND EVALUATION METRICS
The experimental data come from the nuScenes dataset,
which contains a large number of outdoor road scenes to
support detection, tracking, planning and other tasks for
autonomous driving systems. The data collection vehicle was
equipped with a 32-line LiDAR on the roof and five radars
and six monocular cameras around the vehicle. The annotated
categories include cars, trucks, motorcycles, barriers etc. The
amount of annotated data is approximately 1.4 million [35],
which is more than seven times the size of the KITTI [36]
dataset. For the 3D object detection task provided by this
dataset, the accuracy metrics include AP, mAP and NDS. The
mAP calculation formula is

mAP =
1

|C| |D|

∑
cϵC

∑
dϵD

APc,d (7)

AP is Average Precision, D = {0.5, 1, 2, 4} meter, C rep-
resents categories. This metric uses the center point distance
between the detected bounding box and the ground truth in
the BEV plane instead of the traditional 3D Intersection of
Union (IoU). It decouples the detection metrics from the
objects’ size and orientation, avoiding the issue where IoU
scores are 0 for smaller objects [35]. The NDS is calculated
as

NDS =
1
10

[
5mAP +

∑
mTPϵTP

(1 − min (1,mTP))

]
(8)

where mTP is mean True Positive, which is obtained by
comprehensively calculating metrics including ATE (Aver-
age Translation Error), ASE (Average Scale Error), AOE
(Average Orientation Error), AVE (Average Velocity Error),
AEE(Average Attribute Error) [35], TP is the set of mTP.
The NDS calculation is based on the results of quantify-
ing the accuracy of position, orientation, speed and other
attributes of the detected bounding boxes, in addition to
the mAP.

In the following sections, we will design experiments and
analyze the results based on the evaluation metrics men-
tioned above. Specifically, we will focus on two aspects:
(1) validation of temporal module effectiveness; (2) advan-
tages of multi-sensor fusion. Through these experiments,
we aim to demonstrate the impact and benefits of the
temporal module in improving perception tasks, as well
as the advantages of integrating information from multiple
sensor.

B. VALIDATION OF MODULE EFFECTIVENESS
To validate the effectiveness of the temporal module in
BEVTemporal, we will conduct experimental analyses from
three perspectives:

• 3D multi-object detection results
• Missed-detection rates on samples with different occlu-
sion levels

• Detection accuracy under various weather and lighting
conditions

1) 3D MULTI-OBJECT DETECTION EXPERIMENTS
In this section, we perform 3D object detection tasks using
the nuScenes dataset, which includes LiDAR point cloud
and RGB data from a set of six monocular cameras provid-
ing a panoramic view. The detection objects in road scenes
are divided into two major categories: dynamic objects and
static objects. The dynamic objects include four classes: cars,
trucks, buses, and motorcycles, while the static objects con-
sist of two classes: traffic cone and barriers. We train and
validate BEVTemporal using samples from each class in the
dataset. The experimental results are visualized in Fig. 4.

FIGURE 4. BEVTemporal 3D object detection visualization results.

According to (6), the temporal module can be degraded to a
self-attention module without considering temporal informa-
tion. Table 1 shows the comparison results between the model
without temporal information and BEVTemporal.

As shown in Table 1, the AP for all object categories
has improved to the model without temporal information.
Notably, the average precision of the two static object classes
is improvedmore significantly. This is possibly because static
objects tend to remain relatively stationary in the driving
environment, except for the relative displacement caused by
the ego vehicle’s motion. Therefore, these objects do not
introduce additional deviations. And static objects like traffic
cone and barriers often appear in multiple consecutive frames
with similar appearances in road scenes. As a result, the net-
work can better learn the features by leveraging the temporal
information from their regularmovements. On the other hand,
although the motion of dynamic objects is less predictable,
the model can still benefit from learning the temporal context
to better understand their dynamic nature in traffic scenes.
As conclusion, after adding the temporal module, the AP of
each category in the BEVTemporal model has increased by
approximately 0.3% to 1.7%, and the mAP has increased by
0.87%.
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TABLE 1. Multi-object detection results comparison of different networks.

To validate the experimental analysis above and fur-
ther understand how the temporal module in BEVTemporal
helps the network learn image features, we visualize the
heatmaps of the feature extraction network outputs for both
the model without temporal information and the proposed
model.Wemainly focus our analysis onmotorcycle, transport
facilities and barrier which have shown better performance.
The visualization results are shown in Fig. 5.
Fig. 5 shows that the model without temporal information

tends to focus more on scattered and redundant information,
such as road surface details. On the other hand, the atten-
tion of the BEVTemporal model is more directed towards
dynamic objects, especially those that appear repeatedly in
the scene. Moreover, BEVTemporal even pays attention to
traffic signs that were not part of the training data, as shown
in the box in Fig. 6. In addition, Fig. 6 also indicates that
BEVTemporal also pays high attention to the traffic cone
sample with significant accuracy improvement among the
static samples.

By comparing the motorcycle samples in Fig. 5(a) and
Fig. 5(b), we can observe that the proposed model is able to
focus on the details of the motorcycle, such as the wheels and
footboard. The overall heat of the motorcycle is higher than
the surrounding environment. In contrast, the model without
temporal information mainly focuses on the motorcycle rider,
neglecting some of the motorcycle’s body details. For the
transport facilities in Fig. 5(c) and Fig. 5(d), the attention
of the BEVTemporal model follows the shape distribution
of the railing, allowing it to better focus on the contour
information and regular lines in the background. This sug-
gests that the temporal module enables the network to learn
more effectively from samples with similar shapes that appear
repeatedly in the scene. Fig. 5(e) and Fig. 5(f) show that with-
out temporal information, the model tends to focus more on
the near-ground region and is easy to ignore distant samples,
while BEVTemporal is able to pay attention to both nearby
barriers and distant dynamic objects like vehicles.

Therefore, it can be concluded from the visualization
results of the feature extraction network that after adding
temporal information, BEVTemporal can effectively filter out
redundant information and allows the model to focus more
on the global and contour features of dynamic objects. The
memory capabilities of the model also enable it focus more
on samples that appear repeatedly with regular shapes in

images, preventing the neglect of distant samples. The tem-
poral module helps the network learn the dynamic properties
of traffic objects that appear in a regular pattern. As a result,
BEVTemporal exhibits improved detection accuracy for var-
ious dynamic objects, with more significant improvements
observed for samples with regular patterns.

2) EXPERIMENTS WITH DIFFERENT OCCLUSION LEVELS
Observing the visualization results on the test dataset, the
model can detect some heavily occluded objects after adding
temporal information, thus improving the problem of missed
detections, as shown in Fig. 7.

It is evident from Fig. 7 that within the blue box in the
original image (Fig. 7(a)), there are two cars driving side by
side. Due to the similarity in color and significant occlusion,
it is even difficult for the human eye to accurately determine
the number of cars within the blue box based solely on the
current frame. In the absence of temporal information, relying
solely on the instantaneous data, the model’s detection result
is shown in Fig. 7(b), where a missed detection occurs in
the red dashed box. However, when the temporal information
module is incorporated, as shown in Fig. 7(c), the model
can accurately detect all the samples within the red dashed
box. The inclusion of temporal information helps the model
better understand the dynamic characteristics of objects in
the traffic scene, which assists the model in detecting objects
based on historical data and reduces the probability of missed
detections.

To further validate the effectiveness of the temporal mod-
ule in detecting objects with different occlusion levels, the
validation set are divided into three subsets based on the vis-
ibility range: 0%-40%, 40%-80%, and 80%-100% according
to nuScenes dataset labels. The recall rates of each category
in the subsets were calculated, and the experimental results
are shown in Fig. 8. Fig. 8 illustrates that with occlusion
among samples increases, detection tasks becomes more
difficult, leading to a decrease in the recall rates of both
models. Simultaneously, the gap between the recall of the
twomodels widens, indicating amore significant reduction in
missed detections when the temporal module is incorporated.
Therefore, for samples with severe occlusion, incorporating
temporal information in the model enables better feature
learning, effectively reduce the probability of missed detec-
tions.
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FIGURE 5. Heatmap of feature extraction network: (a) model without temporal information(motorcycle),
(b) BEVTemporal(motorcycle), (c) model without temporal information (transport facilities), (d) BEVTemporal(transport facilities),
(e) model without temporal information(barrier) and (f)) BEVTemporal(barrier).

FIGURE 6. Heatmap of traffic sign: (a) model without temporal
information and (b) BEVTemporal.

3) EXPERIMENTS UNDER DIFFERENT WATHER AND
LIGHTING CONDITIONS
To validate the effectiveness of the temporal module under
different weather and lighting conditions, we divided the
validation set into two subsets based on light: day and night,
as well as two subsets based on weather conditions: rainy and
sunny. A pairwise comparison was conducted for each class
of target categories within these scenes to evaluate the accu-
racy improvement of the enhanced model. The experimental
results are shown in Table 2.

Table 2 demonstrates that the model incorporating tem-
poral information outperforms the model without temporal
information in most target categories across different scenes.
The improvement in AP can reach a maximum of 3.6%.
Furthermore, themAP shows an overall increase in all scenes.
Notably, in challenging scenarios such as rainy and night
scenes, multiple target categories exhibit an improvement of
over 2% in AP. Even in the presence of rain, which typically
poses significant challenges to detection accuracy, the mAP
can be enhanced by approximately 1.2%.

The results demonstrate that the robustness of the
BEVTemporal model, enabling its adaptability to adverse
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TABLE 2. Detection results comparison of different networks in different scenarios.

FIGURE 7. Detection of severely occluded samples: (a)original image,
(b)without temporal module, and (c) with temporal module.

lighting conditions and challenging autonomous driving
scenarios.

C. COMPARISON OF DIFFERENT MODALITY MODELS
In addition to adding temporal information, BEVTemporal
considers usingmulti-sensor data to accomplish the 3D object

FIGURE 8. Recall of samples with different occlusion degree. Recall refers
to the proportion of true positive samples among all positive samples.
The higher the recall, the lower the missed detection rate.

detection task. By leveraging the complementary informa-
tion from different sensor types and perspectives, the model
achieves accuracy improvement.

To validate the effectiveness of multi-sensor fusion detec-
tion, we select several 3D object detection networks based
on different sensors and evaluate their performance on the
nuScenes dataset. Then we conduct a comparative analysis
with the model proposed in this paper. The results are shown
in Table 3.

The experimental results in Table 3 indicate that the 3D
object detection schemes based solely on laser point clouds,
as well as the schemes that incorporate multi-sensor fusion,
exhibit significant advantages over camera-only approaches
in terms of mAP for various object categories. These schemes
enable more accurate localization and classification tasks by
leveraging the inherent 3D spatial information provided by
point clouds. Moreover, the multi-sensor fusion networks,
built upon precise spatial information from point clouds,
incorporate rich semantic information from images. As a
result, they demonstrate improvements in mAP metrics and
AP metrics for different object categories compared to the
LiDAR-only frameworks.

The series of experimental results mentioned above indi-
cate that the model incorporating temporal information can
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TABLE 3. Detections results comparison of different networks based on different sensors.

pay more attention to the global and contour features of
the targets. Its memory capability allows it to focus more
on samples that appear repeatedly and follow certain shape
patterns, making it less likely to overlook distant objects.
Therefore, compared to models without temporal informa-
tion, BEVTemporal demonstrates higher detection accuracy.
It also exhibits better adaptability to weather and lighting
variations while reducing the occurrence of missed detections
caused by sample occlusions.

V. CONCLUSION
we perform 3D object detection tasks in road traffic scenes
based on LiDAR point clouds and RGB images captured
by a surround-view camera system. In order to enhance the
model’s understanding of the temporal dynamics in traffic
scenes and improve its applicability for autonomous driv-
ing perception of the surrounding environment, we propose
incorporating temporal information into the 3D object detec-
tion network. By leveraging both historical features and
current moment features, the model is able to comprehen-
sively perform the detection task. The conclusions are:
➢ After incorporating temporal information into BEVTem-

poral, the detection accuracy of each traffic target has
been improved. The AP metrics for different categories
have increased by a range of 0.3% to 1.7%, with an
overall mAP improvement of nearly 1%.

➢ By associating features from different time steps, the
BEVTemporal model with temporal information can
alleviate the issue of missed detections caused by
occlusion. Moreover, the more severe the sample occlu-
sion, the more significant the advantages of this model
become.

➢ The temporal information module contributes to
improving the robustness of the model. After adding
temporal information, the model exhibits mAP improve-
ment ranging from 0.75% to 1.18% across different
weather and lighting conditions. In challenging scenar-

ios such as rainy and night scenes, AP for various object
categories can be improved by up to 3.6%, enhancing the
network’s ability to handle different scene variations.

➢ By employing a fusion approach that combines LiDAR
data with image data, the 3D object detection task ben-
efits from accurate spatial information in point cloud
and rich textural details in image data. Compared to
detection schemes based on a single sensor, the fusion of
multi-sensor information enables a more comprehensive
and overall higher detection accuracy.

Based on thses experimental results, we believe that
BEVTemporal effectively captures the temporal correlation
between features at different time steps through the tempo-
ral information module. This enables the model to process
time-series data more efficiently and better understand the
dynamic characteristics of traffic scenes, leading to improved
performance. Furthermore, based on the visualization results,
we infer that BEVTemporal utilizes temporal information
to filter out transient or false-positive detections, thereby
enhancing the detection accuracy of the 3D object detection
network.. The temporal module enhances the model’s sta-
bility in different scenarios and improves its effectiveness
in detecting occluded samples by incorporating temporal
memory. Besides, BEVTemporal achieves complementary
multi-sensor fusion to provide more comprehensive and
accurate information, reducing misjudgments and improving
accuracy.

LIMITATION
BEVTemporal requires spatial relevance among samples.
However, nuScenes dataset’s keyframe are collected at 2Hz,
leading to a time difference of 0.5 seconds between frames.
For those target categories, which may have significant speed
differences compared to the ego vehicle, it may lead to spa-
tial errors and reducing the detection accuracy and training
stability of the model.
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The key to addressing this issue is to increase the data
collection frequency and reduce the frame interval. There-
fore, in further research, it would be beneficial to validate the
approach using a dataset with a higher sampling frequency
or design a spatial correlation module within the model to
align the spatial information of various objects in the scene
and mitigate the impact of spatial errors.
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