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ABSTRACT In the contemporary world, inspection operations have become a critical component of
infrastructure maintenance. Over the years, the demand for comprehensive inspection of pipes, both
internally and externally, has grown increasingly complex and challenging. Consequently, there is a pressing
need for significant advancements in in-pipe robots, particularly in the areas of inspection speed, defect
detection precision, and overall reliability. Recent developments in new devices and sensors have markedly
improved our capability to inspect and diagnose defects within pipes with greater accuracy. Furthermore,
the application of machine learning tools has optimized the inspection process, enhancing the detection
and recognition of potential pipe defects, such as rust, blockages, and welding anomalies. This research
introduces a novel mobile robot platform specifically designed for pipe inspection. It integrates an advanced
machine learning model that effectively detects and identifies key pipe defects, including rust, compromised
welding quality, and pipe deformation. Additionally, this platform offers enhancements in inspection speed.
The integration of these technologies represents a significant stride in the field of infrastructure maintenance,
setting a new standard for efficiency and precision in pipe inspection.

INDEX TERMS Inpipe robot, robot design, machine learning, defect detection, pipe inspection, SLAM.

I. INTRODUCTION

Pipe inspection robots have emerged as a pivotal element
in ensuring high-quality maintenance and preventing emer-
gency scenarios in daily life. Over the past few decades,
researchers and engineers have developed a diverse range of
pipe inspection robots, tailored to suit their specific applica-
tions. These designs include various types of in-pipe robots:
wheel-driven [1], caterpillar-type [2], Pipeline Inspection
Gauge (PIG) robots [3], screw-driven, walking robots [4],
and inchworm-type robots [5]. Each type offers unique
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capabilities and advantages, reflecting the evolving landscape
of robotic intervention in maintenance and safety [6], [7], [8].

The design and functionality of in-pipe robots are highly
contingent upon their intended applications. For instance,
Pipeline Inspection Gauge (PIG) and inchworm robots are
particularly adept for cleaning tasks. These robots are driven
by high pressure and are capable of inspecting pipe structures
in offline mode. Conversely, for inspection purposes, wheel-
based and track-based robots are more appropriate. These
robots are equipped with actuators and can provide real-time
online streaming. Furthermore, wheel and track-based robots
can be enhanced with passive extension mechanisms. This
adaptation allows them to achieve improved traction with
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the pipe’s surface and facilitates smoother movement within
pipes of varying diameters.

A. PROBLEM STATEMENT

Pipelines are the primary method of transportation of oil
and gas due to their cost and effectiveness [9]. Not only
that but they are used in canalization and water and heat
supply systems in the cities [10]. Kazakhstan is very rich
in oil and gas reserves, it possesses 3 trillion cubic meters
of gas reserves, with an estimated 5 trillion cubic meters
remaining [11]. Several oil cites such as Kashagan and Tengiz
had accidents over the past years [12]. This could have
been prevented with regular and thorough inspection of the
pipelines. In recent years, the development of IPIRs (in-pipe
inspection robots) has become very popular [13]. We suggest
developing a Smart In-Pipe Inspection Robot (SIPIR), which
uses machine learning as well as SLAM methods in order to
identify defects within the pipe.

B. RELATED RESEARCH PAPERS

Computer vision has become an integral part of various fields,
leveraging prominent models to achieve diverse objectives.
The application of computer vision in marketing involves the
use of pre-trained models such as YOLOV2, Google Cloud
Vision, and Clarifai to analyze brand-related user-generated
content [14].

In the realm of industrial maintenance, the application of
computer vision models has become pivotal in automating the
inspection of pipe corrosion. This is traditionally achieved
through the analysis of video streams captured by cameras.
However, conventional computer vision techniques often
encounter limitations in accurately classifying corrosion [15],
[16], primarily due to its inherent variability in color,
shape, and size, which further fluctuates based on the
specific type of corrosion encountered. To address these
challenges, deep learning-based approaches have emerged as
a robust alternative to computer vision techniques [17], but
first, machine learning-based algorithms were mostly imple-
mented, as stated in [18]. Notably, CNN architectures have
demonstrated exceptional efficacy across various domains,
as substantiated by [19], who highlight the remarkable
capabilities of CNNss in visual recognition tasks for external
inspection pipes.

The potential of computer vision for defect detection in
sewer pipelines was reviewed in [20] emphasizing different
CNN-based algorithms like faster region-based convolutional
neural networks (Faster-RCNN), conventional CNNs, and
discussions on deterioration models for predicting sewer
pipe conditions, highlighting computer vision’s role in
preventing corrosion, was presented [21], where mostly
machine learning-based algorithms are discussed. On the
other hand, a CV for pipe inspection was developed using
architecture; you only look once the (YOLO)-V3 model
is used in [22]. Other works on corrosion detection using
magnetic-flux leakage, which can be considered a robust
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method but might struggle to detect in the early stages, were
also mentioned [23], [24]. Survey and dataset benchmarks of
different computer vision models are discussed as YOLO,
Single Shot Multibox Detector (SSD), Faster R-CNN,
PipeUNet models, and different ResNet modification models
in sewer pipe inspection [25], [26].

MobileNet’s efficiency on devices with limited process-
ing power makes it useful for real-time applications and
those involving mobile or embedded devices [27], [28],
[29], [30]. Its adaptable architecture meets demands in
human-interactive applications and is beneficial in health-
care, infrastructure, and environmental monitoring [31], [32],
[33]. Furthermore, MobileNetv2’s lightweight design is ideal
for resource-constrained environments, balancing speed and
accuracy in autonomous vehicles, surveillance, and industrial
automation [29], [30], [32], [34]. Its effectiveness in object
detection and classification is also acknowledged [35], [36].

Moreover, its effectiveness in object detection and classifi-
cation is acknowledged in [35] and in [36]. Edge computing
capability is essential for mobile robots, particularly for
real-time detection. In this context, MobileNetv2, with its
3.4 million parameters [37], offers a significant advantage in
terms of computational lightness compared to other reviewed
models such as YOLO v5 (7.2 mln - 86.7 mln) [38], SSD
(VGG16-based) (138 min) [39], Faster R-CNN (19 mln -
41 min) [40], ResNet50 (25 million) [41], and Pipe UNet
(30 million) [42] in terms of parameter count.

Anomaly detection is another problem that was considered
in this work. In the pipe, there may be sediments of soil or
some instruments left during the pipe construction process.
To prevent damage caused by the left instrument when liquid
is released at high pressure, it is important to recognize it
before exploitation. For this purpose, an anomaly detection
solution is implemented using a Canny Edge detector [43]
and Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [44].

The Canny edge detector is a widely used algorithm
for edge detection due to its superior performance [43].
It is commonly employed in various applications such as
bolt looseness detection [45], satellite component contour
extraction [46], exterior wall hollowing detection [47], and
ore and rock edge detection [48]. The Canny Edge detector
is known for its ability to extract candidate contour points
efficiently, making it suitable for subsequent processing with
convolutional neural network models [49].

The Canny Edge detector has been the subject of research
for optimization and improvement. For instance, a study
aimed to enhance edge detection using SR-guided threshold
maneuvering and window mapping, addressing broken edges
and noisy structures in Canny edges [S0]. Another piece
of research focused on improving the robustness of edge
detection against noise by preceding the Canny edge detector
with a new type of denoising system [51]. Moreover, the
Canny edge detector has been applied in the context of corner
detection algorithms, where it was found to be a better method
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for extracting features in an image without disturbing its
features [52].

DBSCAN is a widely used algorithm in various fields due
to its ability to handle noise and arbitrary cluster shapes
without the need to pre-determine the total clusters [44].
It is a density-based clustering algorithm that can discard
points that are not in locally dense regions, making it
suitable for identifying clusters with arbitrary shapes and
sizes [53]. DBSCAN has been applied in diverse areas such
as anomaly detection [54], indoor localization [55], maritime
traffic pattern analysis [56], and risk assessment in railway
investment [57].

The algorithm is particularly favored for its ability
to identify clusters with any arbitrary shape and size,
which is a limitation in other clustering algorithms such
as K-means [58]. Furthermore, DBSCAN has been used
in conjunction with other techniques, such as the use of
RGB images in indoor localization [55] and the integration
with three distances for Wi-Fi positioning algorithms [59].
In addition, the algorithm has been adapted and improved,
leading to the development of variations such as Hierarchical
DBSCAN (HDBSCAN) [60] and KR-DBSCAN [61], which
further extend its applicability and effectiveness in different
contexts.

In summary, DBSCAN is a powerful and versatile algo-
rithm that has been widely adopted in various domains due
to its ability to handle noise, identify clusters with arbitrary
shapes and sizes, and adapt to different applications through
enhancements and variations. The proposed pipe inspection
robot has a wide range of applications, including inspection
of oil and gas pipelines, as well as urban water distribution
systems. Various solutions have been developed to address
different inspection challenges. One notable approach is
the collective gas detection technique, which effectively
identifies sources of gas leakage or crack sources in pipelines,
as demonstrated by Rohrich et al. [62]. However, this work
specifically focuses on computer vision-based solutions for
detecting and examining various types of defects in pipelines.

Simultaneous Localization and Mapping (SLAM) is
crucial for autonomous inspection robots in water and
sewer pipes, utilizing sensors like optical, acoustic, and
inertial for navigation and fault detection. SLAM faces
challenges such as the absence of GPS and environmental
obstacles, but enhancements with prior map knowledge and
data fusion techniques improve its robustness. Accurate
defect localization is vital to minimize disruption and align
with industry standards, employing visual odometry, visual
SLAM, and Lidar to ensure precise mapping [63]. Hybrid
maps and various sensors further optimize path planning
and defect localization in pipe networks. Global climate
change has heightened the need for resilient infrastructure,
particularly for underground pipelines essential for drainage,
sewage, and gas transport. Traditional manual inspections
of these pipelines are laborious and risky, leading to the
development of robotic systems that use advanced technolo-
gies like CNNs for defect detection. A proposed low-cost
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inspection platform uses infrared and depth cameras, a g-
sensor, and deep learning to enhance defect recognition
and positioning accuracy [64]. This platform demonstrates
effective positioning, defect identification, and documen-
tation, offering a safer and more cost-effective alternative
to manual inspections, with future improvements aimed at
enhancing sensor integration and training data diversity.
The critical role of water mains in urban infrastructure
necessitates efficient and non-disruptive inspection methods.
The GAVIA AUV, equipped with nondestructive testing
(NDT) sensors, uses a vision-based simultaneous localization
and mapping (VSLAM) approach to enhance localization
and mapping capabilities for pipe defect detection [65]. This
VSLAM method integrates CCD cameras, inertial navigation
sensors (INS), and range-finders to generate detailed, real-
time mapping of pipe interiors. Experiments using a simu-
lated pipe inspection setup demonstrated the advantages of
combining camera data with INS measurements, highlighting
the potential for improved AUV performance through
optimized sensor fusion. Various SLAM algorithms have
been developed to address the challenges of in-pipe robots,
integrating computational geometry and computer vision
concepts. Notable methods include PipeSLAM, which uses
a Rao-Blackwellised particle filter and hydrophone-induced
vibrations, and multi-sensor fusion systems that combine
rangefinders, digital cameras, and inertial navigation for
mapping and localization [66]. Other approaches incorporate
depth cameras, infrared sensors, gyro sensors, and accelerom-
eters to construct detailed 3D maps and enhance localization
accuracy. Techniques such as artificial landmark generation
and moving average filters have also been explored to
improve SLAM performance in pipeline environments.
Recent advancements in pipeline inspection robotics have
predominantly targeted larger pipelines in industries such
as gas and oil, leaving a notable gap for small pipelines
under 15mm in diameter [67]. A semi-automatic inspection
system using a SLAM algorithm has been designed for
such small pipelines, featuring three specialized robot types
validated through experimental testing. The system operates
via a wire-driven mechanism propelled by compressed
air, effectively mapping the pipeline using sensor fusion
techniques. Experimental results demonstrate the efficacy of
this system in accurately navigating and mapping pipelines
with multiple elbows and branches. Advancements in SLAM
technology are transforming pipeline inspections, improving
mapping accuracy and defect detection capabilities across
various infrastructure scales. These innovations integrate
diverse sensor arrays and sophisticated algorithms, enhancing
operational safety, cost-effectiveness, and the sustainability
of urban infrastructure management amidst evolving environ-
mental and regulatory demands.

C. PAPER CONTRIBUTION AND PAPER STRUCTURE
The main contribution of this research paper is the design
of robot actuation mechanism design and implementation of
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anomaly detection method in pipe inspection applications.
In contemporary inpipe robot actuating mechanism, motors
were located outside of driving chassis which makes less
maneuverable in case of driving over the welding seams.
Moreover, to detect such kind of seams or anomaly obstacles
inside of the pipe.

Il. ROBOT DESIGN

The proposed in-pipe robot, SIPIR, is a track-based mobile
robot featuring a unique three-legged configuration con-
nected to a centralized block housing essential electronics and
motor driver components (see Fig. 1). This research project
specifically targets the optimization of SIPIR’s design for
pipes with diameters ranging from 350 mm to 400 mm. This
diameter range has been selected due to its prevalence in
industrial water pipelines and the oil and gas industry.

Actuator

Adaptive mechanism

Central block

RealSense Guide shaft

camera

FIGURE 1. General inpipe robot CAD design.

A. ROBOT CENTRAL BLOCK DESIGN

Within the robot’s central block resides both the robot control
module and the computer vision module. Robot electronic
board and batteries are located on a drawer board inside the
robot central block (see Fig. 2). These include the Jetson
board, Arduino module, and battery necessary to power the
electronic boards effectively. Positioned at the forefront of
the central block are the RealSense sensors, essential for
computer vision tasks.

Furthermore, the central block serves a dual purpose,
enhancing both stability and traction for the robot. This is
achieved through the integration of a passive leg extension
mechanism. This mechanism enables the robot to maintain
constant traction force, facilitating smooth forward and
backward motion while also adapting seamlessly to different
pipe diameters.

B. ROBOT ACTUATION SYSTEM DESIGN
In this research project, our proposed advanced design
is a motor placement inside of the chassis. Meanwhile,
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Side cover

Central block

Camera holder Battery

Drawer holder

Jetson Orin

RealSense
camera

FIGURE 2. SIPIR central block.

common track wheel based in-pipe mobile robots motors
located in outer side of the chassis [68]. In chassis motor
placement design allows to protect motor effectively and
increase the robot index of protection. Moreover, such design
accommodates the space for gearbox to convert motor speed
and torque when it is necessary.

Curved track

Flat track

FIGURE 3. Inpipe robot track design comparison.

Furthermore, positioning the motor inside the chassis has
significantly enhanced the robot’s static balance and driving
capabilities. Additionally, this design helps protect the motor
from external forces and simplifies the implementation of
waterproofing measures. (refer to Fig. 4). This strategic
placement enhances the robot’s stability and manoeuvrability
during operation.

Additionally, we identified a critical need to modify the
track design to suit the specific application environment.
Commercially available tracks typically feature a flat shape,
as depicted in Fig. 3. However, such designs often fail to
provide sufficient traction on curved surfaces within pipes.
To address this limitation, we innovated by designing curved
tracks, enhancing the robot’s traction and performance on
varied pipe surfaces.

C. EXPERIMENTAL PROTOTYPE

In this research project, we developed a SIPIR prototype
using rapid prototyping techniques. Most of the robot’s
components are constructed from PLA plastic, fabricated
using an Ultimaker S5 3D printer (see the Fig. 7). The passive
leg extension mechanism is actuated by helical compression
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FIGURE 4. Inpipe robot actuator design.
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FIGURE 5. Robot block scheme.

PWM signal

Inpipe Robor | PWMsignal

Position

(a) (b) (©) (d)

FIGURE 6. Robot orientation regulation.

springs. This setup enables the sliding linear bearing to move
along a 5 mm diameter stainless steel guide shaft.

D. ROBOT CONTROL

In this research project, we applied a control method
using a proportional-integral-derivative (PID) controller to
move the robot inside a pipe. This control method allows
precise adjustment of the motors, ensuring smooth and stable
movement of the robot. The three motors are controlled
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TABLE 1. Parameters.

Parameter Value
Velocity 0.0333 m/s
Working Pipe Diameter ~ 350-450 mm
Traction Force 93N
Robot’s Mass 4.8 kg
Robot’s Height 0.36 m
Robot’s Width 043 m

Passive leg
mechanism

Motor
drivin

FIGURE 7. Experimental robot prototype SIPIR.

using feedback from an inertial measurement unit (IMU),
specifically the MPU6050 sensor, which measures the robot’s
angular velocity and acceleration, allowing precise control of
its movement and orientation.

One of the significant problems in controlling the SIPIR
robot is the slippage of the tracks inside the pipe. This
phenomenon can cause the robot to get stuck or turn
unintentionally, which negatively affects its performance.
To solve this problem, the IMU sensor continuously monitors
the orientation of the robot body relative to the pipe axis. The
control system uses this data to adjust the speed and direction
of rotation of the motors, keeping the robot body parallel
to the axis of the pipe. This allows the motors to operate
efficiently, preventing stalls and ensuring stable movement.

The Fig. 5 shows the robot control circuit. At the center
of the control system is a microcontroller that receives data
from the MPU6050 sensor about the angular velocity (yaw
rate). The microcontroller uses two PID controllers to process
this information and regulates the operation of three motors
through motor drivers. Each PID controller consists of three
components: proportional (Kp), integral (Ki) and differential
(Kd). These components work together to minimize error in
the robot’s position and speed.

For additional control and flexibility in controlling the
robot, an RC (radio-controlled controller) is used, which
transmits analog data to the microcontroller. This allows the
operator to remotely control the robot, making adjustments
to its movement in real time. Such a control system provides
not only automatic control, but also the possibility of manual
control in difficult situations.
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Thus, the developed SIPIR robot control system ensures
high accuracy and stability of its movement. It allows the
robot to adapt to different operating conditions inside the
pipe, effectively coping with track slippage and unintended
turns. The inclusion of PID controllers and remote control
capabilities make the system flexible and reliable, capable of
successfully completing assigned tasks in a wide variety of
conditions.

The Fig. 6 illustrate the robot’s behavior and correction
mechanism:

Fig. 6(a): The robot moves straight along the central axis
of the pipe with both motors M7 and M, operating at equal
speeds.

Fig. 6b): The robot deviates from the central axis by an angle
¢.

Fig. 6(c): The control system adjusts the speeds of the motors
M7 and M, to generate a corrective moment that brings the
robot back to the central axis.

Fig. 6(d): The robot returns to the central axis, and the motors
resume operating at equal speeds.

Let:

« v and v, be the linear velocities of the caterpillar tracks

driven by motors M and M5.

« ¢ be the angle of deviation from the central axis.

 wy be the yaw rate measured by the MPU6050 sensor.

« 1 be the time over which correction occurs.

« k be a proportionality constant relating motor speed to

track speed.

o L be the width of the robot (distance between the tracks).

Track Speeds: The linear velocities v and v, are propor-
tional to the motor speeds M1 and M>:

vi=k-My, v=k-M (1)

Angular Velocity and Moment: The robot’s angular
velocity w is determined by the difference in track speeds:

V2 — V1
w=— 2
2 @)
The yaw rate w, measured by the MPU6050 sensor is used
for real-time correction:
V) — V1
wy R ——— 3
y 7 3)
Deviation Correction: To return the robot to the central
axis, the control system must adjust the speeds v; and v, such
that the angular velocity w corrects the deviation:
V2 — V1
-t = 4
2 ¢ “)

Solving this equation for ¢, we determine the necessary
changes in track speeds:

Wyt =¢ =

¢-L
vy vE =T (5)
where # is the time required for the robot to return to its central
position.
In practice, the microcontroller uses the yaw rate data w,
from the MPUG6050 sensor to dynamically adjust the motor
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speeds M1 and M». The PID controllers use this information
to minimize the deviation angle ¢, ensuring that the robot
maintains its intended path along the pipe.

By adjusting the speeds of motors M| and M5, the robot’s
control system effectively corrects its orientation within the
pipe. The mathematical model illustrates how the difference
in track speeds, guided by the yaw rate data from the
MPU6050 sensor, generates an angular velocity that corrects
the robot’s deviation, enabling stable and efficient movement
along the pipe’s central axis. This mechanism ensures the
robot’s ability to perform inspections without interruption or
risk of jamming. The inclusion of PID controllers and remote
control capabilities further enhance the system’s flexibility
and reliability, allowing it to adapt to a wide variety of
conditions and successfully complete assigned tasks.

E. CALCULATION OF ROBOT CENTER OF MASS
The proposed SIPIR robot consists of three actuating units
and a central block that houses the robot’s electronic
components. To ensure stability, the motors are positioned
within the track wheel chassis.

To measure robot center of mass C,,

Ch=KX,Y,2) (6)

Robot total mass M can be calculated by following
equation;

M =my +my +m3+my @)

Here m is a mass of central block, my, m3 and my4 are masses
of the track wheel.
Then calculation of center of mass coordinates;

(my - x1) + (ma - x2) + (m3 - x3) + (m4 - x4)

X p—
M
Y — (my - y1) + (m2 - y2) + (m3 - y3) + (my4 - y4)
M
7 (my - z1) + (ma -Zz)A-;(”B -23) + (my - 24) ®)

Here (x1,y1,z1) is central block position coordinates,
(x2,¥2,22), (x3,y3,23) and (x4,y4,2z4) are track wheel
position coordinates.

Then, (8) can be applied to the (6).

Ill. PIPE DEFECT INSPECTION SYSTEM
A. DATA COLLECTION AND PREPROCESSING
The uniqueness of our study lies in the approach to data
collection and preprocessing. Given the challenge of sourcing
internal images of pipes from the internet, we focused on
creating a novel dataset using a custom-designed setup.
This setup comprised an iron pipe stick equipped with a
fisheye and web camera, along with a flashlight to illuminate
the pipe’s interior. This apparatus enabled us to capture
comprehensive video footage from 53 different pipes, each
exhibiting varying levels of corrosion.

Data collection was conducted under three distinct sce-
narios to simulate various inspection conditions: a straight
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= | |
Mobile Classifier
= - - NETV2

Processing  3x3 Conv, ReLU  Max pool 2x2

FIGURE 8. MobileNET computer vision model architecture.

insertion of the stick into the pipe, an axial rotation during
insertion and retraction, and a spiral path to capture close-up
images of the pipe walls. This approach enabled us to
enhance our dataset by capturing images from diverse angles,
ensuring the robustness of our data without compromising
its quality. Consequently, 93 video sessions were conducted
with an approximate total video length of 37.2 minutes,
documenting the interior of the pipes. The videos were then
categorized based on the presence or absence of corrosion and
subsequently segmented into training, validation, and testing
datasets. Image frames were extracted from these videos at
a rate ranging from 8§ to 12 frames per second (FPS). These
frames were chosen to ensure that similar images were not
fed several times during movement inside the pipe, on the
other hand, to have enough dataset to make transfer learn the
model, plus frames varied in the mentioned range to keep a
ratio of 80-10-10 for train train-validation-test datasets. The
final dataset comprised 4212 images for training, 370 for
validation, and 512 for testing.

B. ML MODULE: COMPUTER VISION FOR REAL-TIME
CLASSIFICATION CORROSION AND NO CORROSION
CATEGORIES

1) MODEL DEVELOPMENT AND TRAINING

Our model’s resilience and adaptability were significantly
enhanced through a strategic data augmentation approach,
employing the TensorFlow Keras preprocessing framework
for images. Keras is a high-level neural network API written
in Python and capable of running on top of TensorFlow.
It enables fast experimentation with deep neural networks
and is user-friendly, modular, and extensible. This augmen-
tation method effectively expands the training dataset by
introducing variations that simulate real-world scenarios.
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Specifically, the augmentation parameters included shear
transformations with a range of 0.2 to mimic slanting effects
caused by perspective shifts; zoom adjustments with a range
of 0.2 to replicate varying focal distances; random shifts
in the width and height of the images, each with a range
of 0.2, to simulate off-center positioning; rotations up to
40 degrees to introduce orientation variance; horizontal and
vertical flips to mitigate directional biases; and channel
shifts with a range of 20 to emulate different lighting
conditions. In addition, a custom augmentation function was
implemented, which incorporated standard MobileNetV2
preprocessing and specific enhancements tailored to our
project. These enhancement techniques were crucial in
training our model to generalize effectively from a limited
data set to a diverse array of practical inspection scenarios.
Cameras inherently exhibit distortion that affects the shape
and colour of captured objects, necessitating calibration
or preprocessing. We initially collected data using both a
fisheye camera and a Logitech C920 HD Pro web camera.
Given the high-quality, low-distortion images produced by
the Logitech C920 HD Pro web camera, we chose to
focus exclusively on its images, thus obviating the need for
additional distortion correction algorithms. This approach
streamlined our workflow and ensured that our project
objectives were met.

For the classification task, we used a pre-trained
MobileNetV2 architecture with its top layers replaced by
newly added fully connected layers sized 256, 32, and 2,
as depicted in Fig. 8. We tested several computer vision
algorithms, including ResNet50, Inception, EfficientNet,
and VGG16, with thorough training and hyperparameter
tuning. However, due to our small dataset, MobileNet
consistently outperformed the others, which often underfit
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or overfit. Considering our robot’s need for efficient power
consumption to navigate pipes, we chose MobileNet for
its optimal efficiency and suitability for this application.
With our modification to the base model with approximate
parameters equal to 3.4 million parameters and based on
TABLE 2, the number of parameters in our model in total
is approximately equal to 3,536,769 [37]. We incorporated
global average pooling, batch normalization, and dropout
layers to customize it for our specific needs. Transfer learning
was implemented by freezing the backbone network’s
weights and training only the newly introduced layers.

We used an RMSprop optimizer with a learning rate of 1e-5
to optimize a binary cross-entropy loss function.

In our training process, we utilized Keras and incorpo-
rated callbacks such as ModelCheckpoint and ReduceL-
ROnPlateau to enhance model performance and mitigate
overfitting. ModelCheckpoint allows the saving of the model
at specific intervals when it achieves optimal validation
accuracy, ensuring the retention of the most effective
model. On the other hand, ReduceLROnPlateau adjusts the
learning rate when there is no improvement in performance
for a predefined number of epochs, thus aiding in finer
optimization during the training phase. These tools proved
crucial in controlling the quality of the model training,
particularly as signs of overfitting became evident starting at
epoch 8, with a total of 13 epochs of training in general.

TABLE 2. model architecture.

Layer (type) Output Shape  Param #
MobileNetV2 (Base Model) (1, 1, 1280) 3.4 mln parameters
GlobalAveragePooling2D (1280) 0

Dense (ReLU) (256) 327936
BatchNormalization (256) 512

Dropout (0.19) (256) 0

Dense (ReLLU) 32) 8224
BatchNormalization 32) 64

Dropout (0.5) 32) 0

Dense (Sigmoid) [€))] 33

2) MODEL EVALUATION

Post-training, the model’s performance was evaluated on
the test dataset, which was processed with the same image
preprocessing techniques as the training and validation sets.
This step was crucial to assessing the model’s ability to
generalize to new, unseen data. The threshold for predictions
was established at 0.7. This was determined through correct
inference and multiple rounds of analysis using images we
collected as well as images sourced from the internet. Our
model demonstrated promising performance with an accu-
racy of 88.28% on the test dataset, indicating its effectiveness
in classifying corrosion in pipes. The confusion matrix can
be found in Fig. 9, The model exhibited some confusion
in its predictions; it mislabeled cases as “Corrosion” when
they were actually ‘“Without Corrosion” about 17.96% of the
time. Conversely, it misclassified “Without Corrosion” cases
as “Corrosion” roughly 5.46% of the time. These figures
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indicate the areas where the model’s predictive accuracy
could be improved.

Confusion Matrix

Corrosion

True label

Without Corrosion

- 100

!
Corrosion

Without Corrosion
Predicted label

FIGURE 9. Confusion matrix of MobileNet model on test dataset.

The successful implementation of this model showcases
the potential of using computer vision techniques in
autonomous pipe inspection, particularly in scenarios where
traditional methods might be challenging or infeasible.

Building on the discussion thus far, this study systemat-
ically analyzed data obtained from pipes exhibiting various
degrees of corrosion. Fig. 10 displays a set of images from
the test dataset showcasing different corrosion stages that
the model mostly accurately identified and categorized in
Figs. 10(a) - 10(d), and uncorroded pipes were also correctly
classified in Figs. 10(e) - 10(h).

To evaluate the model’s adaptability to diverse conditions,
such as varying light exposure, corrosion types, and pipe
materials, additional images were sourced from the internet
18 images and 5 images were misclassified. The model’s
classification capabilities, using these externally obtained
images, are demonstrated in Fig. 11. Working with the
prediction threshold of the trained model, MobileNetV2
performed very well on all the test datasets obtained from the
internet and collected datasets. However, discrepancies were
observed in the model predictions, specifically in Fig. 11(a)
and Fig. 11(e), as well as in Fig. 10(f). For Fig. 11(a) and
Fig. 11(e) displayed images markedly distinct from those
in the collected dataset. Regarding Fig. 10(f), an ambiguity
arises due to the presence of non-smooth surfaces on the
right-side wall of the pipe, despite its classification as non-
corrosive. This characteristic may have contributed to the
model erroneously categorizing it as corrosive.

The implementation of the trained model is intended for
a custom-designed mobile robot equipped with a Jetson
microcontroller, specifically engineered for pipe inspection
tasks. Considering the operational requirements of such a
robot, particularly the necessity for swift decision-making,
the model’s inference speed is a critical factor. To assess
this, we conducted tests involving 50 distinct images to
determine the average inference time and its variability. These
tests revealed that the streamlined MobileNet architecture
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FIGURE 10. Predicted classes from different pipes with different corrosion levels and without corrosion (The label turns green when the model’s
prediction matches ground truth, and it turns red when there is a discrepancy).

achieved an average inference time of 0.1534 seconds, with
a standard deviation of 0.2 seconds, indicating a generally
consistent and rapid response suitable for real-time inspection
scenarios.

3) ANOMALY DETECTION USING IMAGE PROCESSING
TECHNIQUES
Anomaly detection in images is a challenging task, particu-
larly in uncontrolled environments where anomalies can vary
in size, shape, and intensity. Traditional methods often rely on
predefined rules or manual inspection, which are not scalable
or reliable for large datasets. Our approach automates the
process using advanced image processing techniques such as
Canny edge detector and DBSCAN clustering.

The proposed method consists of several stages:

» Image Preprocessing

— Process: The methodology begins with the pre-
processing of the image, converting it to the
HSV (Hue, Saturation, Value) color space. This
conversion is crucial as HSV is more effective
in separating brightness from color information,
which is essential for the accurate identification of
anomalies based on intensity variations.

— Parameter and Effect: Sensitivity, set at a value of
20, dictates the range of pixel intensities considered
as potential anomalies, influencing the thresholding
in the HSV space.
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o Anomaly Isolation

— Process: A mask is created to isolate bright white
areas that are often indicative of anomalies. Using
a specific sensitivity range, a binary mask is
generated that selectively highlights these brightest
areas in the image, focusing the anomaly detection
process on regions of interest.

— Parameter and Effect: Kernel Size, configured
as 5 x 5, influences the dilation of the mask,
connecting bright spots to nearby areas and thus
expanding the focus areas where anomalies may be
detected.

« Mask Dilation and Inversion

— Process: After isolating bright areas, the mask
is dilated using a kernel to cover surround-
ing pixels, ensuring comprehensive coverage of
potential anomalies. The dilation process widens
the area of interest around bright spots. Subse-
quently, the mask is inverted to shift focus to
the darker, non-bright regions, aiding in distin-
guishing potential anomalies from the surrounding
background.

— Parameter and Effect: The 5 x 5 Kernel Size not
only facilitates the expansion of identified bright
regions but also ensures that the inversion highlights
significant non-bright anomalies, enhancing the
detection accuracy.
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FIGURE 11. 8 x 2 Grid of Different Pipe Images with Corrosion Collected from the Internet (The label turns green when the model’s prediction
matches ground truth, and it turns red when there is a discrepancy).

« Edge Detection and Contour Extraction ¢ Clustering Using DBSCAN

— Process: Post mask inversion, the image is trans- — Process: The final step involves applying the

formed to grayscale and subjected to Gaussian
Blur with a 7 x 7 parameter setting to reduce
noise and irrelevant details. Following this, edge
detection is performed using the Canny algorithm
with thresholds set at 17 and 90, which identifies
sharp changes in intensity that delineate potential
anomalies.

Parameter and Effect: Gaussian Blur Parameters
(7, 7) smooth the image to reduce noise before
edge detection, enhancing clarity for more accu-
rate edge detection. The Canny Edge Detection
Thresholds (17, 90) determine the intensity gra-
dients considered as edges, crucial for contour
extraction.

o Feature Extraction

— Process: Each extracted contour is analyzed

to determine its geometric properties, such as
area and centroid. Contours that exceed a pre-
defined area threshold are flagged as poten-
tial anomalies, focusing analysis on significant
irregularities.

Parameter and Effect: Minimum Area Threshold
set at 5 filters out smaller, less significant contours,
ensuring that only larger, more relevant anomalies
are considered for further analysis.
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DBSCAN clustering algorithm to the features
extracted from the contours. DBSCAN is known
for its effectiveness in handling clusters of arbitrary
shapes and sizes, grouping the identified features
based on their proximity and density.

— Parameters and Effects:

* DBSCAN ‘eps‘: Set at 50, it determines the
spatial proximity required for points to be
considered part of the same cluster, affecting
how broadly anomalies are grouped.

+ DBSCAN ‘min_samples‘: At a setting of 1,
this parameter decides the minimum number of
samples required in a neighbourhood to form a
dense region, thus defining cluster density.

* Cluster Area Threshold: Set at 10, it controls
the significance of detected clusters to be
labelled as anomalies, ensuring that only clusters
with a substantial area are considered during the
final analysis.

The whole process of image processing can be seen in
Fig. 12. The performance of the algorithm can be seen
in Fig. 13. Different objects that were left a long time
ago and naturally covered with dust might cause difficulty
in identifying them using image processing techniques;
however, the proposed algorithm was able to identify all
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FIGURE 12. Automated Anomaly Detection pipeline using Canny edge detector and DBSCAN Clustering. The pipeline begins with the raw input (a), which
is first converted to the HSV color space (b) to enhance color differentiation. Bright areas are then isolated (c) and expanded through dilation (d) to
ensure complete coverage of significant features. These are inverted (e) to focus on darker regions. A Gaussian blur (f) is applied to smooth the image
and reduce noise, preparing it for edge detection. The Canny edge detector (g) outlines prominent edges, and contours are traced (h) to delineate features
clearly. Anomalies are detected by highlighting unusual patterns (i), and the process culminates with DBSCAN clustering (j), which groups similar data

points to identify clusters of anomalies.

(a)

&

FIGURE 13. Automated anomaly detection in images using canny edge detector and DBSCAN clustering.

of them. The Fig. 13(d) demonstrates that algorithms do
not react if there are no anomalies. The average inference
time of the anomaly detection algorithm over 50 different
images was 0.0232 seconds which is 6.6x faster compared
to MobileNet inference time. As a consequence, we did such
that MobileNet algorithms activate only when an anomaly is
detected.

In Fig. 14, Fig. 14(a) showcases the MobileNet model’s
performance within a controlled laboratory setting, utilizing
our test pipe. The presence of roughness within the pipe is
unmistakable, and our model adeptly identifies these textural
anomalies as indicators of rust, demonstrating its keen ability
to detect signs of corrosion.
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In Fig. 14(b), the anomaly detection algorithm-based
image processing technique exhibits its precision in detecting
all the rough patches along the right side of the internal wall of
the pipe. This precision underscores the algorithm’s capacity
to identify even the subtlest signs of potential degradation.

For Fig. 14(c) and 14(d), the MobileNet and Anomaly
detection algorithms operate in tandem. The absence of
the green edge lines, typically highlighted by the Canny
edge detector, indicates a heightened sensitivity of the
edge detection process, allowing for a cleaner and more
focused identification of anomalies. Fig. 14(d) is particularly
noteworthy as it reveals the algorithms’ selective response
to foreign objects within the pipe, excluding the roughness
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FIGURE 14. Automated Anomaly Detection in Images Using Canny Edge Detector and DBSCAN Clustering and corrosion detection using

MobileNet.

Map of the pipe

Deformations

Garbage

FIGURE 15. Deformation and garbage identification using SLAM.

of the internal surface. This specificity is beneficial in envi-
ronments where only object detection is desired. Conversely,
Fig. 14(c) demonstrates the system’s responsiveness when
the camera gets near the wall, where the algorithms begin
to register the rough surface texture, which is indicative of
the robustness of our integrated system in varying operational
contexts.
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C. INSPECTION BY SLAM

Inspection by SLAM (Simultaneous Localization and Map-
ping) is carried out using Intel Realsense L5135, Jetson Orin
NX that runs on Ubuntu 18.04. Intel Realsense depth cameras
have internal IMU, however they are very unstable when
performing SLAM. Firstly, if USB connected to the camera
get touched, there are interruptions in data transferred, and
if it is disrupted then the data will stop flowing. Secondly,
if camera is moved rapidly, the IMU starts to drift or shake
violently. Despite the unreliable setup, with slow movement
speed and securing USB cable SLAM was successful. In this
setup camera simultaneously creates map, and saves them,
which later could be replayed. Map allows the user to identify
the defects within pipe and accurately find where they are
located due to the internal measurement unit. Moreover,
creating an accurate map allows the user to see if the pipeline
is deformed or not. However, achieving good results was very
difficult, due to drifting issues, in the future, other methods in
order to calculate the robot’s position from the data should be
used, either by using a simpler camera with separate IMU,
and perhaps a GPS system.

In this research, the selection of the SLAM algorithm was
based on its lightweight nature and customizable memory
features, leading to the use of the GMapping algorithm for
this application. Additionally, the Hector SLAM method,
which operates without relying on odometry parameters,
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proves suitable for cluttered environments where odometry
data may be unreliable. Although the TinySLAM algorithm
is also lightweight, it is not suitable for dealing with
the complex parameters essential for inspecting well-rusted

pipes.

IV. EXPERIMENTAL VALIDATION ON PIPE INSPECTION
Experimental setup consisted of the SIPIR with Jetson Orin
NX attached to the Intel Realsense L5135, that traversed inside
the pipe with 0,03 m/s. It travelled from start to the end,
capturing the RGB and depth videos, as well as constructing
the map. In some of the experiments, LED lights were used
which made the map whiter, in other times map came out
dark-brown.

V. CONCLUSION AND DISCUSSION

This research project introduced an inpipe mobile robot
SIPIR equipped with machine learning (ML) and Simulta-
neous Localization and Mapping (SLAM) based inspection
tools. The driving actuator of the proposed in-pipe robot
exhibited remarkable adaptability and offered adequate
traction, with the mobile platform achieving a pulling force
of 100N. Additionally, the ML tool developed for detecting
pipe defects effectively. Utilizing machine vision, the robot
successfully identified anomalies, corrosion, and cracks.
Furthermore, the integration of SLAM technology enabled
the detection of pipe deformations arising from both external
and internal impacts.
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