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ABSTRACT Unmanned aerial vehicles (UAVs) are used widely in wireless communications to enhance the
service experience of mobile users on the ground. This study investigates a dynamic resource management
problem in a large-scale UAV-aided wireless network, where multiple UAVs operate as aerial base stations
to serve ground users. To enhance communication efficiency for all users in the presence of co-channel
interference, we propose the use of an Isingmodel-based optimizationmethod for fast and accurate UAV-user
association and resource allocation. First, we formulate the dynamic user association and resource allocation
problem as a combinatorial optimization problem. Subsequently, we transform the objective function in
the formulated problem into the energy function of a quadratic unconstrained binary optimization (QUBO)
model and applied coherent ising machine (CIM), which has been proven to be robust for solving dense
Ising problems. We evaluate our proposed method through simulations and the real CIM for optimization.
Additionally, we compared our method with simulated annealing, steepest descent, and exhaustive search.
Performance evaluation results indicate that our proposed method is superior in terms of computational time
and data rate.

INDEX TERMS Wireless networks, multi-UAV, resource allocation, optimization methods, quantum
annealing, Ising machine, D-Wave.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are used in a wide range
of communication scenarios, such as network connectivity
between ground and satellite [1], maritime communication
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networks [2], and more broadly serving as aerial base
stations [3], to enhance network coverage and performance
owing to their deployment flexibility, versatility, and cost-
effectiveness [4]. Taking advantage of line-of-sight (LoS)
propagation, UAVs can function as aerial base stations, facili-
tating high spectral-efficient communications in underserved
areas [5]. As a result, various UAV-based aerial platforms
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designed to offer wireless services have garnered signif-
icant research interest from both academic and industrial
sectors [6], [7], [8], [9]. Despite these advantages, deploying
UAVs for wireless communications is still challenging in
practice.

Spectrum sharing is one such challenge in the design and
deployment of UAV-aided networks with limited spectrum
resources. Conventionally, UAV communication is imple-
mented using unlicensed spectrum bands, such as industry
and science bands [10]. Owing to the growing number of
mobile devices and high-throughput applications, unlicensed
spectrum is not enough to guarantee communication per-
formance. A possible solution to this problem is sharing
licensed spectrum to support high-quality connectivity for
UAVs and increasing on-demand services for users [11].
However, sharing spectrum resources increases interference,
especially in practical multi-UAV networks where handling
co-channel interference is much more complicated than
that in terrestrial systems [3], [12]. On the other hand,
efficient real-time control and operation are other important
aspects of UAV communications due to their lifetime and
the dynamic environment [13]. As described above, the
real-time combinatorial optimization, including UAV-ground
User (GU) association, subchannel assignment, and transmit
power of the UAV that can improve the Signal-to-Interference
Ratio (SIR) to support high-quality communication in UAV
networks, is extremely important.

Generally, joint optimizing UAV-GU association, sub-
channel assignment, and transmit power of the UAV is
challenging, and evaluating such scenarios in UAV networks
with a large number of users is extremely difficult. Previous
related work either focused on optimizing some of these
factors simultaneously but evaluated them in small-scale
UAV networks [14] or targeted large-scale UAV networks
by excluding complex elements such as interference between
channels used for communication [15]. In addition, real-
time high-speed resource allocation optimization cannot be
achieved by the previous studies. To solve the problems
above, in this study, we propose a high-speed resource
allocation method considering the joint optimization of
UAV-GU association, subchannel assignment, and transmit
power for large-scale UAV networks using a coherent Ising
machine (CIM).

Ising model-based optimization has been proven to be ben-
eficial for wireless communication, which has been achieved
by employing hardware-based search algorithms, such as
D-Wave [16] and CIM [17]. These algorithms enable the
rapid optimization of several large-scale problems. Among
them, quantum annealing (QA) is a heuristic technique for
solving several optimization problems that appear in a range
of disciplines [16].

This study uses a CIM-based algorithm to optimize
wireless resource allocation and enhance communication
performance for large-scale UAV-enabled wireless networks.
In particular, we investigated a joint UAV-user associa-
tion, sub-channel assignment, and power control problem

for downlink data transmission considering the impact
of co-channel interference on network performance. The
problem was first formulated as a combinatorial optimiza-
tion problem, where decisions were made using binary
variables, and the objective function represents the signal-
to-interference ratio (SIR) of the wireless communication
link. The problem was subsequently transformed into a
quadratic unconstrained binary optimization (QUBO) model.
We demonstrate that using a CIM-based algorithm on the
resulting QUBOmodel can provide optimal solutions rapidly.
The contribution of this study is the development of a
novel framework based on Ising model-based optimization
technique to find the ground energy states of the problem and
provide an efficient and fast solution. Finally, we conduct
extensive numerical analysis to verify the efficiency of the
proposed solution in terms of computational time and data
rate.

The main contributions of this paper are summarized as
follows.

• We design an ultra-fast resource allocation (RA) method
that considers the joint optimization of UAV-GU associ-
ation, subchannel assignment, and transmit power using
a CIM for large-scale UAV networks.

• To solve the formulated combinational optimization
problem in UAV networks using CIM, we transform the
problem into a QUBO format first. Then, we derive the
interaction term and external magnetic field term used
in the CIM from the transformed QUBO format.

• To confirm the effectiveness of the proposed method,
we evaluate its performance and compare it with other
Ising machines and heuristic algorithms. The simula-
tion and experimental results show that the proposed
method can achieve superior performance in terms of
throughput for larger-scale problems compared to other
Ising machines. Additionally, the proposed method also
shows superior performance in terms of throughput and
execution time compared to other heuristic methods.

The rest of this paper is organized as follows. Section II
describes the related work on the UAV network and Ising
machine. Section III introduces the system model and
formulates the problem. Section IV introduces the principle
of CIM for solving optimization problems. SectionV presents
the conversion to the QUBO model and the approach for
CIM required to solve the optimization problem introduced in
Section III. Section VI shows the performance evaluation in
various scale UAV networks. Section VII discusses the results
and future work. Section VIII concludes this study.

II. RELATED WORK
In this section, we review recent work. First, we present the
related work on resource allocation for UAV networks. Then,
we introduce the related work on quantum and optical Ising
machines, including CIM and D-Wave. Next, we explain the
related work on resource allocation using Ising machines
in wireless communications. Finally, we summarize the
drawbacks of the related work and the motivation of this
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TABLE 1. Comparison of the existing studies and this paper.

paper. Moreover, to clarify the motivation of this paper,
we give a table to compare the related work and this paper
in terms of variables being optimized, scalability, process
computing time, and hardware for implementation.

A. RA FOR UAV NETWORK
The optimization problems in many previous studies related
to UAV networks focus on network-performance opti-
mization, targeting the optimization of UAV trajectories,
configurations, communicating users, UAV transmission
power, and other factors. Additionally, factors such as
interference between channels in communication also need
to be considered. Generally, optimizing these elements
together becomes highly complex and challenging. Several
recent studies on heuristic solutions conducted optimization
with a narrowed focus, e.g., energy saving [18], time
and power optimization [19], offloading and computing
[2], UAV trajectory optimization [20], [21], placement and
transmit power allocation [22], and secure communica-
tion [23]. In addition, most existing studies considered
small-scale networks with only a few UAVs and a small
number of users [2], [20], [21], [22]. However, optimiz-
ing multiple elements simultaneously and rapidly in a
practical large-scale UAV network is necessary for real
applications.

Some recent studies have employed Deep Reinforcement
Learning (DRL) to optimize multiple elements for UAV
networks simultaneously. In [14], channel interference is
considered when allocating resources in multiple UAV net-
works with dynamic users. Reference [15] studies trajectory
design and resource allocation in multiple UAV networks.
In [24], the selection of service UAVs and transmission
power of the UAV optimization problem is investigated
for improving video quality. In [25], the jointly optimal
problem of UAV-user pairing and UAV placement is studied
to minimize the average task delay of the task offloading in
MEC networks. However, the large training time of the neural
network model in DRL is needed to adapt to dynamic, varied
environments, which may be challenging when applied to the
resource allocation problems in the UAV networks with real-
time applications.

B. QUANTUM AND OPTICAL ISING MACHINES FOR RA
Quantum machines based on the dynamics of physical
systems have been utilized to solve optimization problems in
recent years since they can quickly solve NP-hard problems.
D-Wave and CIM are the two well-known physical-systems-
based machines. D-wave [16] is a commercially available
QA machine based on superconducting quantum bits, and
CIM [17], [26], [27], [28], also known as the optical
Ising machine, is a laser network-based optimizer that can
provide approximate solutions to combinatorial optimization
problems with computing speed that is in the order of
milliseconds. Several NP-complete and NP-hard problems
can be converted to ground-state search problems in the
Ising model [29]. CIM and D-Wave QA can rapidly obtain
states close to the ground state of the Ising Hamiltonian,
which represents optimal solutions to optimization problems.
The difference between D-Wave QA and CIM is that in
D-Wave QA, the magnetic spin network is reproduced in
a chimera or Pegasus topology with sparse connections,
while in CIM, the Ising network of optical pulses generated
by a laser oscillator is fully coupled [26], [27]. Honjo et
al. demonstrated that 100,000 fully coupled spins can be
implemented in CIM [28]. Numerous complex optimization
problems are described as larger, massively connectedmodels
with dense graph structures. For these problems, CIM has
been demonstrated to be faster than D-Wave QA [30]. This
may be attributed to the fact that D-Wave QA has a sparse
graph structure that requires more logical qubits to represent
a fully connected graph, making complex optimization
problems difficult to solve [30]. These physical-systems-
based machines have already been studied for resource
allocation optimization problems in wireless communication.
In [31], D-Wave QA is used to solve the scheduling
optimization problem of the Intelligent Reflecting Surface
(IRS) in wireless communication systems. In [32], [33], [34],
and [35], the resource allocation optimization problems in
NOMA and WLAN systems are studied using CIM.

C. MOTIVATION OF THIS PAPER
As described above, the existing work for the resource
allocation problems in the large-scale UAV network is
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challenging to adapt to dynamic, varied environments with
real-time applications. Fortunately, CIM can solve large-scale
optimization problems in millisecond order. Hence, in this
paper, we use CIM to solve the complex resource allocation
joint optimization problem, including UAV-GU association,
subchannel assignment, and transmit power allocation in
large-scale UAV networks. To make the motivation of this
paper more straightforward, we compare several existing
studies with our system in terms of the optimization method,
variables being optimized, scalability, processing computa-
tion time, and hardware for implementation in Table 1.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a large-scale UAV-enabled wireless network
consisting of a macro base station (MBS) and M single-
antenna UAVs operating as aerial base stations at a constant
altitude. Fig.1 shows the system model in UAV networks.
N ground users (GUs) are randomly distributed within the
circular geographical area of radius rc of the MBS. The MBS
is equipped with a hardware-based CIM, which is responsible
for communicating the optimal user connection, channel, and
power level selection to the UAVs. We denote the sets of
UAVs and users asM = {1, . . . ,M} and N = {1, . . . ,N },
respectively. The total system bandwidth is divided into
K orthogonal subchannels, denoted by K = {1, . . . ,K }.
Notably, the subchannels allocated to the UAVs may overlap
with each other.We assume theMBS is the network controller
and that the UAVs can exchange information with the
controller via perfect backhaul connections. Furthermore,
the controller makes decisions about UAV-user association,
subchannel assignment, and power control for downlink data
transmissions.

FIGURE 1. System model in UAV networks.

The locations of UAV m ∈ M and GU n ∈ N in a
three-dimensional space are denoted by qUAVm = (xm, ym,H )
and qGUn = (xn, yn, 0), respectively, where H is the hovering
altitude of the UAV. Similar to a previous study [36],

this study considered a probabilistic air-to-ground path-loss
model, in which the communication channels between the
UAVs and the GUs can be modeled as either line-of-sight
(LoS) or non-line-of-sight (NLoS) links. Particularly, the
probability that the channel betweenUAVm andGU n is LoS,
denoted as ρLoSm,n , is given by [37]:

ρLoSm,n =
1

1 + ae
−b

(
180
π

arcsin
(

H
dm,n

)
−a

) , (1)

where a and b are the environment-dependent parameters,
and dm,n =

√
∥qUAVm − qGUn ∥2 is the distance between them.

Hence, the probabilistic path loss is given by [36]:

gm,n =

(
ρLoSm,n +

(
1 − ρLoSm,n

)
η
)
gLoSm,n , (2)

where gLoSm,n = g0dm,n
−ϵ0 represents the free-space channel

gain, g0 is the channel gain at the reference distance d0 = 1m,
ϵ0 is the path-loss exponent, and η is the additional signal
attenuation factor due to NLoS condition.

We denote αm,n ∈ {0, 1} as the association variable
between UAV m and GU n, i.e., if GU n is associated with
UAV m, αm,n = 1; otherwise, αm,n = 0. In this study,
we assume that each UAV can only associate with one GU
at a time. Thus, the following constraint must hold∑

n∈N
αm,n ≤ 1, ∀m ∈M, (3)

Similarly, we denote βkm ∈ {0, 1} as the subchannel
assignment variable, i.e., if channel k is allocated to UAV m,
βkm = 1, otherwise, βkm = 0. This gives us:∑

k∈K
βkm ≤ 1, ∀m ∈M, (4)

which indicates that each UAV can only occupy a single
subchannel at a time.

Consequently, the SIR for the communication link between
UAV m and GU n on subchannel k is given as:

γ km,n =
gm,nαm,nβ

k
mPm

I km,n
, (5)

where Pm denotes the transmit power of UAV m, and I km,n is
the co-channel interference at UAV m caused by other UAVs
operating on subchannel k , which is given as:

I km,n =

∑
m′∈M,m′ ̸=m

gm′,nβ
k
m′Pm′ , (6)

where Pm′ denote the transmit power of UAV m′. Thus, the
SIR for UAV m, denoted as Sm, can be calculated as follows:

Sm =

∑
n∈N

∑
k∈K

γ km,n, ∀m ∈M, (7)

In a network with multiple UAVs, the co-channel interference
might be large enough to deteriorate the communication links
between a UAV and its associated user. Hence, it is important
to make efficient user association, subchannel assignment,
and power-control decisions. Hence, our objective is max-
imizing the SIR. Moreover, the data rate can be used to
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evaluate the performance of the UAV networks, which is
obtained using Shannon’s theorem as follows:

R = B log(1 + SINR), (8)

where SINR is the signal-to-interference and noise power
ratio (SINR), which can be calculated as follows:

SINR =

∑
m∈M

∑
n∈N

∑
k∈K gm,nαm,nβ

k
mPm∑

m∈M
∑

n∈N
∑

k∈K I
k
m,n + kBTB

. (9)

Here, kB represents the Boltzmann constant, T represents the
temperature, and B represents the bandwidth of the network.

B. PROBLEM FORMULATION
We aim to maximize the communication efficiency in terms
of average system SIR by controlling UAV-GU association,
subchannel assignment, and transmit power of the UAVs.
In this study, discrete transmit power control is adopted in
UAVs.More specifically, the transmit power values by a UAV
to communicate with its associated user can be selected in
a list {P1,P2, . . . ,PL}, where P1 ≤ P2 ≤ · · · ≤ PL . Let
plm ∈ {0, 1}, l ∈ L = {1, . . . ,L} denote the power control
variable, i.e., if UAV m selects transmit power at level l,
plm = 1; otherwise, plm = 0. Note that only one power level
can be selected by UAV m at a time. Thus, we formulated as:∑

l∈L
plm ≤ 1, ∀m ∈M, (10)

Therefore, the SIR for UAV m in (7) can be recast as:

Sm =

∑
n∈N

∑
k∈K

∑
l∈L

γ k,lm,n, ∀m ∈M, (11)

Consequently, the SIR maximization problem can be
formulated as follows:

max
α,β,P

S =

∑
m∈M

Sm,

s.t.
∑

n∈N
αm,n ≤ 1, ∀m ∈M,∑

k∈K
βkm ≤ 1, ∀m ∈M,∑

l∈L
plm ≤ 1, ∀m ∈M,

αm,n ∈ {0, 1}, βkn ∈ {0, 1}, plm ∈ {0, 1}, (12)

where α = {αm,n}M×N and β = {βkm}K×M represent the user
association and subchannel assignment matrices, and P =

{plm}L×M denotes the transmit power control matrix.

IV. COHERENT ISING MACHINE
A. ISING HAMILTONIAN
CIM is an Ising-type machine that can artificially reproduce
the Ising model, a physical model of magnetic spin. The
Ising model consists of two states of magnetic spins: upward
and downward. The spins are mutually coupled and are
affected by interactions from other spins as well as from
external magnetic fields. We consider an Ising model with
a four-dimensional structure of M × N × K × L. Here, the

Ising Hamiltonian, which is the energy function of the Ising
model, is expressed as follows.

E (σ ) = −
1
2

M∑
i=1

N∑
j=1

K∑
k=1

L∑
l=1

M∑
i′=1

N∑
j′=1

K∑
k ′=1

L∑
l′=1

Jijkl,i′j′k ′l′σijklσi′j′k ′l′

+

M∑
i=1

N∑
j=1

K∑
k=1

L∑
l=1

λijklσijkl, (13)

where σijkl ∈ {−1, +1} is the spin direction of the (i, j, k, l)-
th spin, Jijkl,i′j′k ′l′ is the strength of the interaction between
the (i, j, k, l)-th spin and the

(
i′, j′, k ′, l ′

)
-th spin, λijkl is the

strength of the external magnetic field to the (i, j, k, l)-th spin.
CIM is a machine that can obtain the ground state of this
Ising Hamiltonian at high speeds. In other words, by setting
Jijkl,i′j′k ′l′ and λijkl corresponding to the optimal solution of
the optimization problem to the maximum values in Eq.(12)
and using CIM, the optimal solution of the target optimization
problem can be approximated and obtained rapidly.

B. MEASUREMENT FEEDBACK COHERENT ISING
MACHINE
Initial CIM was laser networks consisting of one primary
laser and multiple secondary lasers [38]. Recently, mea-
surement feedback CIM has been proposed to solve large-
scale problems, where the coupling matrix can be arbitrarily
designed [26], [27]. In measurement feedback CIM, the
parameters of the Ising model, i.e., Jijkl,i′j′k ′l′ and λijkl ,
are preconfigured in a Field Programmable Gate Array
(FPGA) module. The FPGA module calculates the feedback
values using these set parameters and feeds them back to
the original pulse. Moreover, the CIM also requires proper
setting parameters for input light intensity, feedback light
intensity adjustment, and pump schedule. Thus, the interac-
tion between the spins can be reproduced programmatically,
making it possible to fully connect the spins. Furthermore,
the phase of the degenerate optical parametric oscillator
(DOPO) pulse orbiting on the optical fiber represents the
Ising spin σijkl . In [28], it is demonstrated that 100,000 DOPO
pulses can be realized on a 5-km polarization-maintaining
optical fiber, reaching the reference score for the 100,000-
node MAX-CUT problem within 593 µs.

V. CIM-BASED SOLUTION
This section describes the solution of the optimization
problem by using Ising model-based optimization. First,
we reformulate the problem as an objective function in
the QUBO model. Subsequently, we apply a CIM-based
technique to determine the low energy states of the model by
deriving the quadratic coefficients and the linear coefficients.

A. PROBLEM TRANSFORMATION
1) TRANSFORMATION OF THE OBJECTIVE FUNCTION
Firstly, the SIR for the communication link between UAV
m and GU n on subchannel k using power level l, i.e., γ k,lm,n
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shown in Eq. (5) can be transformed into:

γ k,lm,n

=
αm,nβ

k
mp

l
mgm,nPl∑

m′∈M,m′ ̸=m
∑

n′∈N
∑

l′∈Lαm,nαm′,n′βkmβkm′pl
′

m′gm′,nPl′
,

(14)

Subsequently, the objective function in Eq. (12) can be
transformed into:

max
α,β,P

∑
m∈M

∑
n∈N

∑
k∈K

∑
l∈L

γ k,lm,n. (15)

We denote Xmnkl as the neuron. Xmnkl = 1 if UAVm associate
with GU n using channel k with power level l, i.e.,

Xmnkl =


1, if UAV m associate with GU n

using channel k with power level l.
0, otherwise.

(16)

To solve optimization problems using the Ising model-
based method, it is necessary to transform the equation into a
form similar to the one shown in Eq. (13) and derive Jijkl,i′j′k ′l′

and λijkl . Subsequently, the objective function shown in Eq.
(15) can be transformed into:

max
X

∑
m∈M

∑
n∈N

∑
k∈K

∑
l∈L
Xmnklgm,nPl∑

m′∈M,m′ ̸=m
∑

n′∈N
∑

l′∈LXmnklXm′n′kl′gm′,nPl′

+

∑
m′∈M

∑
n′∈N

∑
k ′∈K

∑
l′∈L

Xm′n′k ′l′gm′,n′Pl′∑
m∈M,m̸=m′

∑
n∈N

∑
l∈LXm′n′k ′l′Xmnk ′lgm,n′Pl

. (17)

By taking the reciprocal, the above equation can be
transformed into:

min
X

∑
m∈M

∑
n∈N

∑
k∈K

∑
l∈L

∑
m′∈M,m′ ̸=m

∑
n′∈N

∑
l′∈L(

gm′,nPl′

gm,nPl
+

gm,n′Pl
gm′,n′Pl′

)
XmnklXm′n′kl′ . (18)

By introducing Kronecker delta δmm′ and δkk ′ , Eq. (18) can
be expressed as:

min
X

∑
m∈M

∑
n∈N

∑
k∈K

∑
l∈L

∑
m′∈M

∑
n′∈N

∑
k ′∈K

∑
l′∈L(

gm′,nPl′

gm,nPl
+

gm,n′Pl
gm′,n′Pl′

)
(1 − δmm′) δkk ′XmnklXm′n′k ′l′ . (19)

2) TRANSFORMATION OF THE CONSTRAINT
The constraints can be expressed as:

E2 =

M∑
m=1

 N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl − 1

2

=

M∑
m=1


 N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl

2

−2

 N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl

 + 1


=

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

N∑
n′=1

K∑
k ′=1

L∑
l′=1

XmnklXmn′k ′l′

− 2
M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl +M . (20)

Here, when n = n′, k = k ′ and l = l ′, represent Xmnkl =

Xmn′k ′l′ . However, the multiplication of the same spins must
be 0 to compare with IsingHamiltonian. That is, when n = n′,
k = k ′ and l = l ′, XmnklXmn′k ′l′ = 0. Hence, Eq. (20) can be
expressed as:

E2 =

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

N∑
n′=1

K∑
k ′=1

L∑
l′=1

(1 − δnn′δkk ′δll′)XmnklXmn′k ′l′

+

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

N∑
n′=1

K∑
k ′=1

L∑
l′=1

δnn′δkk ′δll′XmnklXmn′k ′l′

− 2
M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl +M

=

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

N∑
n′=1

K∑
k ′=1

L∑
l′=1

(1 − δnn′δkk ′δll′)XmnklXmn′k ′l′ +

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl

− 2
M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl +M

=

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

N∑
n′=1

K∑
k ′=1

L∑
l′=1

(1 − δnn′δkk ′δll′)XmnklXmn′k ′l′

−

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl +M . (21)

By introducing Kronecker delta δmm′ , Eq. (21) can be
expressed as:

E2 =

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

M∑
m′=1

N∑
n′=1

K∑
k ′=1

L∑
l′=1

δmm′ (1 − δnn′δkk ′δll′)

XmnklXm′n′k ′l′ −

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl +M . (22)
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From the above, Eq. (12) can be transformed into the
following QUBO problem:

min
X

AE1 + BE2,

E1 =

∑
m∈M

∑
n∈N

∑
k∈K

∑
l∈L

∑
m′∈M

∑
n′∈N

∑
k ′∈K

∑
l′∈L(

gm′,nPl′

gm,nPl
+

gm,n′Pl
gm′,n′Pl′

)
(1 − δmm′) δkk ′XmnklXm′n′k ′l′ ,

E2 =

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

M∑
m′=1

N∑
n′=1

K∑
k ′=1

L∑
l′=1

δmm′ (1 − δnn′δkk ′δll′)XmnklXm′n′k ′l′

−

M∑
m=1

N∑
n=1

K∑
k=1

L∑
l=1

Xmnkl +M . (23)

B. CIM-BASED APPROACH
We consider a neural network with a four-dimensional
structure ofM ×N ×K × L; themutually connected network
has the following energy structure:

E (x) = −
1
2

M∑
i=1

N∑
j=1

K∑
k=1

L∑
l=1

M∑
i′=1

N∑
j′=1

K∑
k ′=1

L∑
l′=1

wijkl,i′j′k ′l′xijklxi′j′k ′l′

+

M∑
i=1

N∑
j=1

K∑
k=1

L∑
l=1

θijklxijkl, (24)

where xijkl ∈ {0, 1} is the state of the (i, j, k, l)-th neuron,
wijkl,i′j′k ′l′ is the coupling weight between the (i, j, k, l)-th
and

(
i′, j′, k ′, l ′

)
-th neurons, and θijkl is the firing threshold

of the (i, j, k, l)-th neuron. From the similarity of the energy
structure of the Ising Hamiltonian and that of the mutually
connected neural network, i.e., Eq. (13), the parameters of the
CIM, Jijkl,i′j′k ′l′ and λijkl , can be derived using the parameters
(i.e., wijkl,i′j′k ′l′ and θijkl) of the mutually coupled neural
network. Hence, by comparing Eq. (23) and Eq.(24),the
coupling weightwijkl,i′j′k ′l′ and the threshold θijkl are obtained
as follows:

w1
ijkl,i′j′k ′l′ = −2 (1 − δii′) δkk ′

(
gi′,jPl′

gi,jPl
+

gi,j′Pl
gi′,j′Pl′

)
, (25)

θ1ijkl = 0, (26)

w2
ijkl,i′j′k ′l′ = −2δii′

(
1 − δjj′δkk ′δll′

)
, (27)

θ2ijkl = −1, (28)

wijkl,i′j′k ′l′ = Aw1
ijkl,i′j′k ′l′ + Bw2

ijkl,i′j′k ′l′

= −2A (1 − δii′) δkk ′

(
gi′,jPl′

gi,jPl
+

gi,j′Pl
gi′,j′Pl′

)
− 2Bδii′

(
1 − δjj′δkk ′δll′

)
, (29)

θijkl = Aθ1ijkl + Bθ2ijkl

= −B. (30)

Since wijkl,i′j′k ′l′ and θijkl correspond to xijkl ∈ {0, 1}, while
Jijkl,i′j′k ′l′ and λijkl correspond to σijkl ∈ {−1,+1} in the Ising

model, we transform as follows:

σijkl = 2xijkl − 1. (31)

The connecting weights Jijkl,i′j′k ′l′ of the Ising model and the
external magnetic field λijkl can be derived using Eqs.(29),
(30), and (31), which are expressed as follows:

Jijkl,i′j′k ′l′ =
wijkl,i′j′k ′l′

2
, (32)

λijkl = θijkl −

∑M
i′=1

∑N
j′=1

∑K
k ′=1

∑L
l′=1 wijkl,i′j′k ′l′

2
.

(33)

The detailed derivation process can be found in [32].

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed
CIM-based algorithm in UAV networks. We utilize the
data rate R as network performance metric, a common
metric for evaluating networks. In the following, the total
data rate of the UAV network system and the processing
time of the proposed method are evaluated and compared.
Specifically, we compare it with Simulated Annealing (SA),
which is a meta-heuristic optimization method, Steepest
Descent (SD), D-Wave, and Exhaustive Search (ES). Among
these comparative methods, SA and ES are techniques that
have been used in simulation evaluations for performance
comparisons with CIM in previous studies [32]. Additionally,
since SD is an algorithm similar to ground state search in the
Ising model [39] while the D-Wave [31] is another type of
Ising machine, we utilized the SD algorithm and D-Wave as
a comparison method in the performance evaluation. Next,
we provide a detailed description of each method.

Herein, we used the following simulation model of the
CIM to evaluate the proposed method.

dcijkl
dt

=

(
−1 + p− c2ijkl − s2ijkl

)
cijkl

+

M∑
i′=1

N∑
j′=1

K∑
k ′=1

L∑
l′=1

Jijkl,i′j′k ′l′ci′j′k ′l′ − λijkl, (34)

dsijkl
dt

=

(
−1 − p− c2ijkl − s2ijkl

)
sijkl

+

M∑
i′=1

N∑
j′=1

K∑
k ′=1

L∑
l′=1

Jijkl,i′j′k ′l′si′j′k ′l′ − λijkl, (35)

where cijkl and sijkl are the in-phase and quadrature phase
amplitudes of the (i, j, k, l)-th optical pulse, respectively, and
p is the pump pulse, used to amplify cijkl . By simulating
while gradually increasing p, we can obtain the in-phase and
quadrature components of the DOPO pulse. As described in
Section III, the measurement feedback CIM reproduces the
Ising spin using the amplitude of the DOPO pulse circulating
on a long optical fiber. In this case, we used a simulation
model to reproduce the behavior of the CIM and obtain a
combination of spins that minimizes the Hamiltonian. The
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Ising spin σijkl is expressed as the magnitude of cijkl , where
σijkl = −1, if cijkl < 0 and σijkl = +1, if cijkl > 0.

We compare the CIM-based with the SA, SD, and ES
methods. The Boltzmann machine model [40] was also used
as the computational model for SA. A Boltzmann machine
is an interconnected neural network incorporating statistical
behavior. Specifically, the model is a sigmoid function that
introduces a temperature T into the output function, and the
values of neurons X ∈ {0, 1} change stochastically with
temperature T . In the simulation, the initial temperature of
SA and the rate of decrease of temperature per iteration were
set as parameters and measured with parameter tuning.

SD is a numerical analysis algorithm for finding the
minimum value. It moves in the direction of the steepest
descent from the initial state to the direction where the
objective function becomes the smallest, and searches for the
minimum value of the function until it converges [39].
ES is a brute-force search algorithm that explores all

possible combinations to find the optimal solution. Although
this algorithm guarantees an optimal solution by searching
all possibilities, it is impractical for a large search space in a
realistic time.

We perform our evaluation on three scales of UAV
networks. Firstly, a small-scale UAV network where the
D-wave can solve the scale of the problem. The purpose of
this experiment evaluation is to compare the performance
of Ising machines. Secondly, a middle-scale UAV network
where the ES can operate in a realistic time. The purpose of
this simulation evaluation is to confirm the proposed method
reaching the optimal solution solved by ES. Finally, a large
UAV network was used to verify the performance of the
proposed and comparative methods. ES was excluded from
the comparison methods for large-scale networks because it
does not provide solutions in a realistic time. This is because
the scale of networks becomes too large for ES to solve in a
realistic time since ES is a brute-force search algorithm.

Table 2 shows the parameter settings in UAV networks.
The simulation parameters in this table are common to small
and large UAV networks. The UAVs and GUs were randomly
distributed in the service area of the MBS. In this simulation,
we considered UAV network systems in which the MBS was
placed at the center of a circular cell with a radius of 1000 m.

TABLE 2. Parameters settings in UAV networks.

A. COMPARISON EXPERIMENT WITH ISING MACHINE
In this subsection, we describe the experimental results of
the proposed CIM-based, D-Wave-based, and ES-based RA
in a small-scale UAV network with varying numbers of

UAVs and channels. The purpose of this subsection is to
compare the performance in the data rates of the D-Wave
and CIM, which are both Ising machines. In the performance
evaluation, the results of the D-Wave-based RA are achieved
using the Advantage system 4.1, which is the quantum
processing unit (QPU) of theD-Wave and capable of handling
approximately 5000 qubits. The CIM used a machine capable
of handling 2048 spins developed by Nippon Telegraph and
Telephone (NTT). Table 3 shows the parameter settings of
the small-scale UAV network in the performance evaluation,
and Fig. 2 illustrates the placement of UAVs and GUs. The
configuration of the small-scale network was set to a scale
that D-Wave could realistically solve. Under these conditions,
we obtained the results for the variation in the data rate with
varying numbers of UAVs and channels, presented in Figs. 3
and 4, respectively.

TABLE 3. Parameter settings in a small-scale UAV network.

FIGURE 2. The placement of the UAVs and GUs in the small-scale UAV
network.

FIGURE 3. Total data rate in the small-scale UAV network with varying
number of UAVs.
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In Fig. 3, the results show the variation in the data rate when
changing the number of UAVs from 3 to 5 while fixing the
number of channels at 2. We introduced ES as a comparative
method for obtaining the exact optimal solution. From Fig. 3,
it can be observed that the proposed real-CIM consistently
reaches the optimal solution, while D-Wave fails to reach
the optimal data rate as the number of UAVs increases.
The performance difference between CIM and D-Wave is
attributed to the different representations of spins, and it is
known that the performance of D-Wave degrades as the scale
increases [30]. Therefore, the increase in the number of UAVs
and the size of the UAV network likely led to a deterioration
in performance for the D-Wave-based RAmethod. Moreover,
the data rate decreases for all methods as the number of UAVs
increases. The reason is that the increase in the number of
UAVs causes stronger interference between channels when
the number of channels is fixed.

FIGURE 4. Total data rate in the small-scale UAV network with varying
number of channels.

Fig. 4 shows the results of variation in the data rate when
fixing the number of UAVs at 4 and changing the number
of channels from 1 to 3. From Fig. 4, it can be observed
that the proposed real-CIM consistently reaches the optimal
solution, while D-Wave fails to reach the optimal data rate
as the number of channels increases. The reason is similar to
that of Fig. 3, as the performance of D-Wave deteriorates with
an increase in the size of the UAV network. Moreover, the
data rate increases for all methods as the number of channels
increases. This reason is that the increase in the number of
channels while keeping the number of UAVs fixed, reduces
the impact of inter-channel interference.

B. PERFORMANCE EVALUATION IN A MIDDLE-SCALE UAV
NETWORK
In this subsection, we describe the simulation results in a
middle-scale UAV network. The purpose of this evaluation
is to confirm that the proposed method can achieve optimal
solutions. To compare with the optimal solution obtained by
ES, the configuration of the middle-scale network was set to a
scale that ES could solve within a realistic time.We introduce
ES as a comparative method for obtaining the exact optimal
solution. We also compare two heuristic algorithms, i.e.,

SA and SD. The number of iterations of CIM and SA is
set to 500. Table 4 shows the simulation parameters related
to the UAV network, and Fig. 5 illustrates the placement of
UAVs and GUs in the UAV network. Under these conditions,
we obtained the results for the variation in the data rate with
varying numbers of UAVs and the channels, presented in
Figs. 6 and 7, respectively.

TABLE 4. Parameter settings in a middle-scale UAV network.

FIGURE 5. UAVs and GUs placement in the middle-scale UAV network.

FIGURE 6. Total data rate in the middle-scale UAV network with varying
numbers of UAVs.

In Fig. 6, the results show the variation in the data rate
when changing the number of UAVs from 3 to 5 while fixing
the number of channels at 2. From Fig. 6, it can be observed
that the CIM and SA consistently reach the optimal solution,
while SD fails to reach the optimal data rate as the number
of UAVs increases. This is because SD is a simple algorithm
for searching for the optimal solution, operating quickly but
prone to getting stuck in the local minimum. Therefore, as the
scale of the UAV network increased, it was difficult for SD to
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reach the optimal solution.Moreover, it also shows a decrease
in the data rate as the number of UAVs increases. The reason
is the same as that in Fig. 3, i.e., the inference in the number
of UAVs increases.

FIGURE 7. Total data rate in the middle-scale UAV network with varying
numbers of channels.

In Fig. 7, the results show the variation in the data rate when
fixing the number of UAVs at 5 and changing the number of
channels from 2 to 4. From the Fig., it can be observed that
the CIM consistently reaches the optimal solution, while SA
and SD fail to reach the optimal data rate as the number of
channels increases. SA consistently reached the exact optimal
solution in Fig. 6; however, in Fig. 7, it is observed that SA
fails to reach the exact optimal solution as the scale increases.
This is attributed to the larger scale of the UAV network
in Fig. 7 and the number of iterations. SA is an algorithm
that may reach the exact optimal solution by increasing the
number of iterations. However, within the same iterations as
the CIM, i.e., 500 iterations, the SA could not achieve the
exact optimal solution while CIM can, which shows that the
CIM method can achieve higher performance under the same
iterations and settings. To reach the exact optimal solution
using SA, it is necessary to increase the program execution
time and the iteration number beyond 500. Regarding the SD,
the reason that it could not achieve the optimal solution is the
same as that in Fig. 6, i.e., getting stuck in the local minimum.
Moreover, for the same reason in Fig. 4, the results show an
increase in the data rate as the number of channels increases.

C. PERFORMANCE EVALUATION IN A LARGE-SCALE UAV
NETWORK
In this subsection, we describe the simulation results in a
large-scale UAV network. The purpose of this evaluation is
to assess the performance of the proposed CIM-based RA
method and compare it to other heuristic algorithms to verify
the superiority of the proposed method in the data rate and
processing time. Since the performance is evaluated in a
large-scale UAV network, ES cannot be executed in a realistic
time frame and is therefore not included in the comparative
methods. To keep the execution time the same, we set the
number of iterations for CIM and SA to 1000. Table 5 shows
the parameters used in the large-scale UAV network, and

Fig. 8 illustrates the placement of UAVs and GUs. Under
these conditions, we obtained the results for the variation in
the data rate by changing the numbers of UAVs and channels,
presented in Figs. 9 and 10, respectively. In addition, Fig. 11
shows the results for the computation time for each method.

TABLE 5. Parameter settings in a large-scale UAV network.

FIGURE 8. UAVs and GUs placement in the large-scale UAV Network.

FIGURE 9. Total data rate for the varying number of UAVs in the
large-scale UAV network.

In Fig. 9, the result shows the variation in the data rate
when changing the number of UAVs from 11 to 15 while
fixing the number of channels at 10. From these results, it is
observed that the proposed CIM-based method achieved the
highest data rate compared to other methods, especially when
the number of UAVs is 11, which is evident that the CIM out-
performs other comparison methods. This can be attributed
to the environment with 10 available channels, where the
impact of channel interference on network performance due
to RA is substantial. Conversely, in the case of 15 UAVs,
increased channel interference results in degraded network
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performance. Regardless of how RA is conducted, there is
no significant difference in network performance. Hence, the
performance gap among the methods is considered small.
Moreover, it shows a decrease in the data rate as the number
of UAVs increases for the same reason as that in Figs. 3 and 6.

FIGURE 10. Total data rate for the varying number of channels in the
large-scale UAV network.

In Fig. 10, the result shows the variation in the data
rate when fixing the number of UAVs at 13 and changing
the number of channels from 8 to 12. It is observed that
the proposed CIM-based method achieved the highest data
rate compared to other methods, especially for 12 channels.
This can be attributed to the environment with 13 available
UAVs, where the impact of channel interference on network
performance due to RA is substantial. Moreover, it shows an
increase in the data rate as the number of channels increases.
The reason is the same as that in Figs. 4 and 7. In summary,
from Figs. 9 and 10, it can be observed that when the
interference of the UAV network is small, the CIM solution
significantly outperforms other comparison methods.

FIGURE 11. Computational time for the varying number of UAVs in the
large-scale UAV network.

Fig. 11 shows the program execution time when the
number of channels is fixed at 10 and the number of UAVs
is changed from 11 to 15, following the same pattern as
Fig. 9. SA and SD were evaluated in terms of program
execution time using a computer with with Intel(R) Xeon(R)
Gold 5222 CPU (3.80GHz). It can be observed that the

execution time follows the order of real-CIM, SD, and
SA in terms of speed. Combining the results of Fig. 9
and 11, it can be concluded that SD operates quicker but
with bad performance, SA is slower but exhibits good
performance, and CIM operates at ultra-fast speed with
excellent performance when using a real Ising machine.
Notably, the execution time for CIM is based on the use of the
real CIM. In previous research, CIM can solve problems of up
to 100,000 spins in 22 ms [28]. Moreover, D-Wave currently
has a commercially available qubit count of approximately
5000 qubits. Since the scale of the large-scale UAV network
is about 12,000 spins, which could not be implemented in
D-Wave, D-Wave could not be included as a comparative
method in this setting.

VII. DISCUSSION
In this section, we discuss the findings obtained in this study.

• First, we conducted comparative experiments using the
real-CIM and D-wave, which are real Ising machines.
Since D-wave is only capable of solving small-scale
problems due to difficulties in handling large-scale
problems internally, we evaluated its performance in
total data rate in a small-scale UAV network. The
results showed that our proposed real-CIM method can
achieve a higher total data rate compared to D-Wave
with varying numbers of UAVs and channels, especially
when the scale of the UAV network increases. Moreover,
the real-CIM-based method can achieve the optimal
total data rate as the ES-based method. This aligns with
the results obtained in previous studies on a different
optimization problem [30].

• Next, we performed simulation comparisons between
CIM and other heuristic algorithms, i.e., SA-based
and SD-based methods and ES-based methods in a
middle-scale UAV network with varying numbers of
UAVs and channels. The middle-scale scale is the limit
at which an ES can be realistically simulated in a
reasonable amount of time. The results demonstrate
that the proposed CIM-based method outperforms other
heuristic algorithms in terms of the data rate and
can achieve the optimal solutions as the ES method.
Previous studies conducted simulation evaluations at
this scale [14]. However, it is difficult to consider this
scale realistic as the number of users is particularly low.
Therefore, we conducted evaluations on a larger-scale
UAV network.

• Then, we conducted simulation comparisons between
CIM and other heuristic algorithms, i.e., SA-based and
SD-based methods, in a large-scale UAV network with
varying numbers of UAVs and channels. The results
show that CIM exhibits a higher data rate performance
compared to the heuristic algorithms. Moreover, since
the ES may cost a large amount of time to achieve the
optimal solutions in such a large-scale UAV network,
it is difficult to be used for the RA problem in this
scenario.
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• Finally, the comparison of the computation time
between the real-CIM and the heuristic algorithms is
conducted in a large-scale UAV network. SA and SD
represent the simulation execution time on a general
CPU, while for CIM, we cited previous research [28]
that solved a 100,000-spin problem in 22ms. Since
the number of spins that needs to be used in the
large-scale UAV network considered in this study is a
maximum of 12,000 spins, we consider it realistically
feasible to solve it in at least 22ms. As for D-wave,
it currently has approximately 5000 available qubits for
commercial use, making it unable to solve problems
of this scale. Therefore, a comparison of execution
times with D-wave could not be made in this study.
In previous studies [14], [15], methods using DRL
have been widely proposed. While DRL is suitable
for solving resource allocation problems in large-scale
UAV networks, it requires large time for training or
pre-training the learning model. Furthermore, there is a
possibility of retraining when the configuration of the
UAV network changes. Additionally, when operating the
learned model in a real environment, it is desirable to
have at least a millisecond order of processing time, but
currently, it is in the order of seconds [14]. Considering
these factors, we believe that our proposed CIM-based
method is much more suitable than the DRL-based
methods for addressing the RA optimization problem in
large-scale UAV networks in the future.

In conclusion, the contribution of this study is the proposal
of a method for rapidly performing complex wireless
resource allocation in large-scale UAV networks, which
has not been addressed in previous research. Additionally,
we carefully conducted performance comparisons with a real
Ising machine, D-Wave, ES algorithm, and other heuristic
algorithms, demonstrating the effectiveness of the proposed
method in the data rate and computational time.

VIII. CONCLUSION
This study investigates a fast UAV-user association, sub-
channel assignment, and power control strategy to enhance
communication efficiency in the presence of co-channel
interference for large-scale UAV-aided wireless networks.
We formulate and transform the problem into a QUBO
problem to maximize the network SIR in UAV networks.
Furthermore, we conduct performance evaluation between
the proposed method, CIM, and other Ising machines or
heuristic algorithms, targeting UAV networks of various
scales. The effectiveness of the proposed method is demon-
strated, revealing its advantages in handling larger-scale
problems compared to other Ising machines and solving them
faster than other heuristic algorithms.
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