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ABSTRACT Emotion recognition is a key research topic in the Affective Computing domain, with
implications in marketing, human-robot interaction, and health domains. The continuous technological
advances in terms of sensors and the rapid development of artificial intelligence technologies led to
breakthroughs and improved the interpretation of human emotions. In this paper, we propose a lightweight
neural network architecture that extracts and performs the analysis of multimodal information using the
same audio and visual networks across multiple temporal segments. Undoubtedly, data collection and
annotation for emotion recognition tasks remain challenging aspects in terms of required expertise and effort
spent. In this sense, the learning process of the proposed multimodal architecture is based on an iterative
procedure that starts with a small volume of annotated samples and allows a step-by-step improvement
of the system by assessing the model uncertainty in recognizing discrete emotions. Specifically, at each
epoch, the learning process is guided by the most uncertainly annotated samples and integrates different
modes of expressing emotions through a simple augmentation technique. The framework is tested on two
publicly available multimodal datasets for emotion recognition, i.e. CREMA-D and RAVDESS, using
5-folds cross-validation. Compared to state-of-the-art methods, the achieved performance demonstrates the
effectiveness of the proposed approach, with an overall accuracy of 74.2 % on CREMA-D and 76.3 %
on RAVDESS. Moreover, with a small number of model parameters and a low inference time, the proposed
neural network architecture represents a valid candidate for the integration on platforms with limitedmemory
and computational resources.

INDEX TERMS Convolutional neural networks, entropy, multimodal emotion recognition, uncertainty-
based learning, MTCNN, CREMA-D, RAVDESS.

I. INTRODUCTION
The fast technological development that characterizes the
human-computer interaction domain is mainly driven by the
evolution that occurred in the Artificial Intelligence (AI)
domain. Numerous human-computer interaction applications
are based on emotion recognition, e.g. social robotic appli-
cations [1], healthcare systems [2], [3], customer service
and marketing [4], entertainment industry [5], politics [6],
and even surveillance, policing and criminology systems [7].
Being at the border between Affective Computing and Social
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Signal Processing, emotion recognition systems target the
recognition, processing and simulation of human affects,
while focusing on the analysis of verbal and non-verbal
information in various social-oriented scenarios [8].
Humans express emotions in a multimodal manner, e.g.,

facial expressions, speech inflection, or vocal intensity
contain relevant information for the identification of the
emotional state of a subject. In order to improve the
performance of emotion recognition models, information
collected from multiple modalities can be efficiently fused,
leading to higher accuracy levels if compared to monomodal
approaches [9]. However, most of the human-computer
interaction applications may be requested to operate on
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embedded platforms with limited resources (i.e., low level
of memory and low computational power). Although many
of the current approaches fuse information extracted from
the entire video sequence, the development of lightweight
models should start by considering a limited number of
video frames and temporal windows extracted from the
audio signal. Moreover, for a further integration of the
multimodal emotion recognition system on platforms with
limited memory and computational resources, both the
number of model parameters and the complexity of the
algorithms used for feature extraction should be limited.

Considering the increased number of application domains
and the diversity of modes to express emotions, delivering
a personalized experience in terms of human-computer
interaction relies on the ability of AI-based systems to
interpret the emotional state of a user from multimodal data
in an accurate and timely manner. However, training such
systems requires the existence of large labeled datasets. The
acquisition of multimodal datasets targeting the emotion
recognition domain is a difficult task due to an expensive
annotation procedure, both in terms of time and expertise
required for a correct identification of emotions. Therefore,
other solutions to counterbalance this limitation are required
in order to reduce the amount of annotated data needed for
training an efficient emotion recognition system.

In this paper, a lightweight multimodal emotion recog-
nition framework is described. In order to obtain a model
with a reduced number of parameters, the feature extraction
modules for audio and visual information retrieval use
the same convolutional neural networks across multiple
temporal segments. The proposed approach ensures obtaining
time-invariant embeddings for the representation of the audio
and visual information, and, thus, allows a sliding window
approach for real-time processing of streaming multimodal
data. Moreover, considering that the availability of labeled
datasets represents a constant challenge when training
emotion recognition frameworks and that not all the training
samples lead to extracting meaningful information regarding
the expressed emotions, we propose an uncertainty-based
technique for the selection of the most relevant samples
when training the model. Based on an iterative approach, the
uncertainty of the recognition system is reduced gradually.
More precisely, the training procedure starts with a limited
amount of annotated data and gradually increases the training
volume with samples for which the emotion recognition
system is still the most uncertain. The main contributions of
the paper are five-fold, namely: (i) we propose an efficient
end-to-end lightweight framework for emotion recognition,
which extracts audio and visual information from consequent
temporal segments using the same neural network modules,
(ii) the learning procedure relies on an uncertainty-based
sampling technique, which allows the training process to
start with a limited amount of annotated data and yields a
robust emotion recognition system, (iii) due to its decreased
computational complexity and a processing time shorter than
14 ms, the proposed model represents a valid candidate for

online emotion recognition using a sliding window approach,
(iv) due to its small model size (i.e., on average, the model
occupies 10.3 MB), the proposed model is a valid candidate
for deployment in a real-time autonomous development
platform with limited memory and computational power,
and (v) the effectiveness of the proposed approach is
demonstrated on two publicly available datasets, namely
CREMA-D [10] and RAVDESS [11].

The rest of the paper is organized as follows. After a
thorough discussion of existing emotion recognition methods
in Section II, Section III presents the proposed lightweight
convolutional neural network architecture for audio-visual
emotion recognition, along with the uncertainty-based learn-
ing approach. Section IV is dedicated to presenting the
CREMA-D and RAVDESS datasets, whereas the experi-
mental results, accompanied by comparisons with existing
methods, are discussed in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK
Numerous monomodal approaches towards emotion recog-
nition have been proposed in the last years. For example,
approaches designed for speech emotion recognition inte-
grate basic audio features (e.g., signal energy, loudness,
mel frequency cepstral coefficients (MFCC), pitch, formants,
spectral shape descriptors) [12], that can be extracted using
the largely deployed openSMILE toolkit [13]. Besides the
basic audio features mentioned before, time-frequency rep-
resentations also lead to achieving competitive performance
in terms of speech-based emotion recognition [9], [14]. With
the advancement of deep learning techniques, convolutional
neural networks (CNN) have been frequently used to extract
relevant time-frequency descriptors from spectrograms [15],
[16]. Other methods integrate CNN-based modules in x-
vector models using multi-head attention for utterance level
speaker embedding extraction [17]. Tzirakis et al. propose
a different approach towards feature extraction from speech,
namely the application of CNNs directly on the raw speech
signals [18]. Considering that fully convolutional networks
(FCN) extract spatial information, Zhao et. al consider
inserting an additional attention-based bidirectional Long
Short-Term Memory (LSTM) module in order to emphasize
the temporal characteristic of the spectrogram [14].
Facial expressions represent relevant cues for understand-

ing human emotions, which can be described though a
mix of several Facial Action Units (FAUs) [19]. In this
regard, Ekman identifies several facial attributes that allow
emotion recognition from face expressions (e.g., morphology,
symmetry, duration, coordination of facial muscles) [20],
[21]. CNNs, either pre- or end-to-end trained state-of-
the-art architectures (e.g., VGG [22], GoogleNet [23],
ResNet [24]), have been frequently used as feature extractors
for facial emotion recognition tasks (e.g., DeXpression [25],
MERML [12], Tzirakis et al. [18], Dixit and Satapa-
thy [26]). Moreover, combining the results yield by multiple
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CNNs, both randomly initialized or pre-trained, leads to
improved performance [27]. Furthermore, approaches based
on ensemble methods show promising results in many
domains [28], [29], including multimodal emotion recogni-
tion [30]. Although improved performance can be obtained
using multiple architectures in parallel, the main drawback
is the increased complexity, which limits their usage on
platforms with limited resources.

An enhanced emotion recognition system can be obtained
by combining the analysis of facial expressions in video
frames with the information retrieved from speech [9], [12],
[31], [32], [33], [34], [35]. Various intra-modal and cross-
modal fusion strategies, including attention mechanisms to
highlight important emotion features, feature concatenation
and factorized bilinear pooling (FBP) for cross-modal feature
fusion, have been explored in [36]. An efficient combination
of multiple modalities can be obtained by assigning dynamic
weights in generalized mixture functions applied at decision
level [33]. Another multimodal fusion strategy is achieved
by concatenating the features that were extracted from each
modality via independent fully connected layers, whilst the
result is provided as input to an additional fully concatenated
layer that performs the final classification [37]. A slow
modality fusion can be achieved by inserting multimodal
transfer modules at different levels of the feature hierarchy
in an intermediate fusion approach [38].
Embedding the audio and visual content onto a metric

space is the solution proposed in [32] for reducing the
gap between modalities. The temporal joint embeddings are
obtained by connecting multiple LSTM cells that lead to an
uncertainty-based learning of the audio-visual information
across time, taking, thus, into account the broader context and
the temporal evolution of the emotion throughout the entire
video sequence. In [32], the visual features were extracted
with 3D-CNN [39], whereas the audio features were extracted
from raw signals using soundNet [40], by transferring
and synchronizing discriminative knowledge across visual
and sound networks. In a similar vein, a metric learning
paradigm, called Multimodal Emotion Recognition Metric
Learning (MERML), is designed in [12] in order to obtain
a better discrimination and an enhanced representation in
a latent space for both modalities. The learned metric is
used as a distance for the Radial Basis Function (RBF)
kernel incorporated in a Support Vector Machine (SVM)
classifier [12]. The main limitations of these models are
related to the complexity of the proposed solutions, which
may hinder both real-time processing and inclusion of the
models on platforms with limited capabilities.

The emotions that each person share may differ in
intensity and modes of expression. This aspect may induce
a certain degree of uncertainty in assessing the emotion
expressed by each person. Therefore, the approaches that
target person-specific emotion consider the insertion of a
group of neural networks which act as personalized emo-
tional memories retaining individual aspects of emotional

expressions [41]. Apart from the person-specific neural
network, a model that contains an adversarial autoencoder,
is configured for representing the general aspects of emo-
tions [41]. The role of the adversarial autoencoder is,
on one hand, to learn general representations of facial
expressions and, on the other hand, to generate new images
of expressions for a particular person using conditional
emotional information. This collection of expressions is then
used to initialize a Grow-When-Required (GWR) neural
network that functions as a personalized affective memory
which captures the particular expressions of emotions for a
subject. However, the technique proposed in [41] is difficult
to apply for an online emotion recognition task, where
the processing of instantaneous emotion expressions is a
requirement.

Attention mechanisms that increase or decrease the impor-
tance of particular time-windows and modalities are often
used in multimodal learning and fusion frameworks dealing
with emotion recognition [42], [43], [44]. In order to capture
the dynamic characteristics between video frames, Beard et.
al proposed a recurrent multi-attention (RMA) mechanism
with shared external memory that allows the temporal
information to persist over multiple hops before being
updated during the analysis framework [31]. By means of
an attention-based fusion between facial and audio temporal
features, the recognition performance achieved by themethod
proposed in [31] is comparable to crowd-sourced human
rating [10]. The emotion recognition system with attention
mechanism proposed in [45] consists of two encoder sub-
networks, one for each modality, integrated in a Multi-Head
Self-Attention framework. The original video sequence is
divided into separate time windows, each window containing
a sequence of frames, whereas the sub-networks, based
on pretrained VGG-based architectures, are used to extract
features from the video frames and audio signals, similar to
the approach shown in [46]. Considering an inter-modality-
based scheme for the attention mechanism, the multimodal
emotion recognition system proposed in [42] uses attention
to guide the extraction of visual features by means of the
information extracted from the audio signal.

Transformers currently play an instrumental role in
image recognition [47] and numerous linked sub-domains,
including emotion recognition [16], [48], [49]. In [16],
a multimodal transformer with three branches for audio
self-attention, video self-attention, and audio-video cross-
attention, respectively, is proposed, along with a block
embedding that captures the temporal information within
the video frames. In an attempt to find links between
facial and audio cues, audio-visual transformers have been
also proposed for building improved feature extraction
models [48]. However, training transformer models requires
large volumes of data, which are, in general, difficult to
obtain for emotion recognition tasks. A possible solution
for mitigating the problem of limited labeled data is to use
active learning strategies that can boost the performance of
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FIGURE 1. Proposed multimodal neural network architecture using the same Visual and Audio Neural Networks across all temporal segments.

deep learning methods, or to use models that have been
pre-trained on large datasets designed for different tasks,
e.g. the VoxCeleb2 dataset, designed for large scale speaker
recognition, was used for pre-training the model proposed
in [48].

III. PROPOSED METHOD
A. DEFINITION AND NOTATIONS
We consider a labeled multimodal dataset D, consisting of
M audio-visual pairs and corresponding labels representing
discrete human emotions:

D = {(Xa
1,X

v
1,L1), (X

a
2,X

v
2,L2), . . . , (X

a
M ,Xv

M ,LM )}

where (Xa
i ,X

v
i ) is the ith audio-visual pair and Li is the

corresponding discrete emotion label. The goal is to predict
the emotion expressed by the subject in each audio-visual test
pair. The total number of possible discrete human emotion
labels is denoted by C .

The datasetD is split into three subsets, namely,D(0)
train used

for initial training, U used for uncertainty-based learning,
and Dtest used for evaluation. The subsets are independent
at actors’ level, i.e., an actor pertains to only one of the three
subsets.

B. LIGHTWEIGHT MULTIMODAL NEURAL NETWORK FOR
EMOTION RECOGNITION
The multimodal neural network proposed in this paper fuses
information retrieved from the visual and audio domains by
means of convolutional neural network (CNN) architectures
trained end-to-end. The multimodal signal is divided into
N temporal segments, and, for each temporal segment,
we extract both visual and audio-related features using
two distinct neural networks, one for each modality. The
scheme of the proposed multimodal neural network is shown
in Figure 1, whereas the structure of the architecture is
depicted in Table 1. The usage of the same audio and
visual neural networks across different temporal segments
ensures an overall architecture with fewer parameters to

learn and, also, invariance with respect to time shifts at
segment level. The invariance characteristic leverages the
possibility to apply a sliding window approach for processing
streaming multimodal data (Figure 2) without the need
to extract the features for each temporal segment several
times.

1) TEMPORAL FUSION OF MULTIMODAL INFORMATION
The temporal fusion of multimodal information is obtained
by dividing the multimodal signal into N temporal segments,
extracting relevant information from each modality and then
merging the information retrieved from both modalities into
a compressed representation. The aggregation of audio and
visual information is performed in an asynchronous manner,
allowing a temporal offset between the two modalities
and a natural augmentation of the dataset. More precisely,
at each training epoch, a different pair of audio and visual
content is selected for learning, within a random temporal
offset. The multimodal temporal-binding approach, i.e.,
combining different modalities within a range of offsets,
has been previously introduced in [50] for egocentric action
recognition and, then, extended for emotion recognition
in [51]. The main difference with respect to the method our
team proposed in [51] consists in using the same audio and
visual neural networks for the feature extraction process,
across all temporal segments. Thus, the proposed approach
yields time-invariant audio and visual embeddings with
respect to shifts of the analysis window at temporal segment
level. Similarly, the weights of the fully connected layer
performing the classification are the same for all the temporal
segments. By contrast, the architecture presented in [51] is
composed of N distinct audio and visual neural networks
and fully connected layers. Thus, the approach in [51] yields
a model architecture that linearly grows with the number
of temporal segments, which hinders the architecture’s
integration on embedded platforms with limited resources,
e.g., low memory and low computational power.
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FIGURE 2. Sliding window approach for processing streaming multimodal data.

TABLE 1. Multimodal neural network architecture with CNN for both Audio Net (AN) and Visual Net (VN).

Considering the high redundancy level among consecutive
frames, the analysis of the visual information is performed
only over one randomly selected frame from each temporal
segment. Therefore, instead of processing the entire video
sequence, only N video frames are analyzed using the same
visual neural network. In order to link the audio content to the
visual information, we consider sequences of audio signals
of length d , whereas the center of each audio sequence is
randomly located within a certain offset with respect to the
selected frame. For each temporal segment i ∈ {1, 2, . . . ,N },
the concatenated visual and audio information is jointly
interpreted by means of a fully connected (FC) layer with
C output neurons, C being the number of discrete emotion
category labels. For each temporal segment i, the output of the
FC layer is denoted by oi. In order to combine the temporal
information, the outputs of the FC layer are averaged along
the N temporal segments:

z =
o1 + o2 + . . . + oN

N
(1)

The result, z =
[
z1 z2 . . . zC

]
, is passed through a Softmax

function, which transforms the C real values into a vector of
normalized elements that sum to 1 [52]:

yc =
ezc∑C
k=1 e

zk
. (2)

Considering the structure shown in Table 1, the number of
parameters of the overall neural network architecture slightly
varies with the number of neurons of the FC layer, which
is associated to the number of discrete emotion category
labels C , i.e. 6 labels in the case of CREMA-D dataset and
8 labels in the case of RAVDESS. Moreover, apart from
using a random selection of the video frames and audio
signals inside each temporal segment, a dropout rate of 0.2 is
considered in order to reduce overfitting [53].

2) VISUAL NEURAL NETWORK
The visual neural network consists of convolutional layers,
with sequences of 2D convolution – batch normalization
(BN) – Rectified Linear Unit (ReLU) activation function,
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followed by a max pooling layer (Table 1). The analysis
is performed on only N frames that correspond to each
temporal segment. It is worthmentioning that, at each training
epoch, the frames are randomly selected from the temporal
segment of the video sequence, capturing, thus, various facial
expressions of the subjects within the same emotional state.
This yields a natural augmentation of the training set.

The convolutional layers have 16, 32 and 64 filters of
3 × 3 and a stride of 1. The role of the batch normalization
layer is to increase the stability of the convolutional neural
network [54], whereas the max pooling layer reduces the
dimensionality of the representation at each step. The last
layer of the visual neural network is a fully connected layer
which translates the output of the last convolutional layer into
a vector of length 512.

In order to remove the unnecessary information regarding
the background, the analysis at frame level requires a
pre-processing step related to face detection. In video anal-
ysis, the quick movements of the subject’s head have a direct
impact on the success of the entire recognition framework.
A reliable method for face detection and alignment is the
deep cascaded multi-task framework based on convolutional
neural networks, i.e. MTCNN proposed in [55]. MTCNN is
composed of three stages of processing with convolutional
neural networks. The role of the first stage, called P-Net, is to
propose several candidate windows containing the face of
the subject. The false candidates are removed in the second
stage, called R-Net. The last stage, called O-Net, performs
the analysis of five facial landmarks that contain the most
information regarding the face.

3) AUDIO NEURAL NETWORK
For the raw audio signal, the feature extraction module
consists in deriving the spectrogram for each short-term
signal in the temporal segments and applying the sequence
of convolutional layers to extract the audio-based features.
The spectrogram is a powerful time-frequency analysis tool
for speech processing [56] and speech recognition [57],
including the speech emotion recognition task [58]. One of
the most commonly used 2D time-frequency representations
of raw audio signals is the discrete Short-Time Fourier
Transform (STFT) [59]. However, STFT does not lead to a
perceptually-inspired processing with respect to the human
auditory characteristics [60]. By contrary, applying the Mel
scale over the frequency range leads to a better approximation
of the human perception. The Mel scale is, in fact, an approx-
imation to the cochlea’s non-linear frequency scaling, which
is obtained from the linear frequency scale by applying
a non-linear transformation [61]. In order to obtain the
Mel spectrogram, a filterbank of triangular filters is applied
over the raw signal in the frequency domain. Considering
that the logarithmic variant of the Mel-filtered spectrogram
represents a common choice for numerous approaches based
on CNN architectures for speech recognition tasks, we also
adopt the Log-Mel variant of the spectrogram [56].

FIGURE 3. Workflow for uncertainty-based learning of the emotion
recognition model.

Similar to the visual neural network, the audio neural
network is composed of sequences of 2D convolution – batch
normalization (BN) – Rectified Linear Unit (ReLU) activa-
tion function, followed by a max pooling layer (Table 1). The
convolutional layers have 4, 8 and 12 filters of 3 × 3 and a
stride of 1. The last layer of the audio neural network is a
fully connected layer which translates the output of the last
convolutional layer into a vector of length 128.

4) END-TO-END TRAINING OF THE MULTIMODAL NEURAL
NETWORK
The multimodal neural network architecture is trained end-
to-end using the cross-entropy loss, computed between input
logits and target [52]:

LCE = −

B∑
i=1

C∑
c=1

δi,c log(yc,i) (3)

where yc,i is the cth output of the last fully connected (FC)
layer that corresponds to sample xi in the minibatch of size B
and δi,c is the cth element of the target vector and equals 1 or
0 if the class for input xi is c or not.

C. UNCERTAINTY-BASED LEARNING APPROACH
As already mentioned in Section II, the variability in express-
ing emotions and changes in intensity induce uncertainty in
assessing the emotion category. Moreover, training robust
multimodal neural network architectures requires a large
number of annotated samples, that might be expansive
to obtain for the emotion recognition task. The proposed
method for training a robust emotion recognition system
is centered around an uncertainty-based learning approach,
that involves the identification of most uncertainly-labeled
examples pertaining to a different set than the one used for
training.

For the first epoch, the training procedure starts with
a small annotated dataset, namely, D(0)

train. In addition,
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Algorithm 1 Proposed Training Algorithm With Most
Uncertainly Labeled Instances

Require: Initial training set D(0)
train, labeled set U , number of

epochs Nepoch
Ensure: Parameters of modelM
1: Train initial modelM on set Dtrain = D(0)

train
2: for n = 0 to Nepoch − 1 do
3: for each instance x ∈ U do
4: Compute the neural network output for instance x,

i.e.M(x)
5: Compute the entropy over the output probability

distribution ofM(x)
6: end for
7: Sort entropy values in descending order
8: Add first Nu data instances to the training set Dtrain
9: Check if the assigned labels for the Nu data instances

are correct and, if not, correct them
10: Remove same data instances from U
11: Update the parameters of modelM
12: end for

we consider having access to another set of instances U .
The dataset D(0)

train is randomly selected, with actors that
are not part of either Dtest or U . The training procedure
is iterative, and, after each training epoch, the training
dataset is augmented with the most uncertain examples
from U . If the labels associated by the recognition system
are incorrect, the labels are corrected by an oracle or
human annotator, as shown in Figure 3. The overall training
strategy for uncertainty-based learning is summarized in
Algorithm 1.

The majority of the classification errors are produced
by the examples that the recognition system is uncertain
about. In information theory, the uncertainty of a random
variable is measured through entropy [62]. Therefore, the
most uncertainly labeled examples from U are determined
by means of computing the entropy over the output prob-
ability distribution. Given a probability distribution y =[
y1 y2 . . . yC

]
over the predicted output classes, the entropy

is computed as [62]:

H (y) = −

C∑
c=1

yc log2 yc. (4)

The entropy is maximumwhen the probabilities are equal and
the system is characterized by a high degree of uncertainty.

The selection of the most uncertainly labeled exam-
ples from U is made in the descending order of the
entropy values. At each training epoch, the first Nu data
samples for which the system was most uncertain are
inserted in the training dataset Dtrain and removed from
U . Therefore, the emotion recognition system is trained
to identify particular emotions from expressions that are
less common, enhancing the generalization capacity of the
classifier.

IV. DATASETS
The algorithm developed for multimodal emotion recognition
was validated on publicly available datasets CREMA-D
(Crowd-sourced Emotional Multimodal Actors Dataset) [10]
and RAVDESS (The Ryerson Audio-Visual Database of
Emotional Speech and Song) [11].

CREMA-D is composed of 7442 video sequences with
91 actors expressing an emotion from a set of predefined
emotions ( i.e., anger, fearness, disgust, happiness, neutral,
and sadness). The actors are selected from a wide vari-
ety of races and ethnicity, i.e., African-American, Asian,
European American, Hispanic, and are divided into 48 males
and 43 females. The videos have an average length of
2.54 seconds, with lengths that vary between 1.27 seconds
to 5 seconds. Apart from the actors’ interpretations of
particular emotions, the video sequences were passed through
a crowd-sourced labeling process, i.e. each video sequence
was rated by more than 7 participants to this process. The
study led to the following results with respect to human-level
accuracy in terms of emotion recognition: 40.9 % accuracy
when only audio information is labeled, 58.2 % when only
video is available, and 63.6 % when the audio and video
information is assessed [10].

RAVDESS [11] contains 1440 videos recorded from
24 professional actors (12 male and 12 female), where
only the speech signals have been considered. The actors
were asked to read two statements using a neutral North
American accent while emphasizing 8 categories of emotions
(i.e., neutral, calm, happy, sad, angry, fearful, surprise, and
disgust). The average length of the audio-video sequences is
6.88 seconds, ranging from 5.49 seconds to 9.76 seconds.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The multimodal emotion recognition system relies on both
audio and video inputs, which are divided into N temporal
segments. Considering that the length of the videos is longer
on average for RAVDESS than for CREMA-D, the number
of temporal segments for CREMA-D is set to 5, whilst for
RAVDESS, 12 temporal segments are considered. The frames
of the video sequences are processed using the MTCNN
method [55] for face detection and alignment. However,
in order to obtain the same dimensions of the images
containing the cropped faces, all images are resized to 80 ×

98 pixels. Regarding the audio signal analysis, the length d
of the audio window is set to 1.5 seconds, whereas the center
of the audio window is randomly selected within a maximum
offset of 10mswith respect to the chosen video frame for each
temporal segment. The time-frequency representation of each
audio signal is the Log-Mel spectrogram, computed using
128 evenly-spaced frequencies on the Mel scale, hop length
of 512, 2048 FFT window samples, and a rate of the audio
signal of 16 KHz for CREMA-D or 48 kHz for RAVDESS.

The selection of the number of temporal segments and
the maximum offset value follows the recent work we have
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TABLE 2. Hyper-parameters of the model.

developed in [51] and [63], where a similar procedure for
the temporal aggregation of the multimodal information
was proposed. Compared to the approach proposed in [51]
for extracting multimodal information, the main difference
consists in using the same neural network architectures to
extract audio and visual information across multiple temporal
segments, i.e., one for the audio information, one for the
visual information. On the opposite, the TA-AVN architecture
proposed in [51] uses different networks for each temporal
segment, leading to a linear increase of the number of
parameters with respect to the number of temporal segments
considered.

In order to train the multimodal emotion recognition
system, the optimization of the objective functions is
performed using the Adam algorithm [64]. The learning
rate was set to 1e-4, and the training was performed over
100 epochs, with a multiplicative factor of the learning rate
decay of 0.1 after 50 epochs. The weights of the architecture
were initialized using the Xavier method with a uniform
probability distribution [65]. The main hyper-parameters of
the model are summarized in Table 2.

The performance of the proposed approach for multimodal
emotion recognition is assessed through 5-fold cross val-
idation at subject level, i.e., there is no overlap between
subjects in the sets D(0)

train ∪ U and Dtest . The training of
the model begins with an initial subset D(0)

train, composed of
videos acquired from 1/3 subjects from D(0)

train ∪ U . The rest
of the subjects from the train dataset form the subset U . This
ensures that D(0)

train, Dtest and U sets do not overlap at subject
level. During the iterative training procedure, the volume
of the training samples, Dtrain, is augmented with uncertain
examples sampled from U . At each epoch, the number of
uncertain samples is Nu = 20 for CREMA-D and Nu = 5 for
RAVDESS. By contrary, when the uncertainty-based strategy
is not considered, the update of the parameters is performed
over the entire training set for each epoch in part. A natural
augmentation process is achieved in both cases, i.e., with
and without the uncertainty-based learning strategy, since the
frames are randomly selected inside the temporal segments,
whereas the audio windows are randomly selected within a
small offset with respect to the chosen video frames.

B. DISCUSSION
1) PERFORMANCE ASSESSMENT
The performance achieved by the proposed method for
multimodal emotion recognition has been measured through

the cross-validation technique using 5 folds. The overall
accuracy reached 74.2 % on the CREMA-D dataset and
76.3 % on the RAVDESS dataset.

In order to check the impact of the uncertainty-based
approach on the training procedure, we show the variation
of the loss and the overall accuracy values with respect to
training epochs in Figure 4 and Figure 5. If compared to train-
ing over the whole training dataset from the beginning, the
uncertainty-based learning strategy keeps the performance
with respect to train loss in a similar range, whilst the learning
process is guided through the examples about which the
recognition system is most uncertain. As shown in Figure 4,
the decay of the loss function is similar when the iterative
learning procedure is considered. This behavior is achieved
even if the training procedure is performed over a smaller
amount of data, as in the case of RAVDESS. In addition,
as shown in Figure 5, the maximum level of accuracy is
achieved very fast, in less than 60 epochs of training.

The confusion matrices for both datasets are provided in
Figure 6. In both cases, the proposed system recognizes
happiness, neutral and anger states with a high level of
precision. However, fear is easily confused with anger,
sadness, neutrality or surprise. This behavior is similar to a
large extent to the performance of human annotation when a
crowd-sourcing labeling experiment was conducted over the
CREMA-D dataset [10].
Moreover, the training time is improved when the

uncertainty-based learning strategy is adopted. For example,
in the case of the RAVDESS dataset, the training procedure
takes almost 8 hours and 30 minutes when it is performed
without the uncertainty-based learning strategy, and 7 hours
and 40 minutes (including the inference over set U) when the
uncertainty-based strategy is considered. We mention that the
experiments were carried on an 12th Gen Intel(R) Core(TM)
i9-12900KF, 3.19 GHz, with 32 GB of RAM, and equipped
with NVIDIA GeForce RTX 3080 Ti GPU with 12 GB of
dedicated GPU memory.

2) COMPARISONS WITH OTHER METHODS
Comparisons with recent approaches are provided in Table 3,
along with human labeling accuracy [10], [11]. The proposed
recognition system outperforms previous approaches, e.g.
intermediate fusion of multiple modalities [38], methods
based on recursive attention [31], deep metric learning [12],
[32], attention mechanisms across modalities [43], [44], [45],
or audio-visual transformers [48], [49]. Following a similar
approach for the temporal aggregation of multimodal features
extracted by different convolutional neural networks, TA-
AVN [51] reaches a smaller overall accuracy in a 5-folds
cross-validation setup. However, as detailed in the next
section, it is important to note that the number of parameters
that characterize the architectures achieving top-performance
results is several times higher than in the case of the proposed
architecture. Furthermore, if compared to the performance
achieved bymultimodal transformers [16], the class precision
reported in [16] is high when retrieving anger (76.1 %) and
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FIGURE 4. Loss decay when training with and without the uncertainty-based learning (UL) strategy for (a) CREMA-D and (b) RAVDESS.

FIGURE 5. Overall accuracy on the train and test sets, with and without the uncertainty-based learning (UL) strategy, for (a) CREMA-D and (b)
RAVDESS.

happiness (74.2 %), but still below the performance achieved
by the proposed method.

Recently, Wav2Vec2.0 models achieved top performance
results in numerous speech-related tasks [66]. Fine-tuning
pretrained Wav2Vec2.0 models led to improved accuracy
in speech emotion recognition [67], i.e., on the RAVDESS
dataset, the reported overall accuracy is 84.30 % when
a Wav2Vec2.0-FT variant is deployed [68], 86.70 %
when a pre-trained xlsr-Wav2Vec2.0 transformer is used

to extract speech-related features [69], and 82.75 % when
a dual-stream representation and cross-attention fusion
based on Wav2Vec2.0 are considered [70]. Inspired by the
potential of speech representations based on Wav2Vec2.0,
an additional experiment has been conducted by replac-
ing the CNN-based architecture of the AudioNet with
a Wav2Vec2.0 architecture for retrieving relevant audio
embeddings mapped to each audio signal. The variant used
for the AudioNet is the Wav2Vec2.0 base model that has
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FIGURE 6. Confusion matrices for (a) CREMA-D and (b) RAVDESS when the proposed multimodal fusion architecture uses CNN (AN) & CNN (VN).
The category label is abbreviated through the first three letters (i.e., ANG stands for anger, FEA stands for fear).

been initially pretrained on the LibriSpeech dataset, which
is a corpus of approximately 1000 hours of 16kHz read
English speech [71]. The pretrained Wav2Vec2.0 model is
publicly available online [72]. The model is fine-tuned for
the multimodal emotion recognition task using the same
training strategy as for the CNN-based architecture proposed
in Section III. The overall accuracy values are reported in
Table 3. In the case of CREMA-D, the performance results are
close to the ones achieved by the proposed multimodal fusion
approach that used CNN-based models for retrieving both
audio and visual features. An improvement can be observed in
the case of the RAVDESS dataset, for which the performance
achieved when using Wav2Vec2.0 as AudioNet is similar to
human performance [11]. However, the number of parameters
is 36 times higher than themodel proposed in Section III. This
fact limits the possibility of developing emotion recognition
applications based on the Wav2Vec2.0 model on embedded
platforms.

3) NUMBER OF PARAMETERS
The main advantage of the CNN-based multimodal approach
proposed in this paper resides in the small number of parame-
ters of the overall architecture. Specifically, the convolutional
blocks for feature extraction and fully connected layers have
the same weights across all temporal segments, which leads
to a reduction in the number of parameters for the proposed
approach.

Table 4 lists the number of parameters associated to
various architectures included in Table 3. Attention-based

networks, and especially transformers, involve a considerably
larger number of parameters than the proposed approach,
e.g. 36 times higher when using the Wav2Vec2.0 architec-
ture instead of the CNN-based model for the AudioNet.
Consequently, although achieving a high level of accuracy
when fine-tuning a pre-trained Wav2Vec2.0 model for the
AudioNet, the large number of parameters, i.e., almost
97.2 million parameters, limits the integration of this
architecture on embedded platforms. Similarly, the TA-AVN
architecture that our team proposed in [51] consists of
18.7 million parameters when 12 temporal segments are
considered and the number of parameters linearly increases
with the number of temporal segments since each temporal
segment is analyzed by different audio and visual neural
networks.

Using the same audio and visual neural network modules
(i.e., same weight values) across all the temporal segments
leads to obtaining a constant number of parameters irrespec-
tive the number of temporal segments (i.e., approximately
2.7 million parameters as shown in Table 1). As a direct
consequence, the small number of parameters and a model
size of approximately 10.3 MB (with no additional quantiza-
tion schemes applied) allow the integration of the proposed
architecture on embedded platforms with limited resources
(e.g., low memory, low computational power). The number
of parameters and, thus the model size, vary only with the
number of classes due to changes in the last classification
layer, being constant with respect to the number of temporal
segments.
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TABLE 3. Comparisons with other methods.

TABLE 4. Number of parameters.

4) INFERENCE TIME
Apart from the number of parameters and, thus, model
size, inference time is a key aspect when designing real-
time systems. The inference time was measured for a single
instance (i.e., audio and video), which was passed throughout

TABLE 5. Inference time on various NVIDIA platforms(s).

the proposed architecture. The results are presented in
Table 5.

Furthermore, the audio and visual embeddings extracted
using the two corresponding convolutional neural networks
are invariant with respect to time shifts at temporal segment
level. The processing of the streaming multimodal data can
be optimized through the sliding window approach shown in
Figure 2. This approach yields a decrease of the time needed
to analyze N temporal segments containing audio and visual
information since the extraction of features can be performed
only once for each temporal segment, whilst the temporal
aggregation is performed by simply averaging the outputs and
applying a Softmax function.

VI. CONCLUSION
In this paper, we present a new and robust lightweight
multimodal emotion recognition framework, which allows
the processing of streaming multimodal data in a real-
time setting. With a lightweight structure containing a
small number of parameters and currently not using any
quantization technique [73], the proposed approach rep-
resents an optimal candidate for the integration of the
multimodal emotion recognition framework on embedded
platforms and can leverage the opportunity of parallelization
of the entire emotion recognition framework. Specifically,
in a real-time setting, where the multimodal data needs
a continuous processing, the proposed framework allows
a single-time analysis of the multimodal information per
temporal segment since the same neural networks are used
to extract audio and visual features. Similarly, the fully
connected layer, which is the same for all temporal segments,
provides an indication of the short-term emotional state of
the subject based on the multimodal information extracted
over each temporal segment. The temporal information is
aggregated by simply averaging the outputs of the fully
connected layers over multiple temporal segments. As a
direct consequence of using the same weights across multiple
temporal segments, the model size is greatly reduced if
compared to other frameworks that analyze the information
extracted from different temporal segments with different
neural networks. The proposed framework is trained end-
to-end using an uncertainty-based learning approach that
includes the most uncertain samples in the training loop. The
experimental results show that such an approach requires a
smaller amount of annotated training data at each epoch,
while maintaining a high performance level. Moreover, the
training procedure encompasses a natural augmentation of
the training dataset through a random selection of the video
frames and associated speech signals within a given temporal
segment.
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