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ABSTRACT Facial super-resolution (FSR) is a critical research area whose goal is to improve visual quality
by converting low-resolution facial images to high resolution ones. Research in FSR has come a long way
thanks to advances in deep learning technologies. However, there is still a need to develop effective methods
for revealing facial details and preserving the overall appearance. For this purpose, a new approach called
Deep Reinforcement Learning Based Super Resolution of Face Regions (DRL-SRFR) is proposed. It is
based on Deep Reinforcement Learning (DRL) and Deep Residual Dense Block (RRDB) architectures.
In the DRL part of the method, new regions that need attention are identified at each step using the repeated
visual attention methodology. The details in different parts of the face image are iteratively improved to
produce more natural and high-quality face images. In addition, with the stochastic action-taking process,
the decision-making process is made flexible by focusing on important facial regions. The focused region is
improved with the RRDB structure using dense connections and residual learning. Experiments and ablation
studies show that the developed model provides a significant advantage over existing methods in improving
local details and preserving appearance integrity.

INDEX TERMS Facial super-resolution, deep reinforcement learning, super resolution of face regions, deep
residual dense block.

I. INTRODUCTION
Facial super-resolution (FSR) methodology has made
remarkable progress in improving low-quality facial images
in recent years. It has also opened up new possibilities in
the field of visual data processing and analysis, forming an
important research area along with other super-resolution
(SR) tasks. The main goal of this methodology is to improve
the quality and usability of visual data analysis by enhancing
low-resolution facial images from various real-world scenar-
ios to get high-resolution, detailed, and clear images. Facial
hallucination (FH), also known as FSR, aims to improve
human perception as well as computer-based face recognition
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and analysis systems. It enhances the accuracy of face recog-
nition systems, especially in the field of security, by making
facial features more prominent in images taken remotely or in
poor lighting conditions. Its importance has been increasing
in biometrics, surveillance, digital entertainment, and gaming
industries. FSR-derived facial images are also effective in
converting eyewitness sketches into photographs to facilitate
the identification of criminals. It also plays an important role
in various face-related subtasks, such as face alignment, face
segmentation, and face detection [1], [2], [3], [4].

Baker and Kanade first defined the FSR problem and
presented a Bayesian-based statistical method for extracting
high-frequency components in images [5]. FSR algorithms
can be classified into four main classes: interpolation,
statistical, reconstruction, and learning-based methods [6].
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Traditional interpolation methods estimate values between
available pixels. The quality of interpolation-based methods
is low because estimation processes performed in spa-
tial space lead to the loss and blurring of high-frequency
details [5]. Methods based on modeling statistical relation-
ships between high-resolution and low-resolution images are
referred to as statistically based methods, and leading exam-
ples are given in [7], [8], [9], [10], [11], and [12]. In some of
these methods, the variance principal component is used in
different spatial transformations, while in others it is used to
extract local and global relationships between neighborhoods
or to model the statistical distribution of pixels. Statistical
inference is used to enhance the emphasis of high-frequency
components while preserving facial contour and the overall
appearance of the image. Due to fixed parameters or limited
modeling capabilities, statistical methods are not flexible
enough particularly in cases where facial structures and vari-
ations are complex, there are difficulties in capturing details.
In addition, the use of fixed values of the method parameters
may result in blurred or unrealistic regions in the resulting
images, as they inadequately reflect some features of the
face. More flexible techniques have been developed com-
pared to statistical methods. The first is the reconstruction
technique, which tries to make the blurred and subsampled
version of the target image close to the low-resolution image.
The methods aim to focus on sharp details by edge blurring
and gradient profiling [13], [14], [15] or to preserve sharp
details by removing noise in low-frequency regions [16],
[17]. There are methods that combine motion detection from
multiple images or combine images using some estimation
methods [18], [19], [20], [21]. Due to the focus on sharp
details in the reconstruction technique, the solution space is
limited. Furthermore, the performance degrades rapidly when
the scale factor increases.

Recent research in the field of SR has focused on
learning-based methods [22], [23], [24], [25], [26]. These
methods use low-resolution images and their correspond-
ing high-resolution counterparts as training data. By using
machine learning (ML) and deep learning (DL) techniques,
different features of the image are analyzed, and image details
are highlighted.MLmethods that operate with image features
instead of spatial operations are also called feature-based
methods. In images obtained using ML, there are limits in
focusing on high-frequency details. DL models have been
proposed to overcome these problems and achieve more
effective results [27].

SR studies based on DL are divided into three cat-
egories: local-based methods, global-based methods, and
local-global-based methods. In the local-based category, the
image or a block of the image is given as input to the deep
network model [28], [29], [30], [31], [32], [33], [34], [35].
The details in each region are learned and missing details
are revealed. SR methods applied by dividing an image into
smaller blocks cause global information loss, blurring and
artifacts at the edges of the blocks. Global-based approaches

have been developed to preserve the main structure of the
image. Zhou et al. and Huang et al. presented an approach
to preserve the global structure of the face by processing
the entire face with convolution neural networks (CNN)
[36], [37]. In addition to CNN methods, there are methods
that include additional face information and maps prepared
before training [38], [39]. Additionally, methods that com-
bine spatial and frequency information have been proposed to
maintain both frequency details and the overall structure [40],
[41]. The shortcomings of local- and global-based meth-
ods have been overcome by local-global-based methods that
make better use of distance and inter-layer relationships [42],
[43], [44], [45], [46], [47].

Recently, deep generative models have emerged. They are
preferred for many challenging tasks such as style transfer,
data inpainting, image generation, and super-resolution due
to their capability to learn and generate realistic data samples
(e.g., images, audio, text). The most prominent capability of
the methods is to learn the distribution in the data and gen-
erate new similar samples through a two-stage process [48].
Examples of methods are GAN [38], [42], [45], [49], Nor-
malizing Flows [NF] [50], [51], Autoregressive Models [52],
[53] and Diffusion-based studies [48], [54], which produce
high-quality images in the super-resolution domain. Each
type of deep generative model has certain advantages but also
some weaknesses. High computational cost and slow gen-
eration speed of autoregressive models, sub-optimal sample
quality of NFs, and limitations such as optimization insta-
bility and mode collapse of GANs are the most important
weaknesses of deep generative models. On the other hand
diffusion models require high computational costs and long
training periods due to their iterative nature. Moreover, the
process of uncertainty reduction can sometimes lead to artifi-
cial effects affecting the natural appearance of facial images.
Despite their limitations, diffusion-based methods are promi-
nent in solving problems that require detail and accuracy and
are expected to be more widely used in SR applications [48].
Although deep generative networks can produce high-quality
and realistic images that appeal to human perception, there is
uncertainty about whether their outputs fulfill the authenticity
of the target image [55], [56]. Furthermore, despite their
perceptual performance, diffusion methods do not perform as
expected in super-resolution comparison metrics [57].

In the field of DL, one of the recent advances in com-
puter vision problems is attention mechanisms [58]. During
an event or phenomenon, the human brain processes large
amounts of data efficiently by extracting meaningful infor-
mation and focusing on relevant information. Inspired by
this feature of the human brain, attention mechanisms have
been proposed. The idea of attention in DL aims to focus
on the most relevant data. Attention-based studies can be
categorized into two classes: soft attention and hard attention.
In soft attention, input data is treated globally, and more
attention is given to the most important pieces of data while
less important ones are ignored. The mechanism mostly uses
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differentiable smooth transition functions such as Softmax
and sigmoid. This way, during the training period, the model
continuously and efficiently improves itself. On the other
hand, it has a high amount of input data and computational
complexity [30], [31], [32], [58]. Unlike soft attention, hard
attention focuses more intensively on the most important
parts of the data and thus aims to extract more salient
features. However, instead of differentiable functions, varia-
tional methods or reinforcement learning (RL) methods are
used in hard attention [58], [59], [60], [61]. In RL, more
effective and specific learning is achieved, but there can be
difficulties in the optimization and training processes.

In this study, we present a deep reinforcement learning
(DRL)-based local-global category method that focuses on
the face’s local details, preserves the face’s original form, and
utilizes the recurrent attention mechanism. The RL paradigm
is known as the ability to find ideal behaviors, especially in
complex and uncertain environments. A decisionmaker inter-
acting with its environment tries to find the best behavioral
strategy using its actions. As the decision maker interacts
with its environment, it tries to correct its behavior based
on feedback (rewards) and creates policies to improve model
performance as time progresses. The DRLmodel in our study
detects important facial regions using the visual attention
mechanism with a recurrent policy [62], [63], [64], [65]. The
proposed method is a FSR method that aims to fully utilize
hierarchical features and uses a stochastic process to improve
the detected region.

GAN, CNN and diffusion-based methods often use deter-
ministic approaches, which can limit the exploration of the
relevant models. The attention mechanism realized using
RL is dynamically learned to select and improve the most
appropriate region (patch) at each step. Instead of a fixed
strategy, a balance between exploration and exploitation for
different situations is used to determine the patches to be
improved. The knowledge and global contextual clues from
the regions optimized in past steps become a guide for future
optimizations. Furthermore, training is performed to make
optimal decisions by considering the long-term consequences
of the decisions made at each step. This results in signif-
icant improvements in the final image quality. CNN and
GAN-basedmethods are usually based on a loss function (e.g.
l1 or l2-norm), which is not directly related to human percep-
tion. On the other hand, DRL optimizes the reward function
according to specific metrics such as PSNR and SSIM.

Contributions of the study can be listed as follows:
• A DRL method based on the attention mechanism is
proposed by utilizing stochastic processes in the selec-
tion of actions. In contrast to traditional methods, actions
are generated using a stochastic function that follows
a normal distribution instead of being obtained directly
from the layers of a DL model. Stochastic actions add
flexibility to the model’s decision-making process and
increase its learning capacity. Moreover, the attention
mechanism allows the model to focus on important fea-
tures, leading to a more efficient learning process.

• Although patch-based improvements are performed at
the local level, the chosen reward functions and the way
in which they are implemented successfully preserve
the overall integrity of the model. Thus, by significantly
supporting the preservation of the global content while
improving the local details, the proposed methodology
enables superior results in terms of overall quality and
consistency.

• To realize the patch-based image enhancement pro-
cess, a DL model based on the Deep Residue Dense
Block (RRDB) architecture has been developed. In par-
ticular, special improvements have been made to the
RRDB blocks in the input and output layers of the
model and additional residual links have been added.
These improvements allow the model to reconstruct
local details more efficiently while maintaining overall
image integrity.

• By adding a strategic parameter to the reward functions
in the DRL part, accuracy of the action selection process
is improved. The proposed parameter extension allows
the reward mechanism to evaluate the long-term effects
of actions more effectively and thus improve the agent’s
decision-making.

• A DRL model is used to manage the patch selection
processes, while a separate FSR model is integrated to
perform improvements to the selected patches. The two
independent models are merged into a single model to
enable seamless and efficient management of parame-
ter updates and gradient flow. The integrated approach
allows the model to optimize both patch selection
actions and perform patch improvements efficiently.

II. RELATED WORK
The field of DL-based image SR has been significantly
improved by the Super Resolution Convolutional Neural Net-
work (SRCNN) and its derived variations [66]. SRCNN has
limited learning capacity and low performance because it
does not have a deep network structure. Therefore, it cannot
adequately identify local and global relationships and fea-
tures. In recent years, deeper networks and residual structures
have been preferred in SRCNN-based studies [67], [68], [69],
[70], [71], [72]. The Very Deep Super-Resolution (VDSR)
model extends the basic principles of SRCNN by increas-
ing the depth of the network [70]. Fast Super-Resolution
Convolutional Neural Network (FSRCNN) is characterized
by fast computations and low memory requirements with an
efficient architecture including convolution, scaling and pixel
augmentation steps [68]. Enhanced Deep Super-Resolution
(EDSR) adopts the basic ideas of SRCNN and stands out with
a larger and deeper network structure [67], while Laplacian
Pyramid Super-Resolution Network (LapSRN) provides a
multi-scale SR approach using Laplace pyramid [71]. Mem-
Net, a memory-oriented network structure, aims to achieve
memory optimization and high-quality results [72].

Residual Dense Block (RDB) and Residual in Resid-
ual Dense Block (RRDB) approaches have contributed
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significantly to the field of FSR [43], [44], [46], [47], [73],
[74], [75], [76], [77]. In the case of facial images, RRDB
is designed to provide more effective learning by establish-
ing deep connections within the network. The deep network
connection structures allow more consistent and meaningful
extraction of facial features. In particular, each RDB block
accumulates information from different regions of the face to
prevent information loss in facial details during the learning
process. RRDB represents an evolved form of RDB and
aims to represent complex facial features more effectively
by adding an additional residual link network within each
RDB block. The additional residual connections within the
block are more focused on the outputs of the previous RDB
blocks, fostering deeper and more detailed learning, espe-
cially in facial anatomy. In this context, the deep connections
and residual networks offered by RDB and RRDB in facial
image SR tasks represent a significant advance by enabling
more effective learning and better feature extraction in facial
details.

GAN methods, whose main starting point is to generate
images and videos, have also been used for image SR appli-
cations. It has been observed that the deeper the generating
network, the better the output [1], [78], [79], [80], [81].
Although GAN-based methods provide an output rich in
detail, sometimes regions with artificial output may occur.
In addition, they can be difficult to train due to their unstable
nature and complex structure [79]. In the first GAN and SR-
based study, SRResNet and SRGANmethods were presented
together [42]. In SRResNet, the solution is provided with
a deep network and residual blocks, while in SRGAN, the
generating network in the GAN method works like SRRes-
Net. In contrast, the supervisory network tries to increase the
accuracy of the outputs. The loss functions of the SRGAN
model were enriched with the Enhanced Super-Resolution
Generative Adversarial Networks (ESRGAN) method, and
more detailed outputs were obtained [45]. Generative net-
works have been proposed to extract more features from the
image [38], [78], [80].

GAN-based studies have led to the development of new
deep generative models. For example, an autoregressive
model was developed that emphasizes textural details by
splitting the image into patches and assumes that long-term
pixel dependencies are not needed [82]. In another work,
the SR-Flow model was introduced, which tries to learn the
conditional probability distribution of high-resolution images
from low-resolution images and performs inverse transforma-
tion [83]. Recently, the diffusion-based SR3 model has been
proposed, which realizes super-resolution by transforming
a standard normal distribution into an empirical data distri-
bution through successive refinement steps [48]. The model
produces diverse and photo-realistic high-resolution images
using a fixed number of inference steps independent of the
output resolution.

In the methods above, SR images are generated through
pixel-level improvements, leading to a fixed receptive field
problem in some CNN-based FSR approaches. To address

this, the SFMNet method incorporates frequency informa-
tion [40]. It preserves global information through amplitude
and textural information through phase in the Fourier trans-
form of the image.

With the increasing amount of data and the emergence
of complex tasks, it is imperative that DL models focus on
the important aspects of the data. For this reason, soft and
hard attention methods aim to use the low-resolution input
image by emphasizing the important details while ignoring
the irrelevant parts of the data.

Among the soft attention methods, channel attention, spa-
tial attention and self-attention are preferred according to
the problem types. In channel attention, weight parameters
of the model are calculated on a channel basis by eval-
uating the contribution of each feature channel to certain
parts of the input [84]. Spatial attention is a method for
enhancing the features of facial regions in the image and
ignoring the features of other parts of the image using special
residual blocks. It can be used as a separate mechanism or
as a complement to channel attention [85]. Self-attention
allows for a sharper and more accurate reconstruction of
the face by modeling the relationships between the face
image’s low- and high-level feature spaces better [59],
[60], [86]. Soft attention mechanisms are constructs that
consider all elements of the input data. However, hard
attention mechanisms are preferred when the model needs
to focus its attention on a specific region, element or
feature.

In the Statistical Hard Attention type of hard attention
networks, the model uses statistical information to focus its
attention on a particular learning task [87]. For example,
a given data point is given more attention based on its per-
formance at previous times in the model’s operating period.
In Gaussian Hard Attention, Gaussian or similar probability
density functions can be used to focus the model’s attention
on a given task and to make this focus have a smoother
transition [61]. In Clustering-based Hard Attention, in order
to focus on data points with similar characteristics, the model
identifies certain features using clustering algorithms and
focuses its attention on these clusters [88].
There have been DRL-based studies that have produced

good results in local evaluations [30], [31], [32]. In this study,
a method that combines the concepts of DRL and attention is
developed.

FIGURE 1. Basic functioning of the model.

The method identifies attention regions (a face patch)
and enhances the attention region with simple deep network
models.
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III. METODOLOGY
Some abbreviations are given in Table 1 for the reader to
follow the paper.

TABLE 1. Summary of abbreviations.

A. PROBLEM DEFINITION
The aim of DL-based FSR methods is to transform a
low-resolution face image x into a high-resolution target face
image y. For this purpose, x is processed by the DLmethodF
with parameter θ to obtain a face image x̂ that predicts y. This
process can be represented as follows.

x̂ = F(x|θ ) (1)

In this study, a DRL-based patch selection and
RRDB-based FSR method is proposed using the model given
in Figure 1. A certain number (T ) of regions (patches) are
sequentially identified from a face image. At each step,
a patch is enhanced and embedded into the image to create x̂.
The patch enhancement is expressed as follows

x̂ = FFSR ((FDRL (x | θr )) | θh) (2)

where FDRL and FFSR represent the DRL model and the
resolution-enhancing model, respectively. θr and θh are the
parameters of themodels. Since DRL is used to select the face
regions and the selected region is enhanced by the SRmethod,
the proposed method is named Deep Reinforcement Learning
Based Super Resolution of Face Regions (DRL-SRFR).

The FDRL model, an attention-based approach, is applied
to the face image. The output of the model is the likely
location and region that needs attention (enhancement). The
selected patch is enhanced with the FFSR model, which
includes residual connections and dense layers.

There are some challenges in the FDRL and FFSR models.
The first one is to select regions with missing details and
identify other target regions on the face. Second, how to
create the reward mechanism for FDRL needs to be deter-
mined. In a face image, there may be many regions whose
details need to be improved. For this purpose, an iterative
attention model is used to select T regions. Each step aims
to reveal high-frequency regions and details of the face.
Attention models require prior knowledge. Therefore, storing
the improved regions and images in iterative steps as well
as utilizing past model experiences is another challenge in

the iterative nature of the process. In the SR method used
in the refinement, the implementation of the RRDB model
is modified [45]. RRDB has many layers and the model
input is an image. However, in our work, the input of the
FSR model is the refined image obtained from the iterative
structure and the selected region obtained in the new step.
Due to the change of the model input, the residual learning
structure in the RRDB layered network structure needs to
be modified. Since the output of FDRL is the input to FFSR,
continuous backpropagation is required to update the model
parameters. Finally, choice of T in the iterative structure, size
of the regions to be selected, the number of layers of the
residual dense blocks, the filter sizes, the parameters of the
connection density are also challenges.

B. DEEP REINFORCEMENT LEARNING BASED SUPER
RESOLUTION OF FACE REGIONS (DRL-SRFR) NETWORK
Figure 2 shows the general structure of the proposed method.
Unlike previous DL-based FSR methods, the SR problem is
treated as a Partially Observable Markov Decision Process
(POMDP) [89]. The FDRL model is based on the Recurrent
Attention Model (RAM). A gradient-based recurrent policy
network is used for the RAM model. At each step t , the
decision maker gets a partial observation of the environ-
ment as input (current state). Depending on the current state,
the decision maker determines the patches that need to be
improved.

In the FFSR model, a SR method is created that is con-
sistent against low-resolution inputs, emphasizes fine details,
improves gradient flow with dense connections, and uses a
hierarchical and nested residual structure. In DRL-SRFR, the
enhanced face image is obtained at the end of iterative pro-
cess. During the iterative process, each state is the input of the
policy layer. The policy layer carefully determines a position
and a face patch from the face image. The patch is enhanced
with FFSR and embedded into the enhanced image obtained
from the previous steps. When all the selected patches are
processed, a high-resolution face image is obtained. At each
step of the process, the reward mechanism is activated and the
parameters ofFDRL andFFSR are updated with the help of the
back propagation algorithm and the accumulated rewards.

1) DETAILS OF MODEL
Most FSR and hallucination methods do not utilize the
inter-pixel correlation in the face image and consider
facial regions independently. The proposed method per-
forms sequential learning to generate high-resolution face
images, focuses on the distorted parts of the image, and uses
inter-region correlations using the enhanced regions.

As shown in Figure 2, the proposed framework consists
of three parts. The first part is an agent network and a
reward function that provides the current state and rewards
for the policy network. The second part serves as the decision
maker (policy network) that generates the location and patch
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FIGURE 2. The general structure of the proposed method. The policy network acts as a decision-maker. The policy network FDRL directs the
sequential training of the reward function while determining the patches to be considered. FFSR enhances the patches with deep RRDB layers
and adds them to the face image.

according to the current state. The last part is a deep network
responsible for the refinement of the selected patch.

The agent network extracts the features of the observations
obtained in the iterative process with linear layers. In FDRL ,
the policy network includes a gated recurrent unit (GRU)
network and a location generator network. With the GRU,
information from the past is stored and used to determine new
locations. In FFSR, the RRDB method is implemented using
long-range layer relationships using residual links. Details are
given in the following sections.

Notations: The objective of the FSR method for a
given image x ϵ Rh,w with steps in iterative processes
t = {1, 2, 3, . . . ,T } is to determine the positions l =

{l1, l2, . . . , lT } ϵ R2 and patches at those positions g =

{g1, g2, . . . , gT } ϵ Ru,v sequentially. Here, h and w denote
the dimensions of the image, and u and v represent the
dimensions of the patches selected from the image. The deter-
mined patches are processed in each step to obtain enhanced
patches ĝ = ĝ1, ĝ2, . . . , ĝT , and a hallucinated image x̂ =

x̂1, x̂2, . . . , x̂T is formed by embedding each patch into the
previous image at the same position in each step. The image
formed at iteration T is the output image. The operation for
each step is expressed with the following equations. Table 2
provides intermediate structures and outputs generated during
the iterative process.

The iterative policy layer fπ (st−1; θr ) generates a position
information lt = {m, n} for a state st−1 at step t − 1 as in
Equation (3). With {m, n} location information, a patch gt of
size (u, v) is selected from the face image.

lt = {m, n} = fπ (st−1; θr ) (3)

Patch gt is refined with FFSR to obtain the refined patch ĝ
as in Equation (4).

ĝt = FFSR
(
g, x, x̂t−1; θh

)
(4)

TABLE 2. Inputs and outputs OF DRL and FSR models.

At each step, ĝt is embedded into the face image x̂ that was
enhanced in the previous step. In Equation (5), the process
proceeds in a similar way, resulting in a final image x̂ at the
end of the T steps.

x̂t = x̂t−1 ⊕ ĝt where t = 1, 2, . . . ,T (5)

where ⊕ represents embedding of ĝ into the previous
enhanced image. During the process, the subregion ĝ is deter-
mined from x̂t−1.

2) DESCRIPTION OF STATE, ACTION AND REWARD IN
REINFORCEMENT LEARNING FOR OUR METHOD
RAM is a computational framework designed to understand
and utilize attention in a visual environment, especially
in the context of activities aimed at achieving specific
goals. Theoretically, it builds on the paradigm of sequential
decision-making processes in cognitive science and artificial
intelligence. RAM outperforms CNN in dealing with clutter
and scaling to large input images. RAM is thereforemore effi-
cient and effective than CNN in real-world applications with
limited computational resources, especially in complex visual
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environments. The decision maker uses a limited bandwidth
network in RAM to observe its environment. In other words,
there is an input (state) that can only be of a specific resolution
or cover a particular area. Thus, the decision maker does not
consider the whole environment in a step but only the parts
it focuses on. Therefore, the decision-maker must integrate
information between steps. In response to the actions taken,
rewards are generated by feedback from the environment.
The reward, reflecting the results of its interaction with the
environment, can be immediate or delayed. The main goal
of the process is to optimize the total reward at the end of
the iterative process. Below, we define the state, action and
rewards for the RAM mechanism in FDRL . Note that while
the learning parameters θ should be specified with different
indices in both the linearization layers and models, we do not
use indices for each function for the sake of simplicity.

State: Each new patch should be able to identify incorrect
attention locations resulting from previous steps. Therefore,
a state should reflect the previous location information lt−1
and the historical information ht−1 of the previous locations.
In this way, the attention mechanism learns the correct prefer-
ences and locations during the training process. Furthermore,
a low-resolution face image x is also included as part of the
state at each step to select a new location and preserve the
holistic characteristics of the image. The sequential inclusion
of the improved image x̂t−1 in the state preserves the rela-
tionship with the past and contributes to both local and global
improvement. For the given objectives, the input data x, x̂t−1
and lt−1 are transformed into the vector et by the representa-
tion network fs

(
x, x̂t−1, lt−1; θ

)
. Then, current state denoted

by st is obtained by appending ht−1 to et as in Equation (6).

st = (et , ht−1) (6)

At the beginning of the iterative process, the improved
image x̂ is assigned the original low-resolution image x and
the initial position is the center of the image. fs is the rep-
resentation network that linearizes the input parameters. The
policy network uses the state to compute the probability of
attention regions.

Action: The main task of the policy network is to deter-
mine the location of the new patch to be improved. For a
state s, all location probabilities of patches with size (u, v)
are calculated. From the probabilities, the coordinate of the
new patch is determined from the final hallucination image x̂.
Due to this structure, when determining the next location,
the policy network evaluates the current situation together
with the information obtained from past observations and
determines where in the image attention should be focused.

An action is realized by a GRU and a linear network.
Like RAM methods, A GRU is a memory element with two
inputs and one output. The first input is the state, and the
other is the history information. The output is a vector of
new history information. With GRU, past experiences and
current situations are combined to provide a comprehensive
representation of which location to choose. A linear net-
work is then used to determine the new location using the

new hidden vector. All possible locations are defined with
lt = (m, n |m ≤ h, n ≤ w). The location is treated as a
random variable with a probability mass function given in
Equation (7).

P (a | s, θ) = P (lt | st , θ) = P ((m, n) | st , θ) (7)

Reward: DRL methods use reward functions to guide
the decision-maker toward the right actions. In the pro-
posed method, local and global reward functions guide the
enhancement of both image patches and the entire image. For
this purpose, four reward functions and an auxiliary reward
parameter Epc, which uses the ratio ‘‘Number of improved
pixels/number of all pixels’’ of an image, are employed.
Recent studies have shown that using only pixel-wise rewards
leads to underestimation of structural differences and low per-
ceptual quality [45]. The perceptual loss function introduced
in the ESRGAN method improves the perceptual quality
by prioritizing the structural similarity of the image. In this
study, the perceptual loss function is also used. Two local
reward values over the patch regions and two global reward
values over the whole image contribute to determine the total
reward. Local rewards are based on the patch ĝt at each step
and the target patch gyt that is the target image counterpart
of the selected patch gt from the low-resolution image. Over
the two patches, two rewards are calculated with l2-norms
between ĝt and g

y
t and the features obtained from VGG19

(
ĝt

)
and VGG19(gyt ). (VGG19 is a CNN consisting of 19 layers
that performed well in the 2014 ImageNet competition. The
features extracted from the feature layers of VGG19 are used
to calculate content loss.) Global rewards are generated at
the end of the iterative process. Given the final image x̂
and the target image y, the global rewards are calculated as
mean square error between x̂ and y and the l2-norm between
the features obtained from VGG19

(
x̂
)
and VGG19(y). The

parameter Epc benefits the global enhancement. It is an
indicator of how many pixel values have contributed to the
enhancement. During a cycle, all selected pixels are assigned
a value of 0 and 1 is assigned to others. The resulting (0;1)
map for Epc is given in the ablation studies. The expressions
for local and global rewards are given below:

rl =
1

T × c× u× v

∑T

t=1

(
gyt − ĝt

)2 (1st)

rlper = λ
1

T × c× u× v

∑T

t=1

∥∥φvggĝt − φ
vgggyt

∥∥2
2 (2st)

rx =
1

c× h× w

(
x̂ − y

)2
× Epc (3st)

rxper = λ
1

c× h× w

∥∥φvggx̂ − φ
vggy

∥∥2
2 × Epc (4st)

Features are extracted using the VGG19 model for the
function φvgg. The feature layers are obtained by removing
the adaptive mean pooling and classification at the end of the
pre-trained VGG19 model. In addition, all parameters of the
VGG19 model are frozen and features are extracted based on
the trained model parameters.
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The total reward R is generated as in Equation (8) and used
to train the decision-maker.

R = −(rl + rlper + rx + rxper ) (8)

3) FSR STRUCTURE
Deep networks have been proposed to reveal image details
and preserve global structure in SR structures [77]. In FDRL ,
the patch obtained from the repeated attention mechanism
is enhanced with residual connections, hierarchical features
and deep dense layers. Classical CNN-based methods have
limitations in extracting image features. RDB structure shown
in Figure 3 has been developed to obtain richer image fea-
tures, increase the use of hierarchical features and multi-level
features, and provide better preservation and enhancement
of details [43]. RDB structures consist of residual links and
dense links. In the ESRGAN method, RRDB structures,
which are more complex and efficient than RDB, were devel-
oped by combining RDB structures. In RRDB, the basic
features of RDB are preserved, while adopting a residue-on-
residue structure. An RRDB block contains more than one
RDB block. It is particularly effective in preserving details,
textures and offers significant improvements in realism and
detail in SR tasks [46], [67]. At the same time, RRDB
provides a more efficient computation of gradients to deep
network layers. Thus, the problem of gradient loss is avoided.
The RRDB structure of the ESRGAN method is given in
Figure 4. The ESRGAN method employs one input image
and includes structures to perform upsampling in the output
layers. In our proposed RRDB structure, there are two image
inputs and no upsampling is used. RRDB structure is formed
as shown in Figure 3 with the previous enhanced image x̂ and
the patch g obtained from the repeated attention mechanism
during the iterative process. An important advantage of the
proposed structure is that it provides the gradient flow in
a seamless manner. However, a bridge between FDRL and
FFSR model structures is required. The integration of the
new region with the enhanced face image obtained from the
(t−1)th step acts as a bridge between the models. In this way,
the network parameters of the models can be updated with the
backpropagation algorithm.

There are many RDB layers in an RRDB. In addition, there
are residual links in RRDB and RDB structures. Thus, in the
initial layers of the network, features such as edges, texture,
and color of basic elements in the face image begin to appear
while the network delves deeper to reveal more complex
and abstract features. As a result, low-level and high-level
features are used in deep layers to preserve facial features.

Figure 3 shows the FSR structure of the model for an
instant t . Convolution and ReLu activation are applied to
x̂t−1 ∈ Rc,h,w and gt ∈ Rc,u,v to obtain the shallow fea-
ture vectors x̂ ft−1 ∈ Rc,u,v and gft ∈ Rc,u,v respectively.
Both vectors are combined to form the input vector of the
deep RRDB denoted by F1 ∈ Rc,u,v. Hierarchical features
from the input vector are used in the deep RRDB layers.
A residual connection is added at two points at the end of the

FIGURE 3. The enhancement network in the FFSR model. x̂t−1 is the face
image enhanced in the previous step and gt is the patch region
determined in FDRL. Features are extracted from x̂t−1 and gt and passed
through RRDB structures. A residual learning structure is applied at two
points. In the RRDB structure, residual links are used in the RDB. In which
features are again determined with residual links.

FIGURE 4. RRDB structure in the ESRGAN method.

sequential RRDB structure. With the last convolution layers,
the improved patch ĝt is obtained. There are D times RDBs
in an RRDB. In each RDB structure, feature extractions are
performed using residual links.

Table 3 summarizes the operations and formulas in
Figure 3. Except for the RDB block, the convolution weights
of the other layers are represented by W and bias terms
are omitted for simplicity. Both RDB and deep RRDB have
a continuous memory structure and local feature fusion. σ

represents the ReLU activation function, andWd,c andWd,LF
in RDB represent the weights of the c-th convolution layer
and the final layer, respectively. The clamp function scales
the output of the last convolution layer to the {0, 1} range to
produce ĝt .

4) DRL STRUCTURE
The representation of the states in the DL structure and the
structure of the RAM for the policy network are detailed
below.

a: STATE REPRESENTATION
The representation network is shown in Figure 5. It acts as a
feature extractor and consists of several connected linear lay-
ers. The representation network consists of past information
ht−1 and new observation features e. While the past informa-
tion is extracted from the GRU layer, the new observation is
generated by sequential linear layers and activation functions
as in Equation (9).

et = fs(x, x̂t−1, lt−1) = x f + x̂ ft−1 + l ft−1 (9)
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TABLE 3. RRDB process formulas.

Terms having top index f in Equation (9) are generated by
applying two consecutive linear layers to the inputs x, x̂t−1
and lt−1. Location lt−1 is 2 × 1 vector. x and x̂ are smoothed
into a single-column vector. Then, vectors of size 256 in the
first linearization layer and 512 in the next layer are obtained
and summed to obtain e. The other component of the state,
ht−1, is the history information in the GRU structure and is a
vector of size 512.

b: POLICY NETWORK
Recursive links are used to handle the iterative process and
to transfer the information about the past to the following
moments. The policy network consists of the GRU layer and
the policy layers. The GRU layer takes state (st ) features
and transforms them into an internal state (memory). This
internal state stores time information and the accumulation
of previous steps. The policy layer transforms the internal
state into a given policy probability. The policy probability is

FIGURE 5. A state consists of e and ht−1. The position and the recovered
image from the step (t − 1) and the original image are combined by
extracting features from the linearization layers. A state is determined by
adding the RAM’s historical information.

a normal distribution that determines which action the model
should take next.

Figure 6 shows details of the policy network. A GRU
memory cell converts st = (et , ht−1) into the probability of
an action group. The memory cell integrates the previous
cell memory unit ht−1 and the input vector et from the
current step. For a given state (et , ht−1), the GRU layer
ht= GRU (et , ht−1) computes an output sequence ht by
recursively computing the activations of the units in the net-
work with Equation (10).

ht= tanh(Wsiet + bsi +Whiht−1 + bhi) (10)

where t , et , ht , Wsi, Whi and b denote step t , the input
vector, the hidden vector, the weight matrix corresponding to
input et , the hidden vector corresponding to the new hidden
state and the bias terms, respectively. The position initial val-
ues at et are l0 = [−1, 1]. In the other steps, they are chosen
with a uniform distribution function. In the first step, x̂ = x.
In this way, the first enhanced image is actually the low-
resolution image. The parameter x̂t−1 in the other et states
is the image whose sub-region has been enhanced at time
t − 1. In the sequential learning process, the enhanced image
information and the location information from the previous
steps are stored in the past action information. Therefore, the
new patch selection is influenced by the past information and
adjusted to correct the errors caused by previous actions. For
GRU, initial values are used as h0∈ R512

= 0.
The policy layer is used to model the decision-making

process. At each step in the process, a policy function is
defined that determines which action to take. The output of
the policy function, which consists of a neural network, is the
probability distribution of actions. The policy is implemented
by sampling from a Gaussian distribution defined by the
parameters mean value (µ) and standard deviation (σ ). From
the Gaussian distribution, a new location is estimated by
a stochastic process. Thus, the aim is to strike a balance
between using the current state to predict future phases and
taking actions that have not been tried before.
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Mean value and standard deviation are critical statistical
parameters in RL algorithms. The mean value indicates the
central tendency of a data set, while the standard deviation
measures how much that data deviates from the mean and
determines the spread of the distribution. In a normal distri-
bution, the mean value forms the center of the distribution
and represents the most likely action, while the standard
deviation determines the width of the distribution, managing
uncertainty and the process of exploration. In stochastic pro-
cesses, the combination of mean value and standard deviation
allows the decision-maker to optimize rewards by learning
about the environment. When the standard deviation is high,
the decision maker is encouraged to sample over a wider
range of actions and make an untested decision, while a low
standard deviation allows the decision maker to take the con-
firmed best action in the current situation. This balance allows
the decisionmaker to bothmaximize rewards in the short term
and develop generalizable and adaptive strategies in the long
term. Dynamically adjusting the mean value and standard
deviation allows the decision-maker to adapt to changing
environmental conditions and optimize performance. As a
result, using mean value and standard deviation in RL and
stochastic processes provides a flexible learning experience
for the decision-maker by making the learning process more
efficient.

µ is calculated from the relation tanh
(
W2ReLU(

W1ht + b1
)

+ b2
)

using two linear layers and an
activation function. Standard deviation σ is calculated
from the reparameterization trick approach defined by
σ = exp (Wσht + bσ ), whereW1,W2,W σ , b1, b2, bσ are the
weight and bias parameters of the linear layers. With the
calculated parameters probability density function (PDF)
defined by Equation (11), is generated

P (lt |µ, σ) =
1

√
2πσ

exp (−
(lt − µ)2

2σ 2 ) (11)

where lt is an indicator of the action produced by the
decision-maker in a given situation, and P (lt |µ, σ) gives
the probability of the actions sampled by the model.
A random location point is selected from the calcu-
lated probability distribution. Thus, a stochastic behav-
ior layer is created that allows the decision-maker to
explore the current situation and make decisions under
uncertainty.

C. MODEL TRAINING
In the FDRL part of the proposed method, the POMDP model
is used to efficiently apply location selection in uncertain
environments. The objective of POMDP is to determine the
best location selection sequence under uncertainty. In this
context, a decision-making strategy should be developed
using the belief state so that the decision-maker can choose
the best actions in situations that are not fully observable.
The belief state represents the probabilities of the decision
maker being in the current situation, and the probabili-
ties are continuously updated by observations received and

actions taken. The belief state plays a critical role for the
decision-maker to determine the policy and choose the best
actions in line with the policy. However, learning the best
policy for complex and uncertain environments is very dif-
ficult with traditional methods. At this stage, RL methods
come into play. REINFORCE algorithm, a gradient-based
Monte Carlo Policy Gradient method, is used to determine
the best policy based on the belief state. The REINFORCE
algorithm updates the policy parameters based on reward sig-
nals. Thus, the decision-maker learns to achieve the highest
total reward over time. In the process, belief states are used
to allow the decision-maker to make the best decisions under
uncertainty.

Figure 6 shows the three steps of the sequential process.
At each step t , the environment generates a state, denoted by
st+1. Transitions between states are governed by an unknown
function p (st+1|l1:t , s1:t) which depends on all previous
choices l1:t and previous states (s1:t ). In this view, the policy
network learns a stochastic policy π ((lt) |s1:t , θ) that maps a
distribution over instantaneous actions onto the history of past
interactions H1:t = s1, l1, s2, l2, . . .st−1, lt−1, st , lt . At an
instant t , choice lt interacts only with the observation at
instant st and the delayed reward signals are computed during
the previous cycle.

After the action is taken, a set of local rewards (rlt and
rlper t ) is generated for the new observation st , and two more
global rewards (rx ve rxper ) are generated in the last step T .
Let the sum of the reward values for step t be denoted by rt .
The objective of the policy network is to maximize the reward
sums R =

∑T
t=1 rt .

In Figure 6, for a state st , gt at position lt is selected as
the attention patch. The selected patch is enhanced with the
FFSR to obtain ĝt and embedded into the previous enhanced
face image x̂t−1. The reward mechanism is run for the patch
and two local rewards (rl, rlper ) are calculated. In the last
step, two global rewards (rx and rxper ) are added based on the
final face image and the target image. The Epc in the reward
process aims to reach all regions of the face, while the FDRL
model training is intended to target the bad patches that need
to be improved.

The expected total reward J (θ) is expressed as the
expected value of sums of rt under the aggregate probability
density function p (s1:t ;θ), which is calculated by the policy
parameter θ :

J (θ) = Eπθ

[
T∑
t=0

Rt

]
= Ep(s1:T ;θ)

[
T∑
t=1

Rt

]
(12)

To maximize J (θ), the parameters θ that maximize the
expected reward should be calculated. For this purpose, the
effect of the policy parameters on the total reward R should be
analyzed by taking a gradient on the expected value with the
Monte-Carlo Policy Gradient rule [90]. For the derivative of
the expected value, the logarithmic derivative rule is applied
to form Equation (12). Thus, the agent is trained to obtain the
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FIGURE 6. The last three steps of the recurrent structure are shown. The patch from the previous image is enhanced with the FSR model and
embedded into the incoming image. Rewards are calculated from both the patch and the resulting image. In the last step, the enhanced image is
output.

highest total reward R:

∇θJ (θ) = E(s1:T ;θ)

[
∇θ logπθ (at | st)

[
T∑
t=1

Rt − bt

]]
(13)

In Equation (13), bt is a base that depends on the state
independent of the action. The basis is a function of the
value in the corresponding batch, increasing the probability of
choosing rewarding locations and decreasing the probability
of choosing the opposite. As a result, gradients of the total
expected reward over each batch and the number of patches
are calculated. Let M be the number of batches, the final
gradient rule is given in Equation (14) and is also known as
the REINFORCE rule.

∇θJ (θ ) =
1
M

M∑
i=1

T∑
t=1

∇θ logπ
(
ait |s

i
1:t ;θ

) (
Rit − bt

)
(14)

Using the current policy, the goal is to obtain samples of
s1:T interaction sequences and then increase the logarithmic
probability of selected actions by adjusting the parameter θ

and selecting actions with high cumulative reward, avoiding
selecting actions with low reward.

The training processes explained so far are in the scope
of RL. Mean Squared Error (MSE) is used for the train-
ing processes of local regions in the RRDB network and

for updating the RRDB network parameters. The difference
between the improved image and the ground truth image is
used as the loss function. The loss function for patches and the
global loss function are calculated using MSE. The loss func-
tion for the i-th patch is calculated as Li (g) =

1
ni
(ĝi − gyi )

2

where ni = c × u × v. The total loss function for T patches
is given as Equation (15).

L (g) =

T∑
i=1

Li (g) (15)

At the end of the T steps, the global loss function is
calculated by Equation (16).

LG =
1
ki
(x̂ − y)2 (16)

where ki = c × h × w is the number of pixels in the image.
In theFFSR model, improving only ĝwith RRDB and embed-
ding it in the spatial space causes the gradients to disappear
due to the global loss function is between x̂ and y. To solve
this problem, x̂t−1 is included in the model in the formation
of ĝ by establishing a relationship to ensure gradient flow.
Not only the selected patch g but also x̂t−1 are applied to
the RRDB input in the FSR structure. Therefore, the loss
function between x̂ and y allows the parameters ofFFSR to be
updated. The final loss function used to determine the optimal
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parameters of the method is calculated from Equation (17).

L = L (g) + LG (17)

When calculating the derivative of the final loss function
with respect to the model parameter θ , the chain rule is
applied and the gradients for each L(g) and LG are calculated
using Equation (18).

∂L
∂(ĝ, x̂)

=
2
niT

T∑
i=1

(ĝi − gyi ) +
2
ki
(x̂ − y) (18)

IV. EXPERIMENTS
Several benchmark experiments were conducted to demon-
strate the superiority of the proposedmodel. First, the training
data and implementation details will be introduced. Then,
the proposed DRL-SRFR model will be comprehensively
compared with other recent methods in the literature. In the
comparisons, standard performance metrics in SR and FH
will be used. In particular, the performance of the proposed
model depending on different parameters will be analyzed
in detail, and its advantages over previous methods will be
emphasized.

In addition, several analyses were performed to evaluate
the performance of our model on different datasets. The
analyses were aimed at assessing the general applicability
of the model and its ability to adapt to various conditions.
Finally, detailed ablation studies were performed to further
elucidate the contribution of each component in the model.

The proposed method is compared with SRCNN [66],
VDSR [70], SRGAN [42], IPFH [30], Attention-FH [31],
SFMNet [40], ESRGAN [45], SR3 [48], and SwinIR [91].
These methods can be categorized into six groups: (i) general
image super-resolution: SRCNN and VDSR; (ii) facial hal-
lucination: SFMNet; (iii) Diffusion: SR3; (iv) Transformer:
SwinIR; (v) generative adversarial learning: SRGAN and
ESRGAN; (vi) RL: IPFH and Attention-FH. The methods in
the first group address normal image restoration, while the
algorithms in the second to sixth groups are widely applied
for face image restoration. The third group includes the
diffusion-based method, which produces high-quality images
by gradually removing noise. The fourth group deals with the
Transformer-based method, which obtains high-resolution
images using attention mechanisms in multiple layers. The
methods in the fifth group are widely used in image recon-
struction and have achieved impressive results.

Except IPFH [30] and Attention-FH [31], the other
methods were implemented by us. While training the com-
pared methods, the training parameters given in the related
papers were used. All methods were trained on a computer
with NVIDIA 3090 24GB GPU, Ryzen 5 5600 CPU and
32GB RAM.

A. DATASETS AND IMPLEMENTATION DETAILS
1) TRAINING SETS
The following four training data sets were used to train and
test our model.

• CelebA [92]: A large-scale dataset containing
202,599 wildlife face images with 10,177 identities.
40000 images were used for training and 4000 images
were used for testing.

• BioID [93]: an open dataset containing 1,521 gray-
scale face images taken under laboratory conditions.
1,293 images were used for training and 228 images
were used for testing.

• LFW [94]: 13,233 real face images with 5,749 identities.
11248 images were used for training and 1985 images
were used for testing.

• PubFig [95]: It is a large dataset containing 58,797 real-
world face images collected from the web. We used
12000 images for the training set and 2000 images for
the test set.

2) IMPLEMENTATION DETAILS
In all methods and datasets, RGB format images are cropped
to (128,128) with the center region centered. The training
batch size is 20. For accurate and reliable benchmarking,
all methods are trained only on the corresponding training
set without using other datasets in the pre-training. The
method was evaluated with scaling factors of 4 and 8 to
evaluate different cases and to understand the competence
of the model. We also normalize the input images in the
range [0, 1]. T for the policy network was set to 15 to
achieve a balance betweenmodel speed, sufficient area cover-
age and accuracy. The DRL-SRFR model was trained using
ADAM gradient descent with a base learning rate of 10−3,
momentum term of 0.9. Every 15 epochs the learning rate
was reduced by 0.5. The σ was set to 0.25, the number of
RDB blocks was set to 3 and the number of RRDB blocks
was set to 8. The number of epochs was chosen as 150 and the
batch size as 10. Based on the given parameters, the amount of
RAM required for the method to run is approximately 6 GB.
To give an idea, the training time for the LFW dataset is 925 s
for one epoch. The training time increases as the number
of RRDB blocks increases. For example, with a 12-block
structure, the training time is 1392 seconds.

The compared methods were implemented using the fol-
lowing parameters: ESRGAN: number of blocks 23, batch
size 16, number of epochs 1000; SWINIR: window size 8,
number of transfer blocks 6, embedded size 180, number
of num heads 6, multi-layer perceptron layer size 2, batch
size 8, number of epochs continued until the approximate
performance value given in the method. SR3: the number
of internal channels is 64, the channel expansion factor is
[1,2,4,8,8,8], the resolution at which the attention mecha-
nism is applied is 16, the number of residual blocks at each
resolution level is 0.2, the noise addition and subtraction
processes are repeated 2000 times during the training process
of themodel, the noise addition and subtraction rate is linearly
increased and decreased from beta value 1e-6 to 1e-2, the total
number of iterations is maximum 500000. SFMNET has a
two-branch structure, an 8-layer structure is used and fused
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TABLE 4. Comparisons of PSNR values according to scale ratio of 4 and 8.

TABLE 5. Comparisons of SSIM values according to scale ratio of 4 and 8.

for up and down feature extraction in frequency branch and
spatial branch operations, batch size is 8 and the number of
epochs is 400 during training. IPH and Attention-FH: since
there is no official code page and no other code implementa-
tion, the values and images given in their articles were used.
SRCNN: the images were first trained using 33× 33 patches
with epochs of 50000 and batch size 16, the feature layer
was followed by a non-linear layer, and the SR image was
reconstructed in the last convolution layer. VDSR: there are
a total of 20 convolution layers and each layer uses filters of
size 3×3, each convolution layer contains 64 filters, the batch
size is set to 16 and the model is trained for 100 epochs.

3) EVALUATION METRICS
Like many previous works, we adopt the widely accepted
visual evaluation metrics of Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity (SSIM) [30], [31], [42]. The
mathematical expressions for PSNR and SSIM are given in
Equations (19) and (20).

PSNR
(
x̂, y

)
= 10 × log (

2552

||x̂ − y||22
) (19)

SSIM
(
x̂, y

)
=

(
2µx̂µy + C1

) (
2σx̂y + C2

)(
µ2
x̂ + µ2

y + C1

) (
σ 2
x̂ + σ 2

y + C2

) (20)

where x̂ is our resolution-enhanced model output and y is
the target image. µx̂ and µy denote the averages of the pixel
values for x̂ and y while σ 2

x̂ and σ 2
y stand for the variances

of x̂ and y respectively. σx̂y denotes the covariance of the two
images. C1 and C2 are small constants and are used to avoid
division by zero.

Higher PSNR values indicate better quality. However,
PSNR should be interpreted with caution as it does not ade-
quately reflect the perceptual characteristics of the human
eye. SSIM attempts to measure image quality more closely to
the perception of the human eye and is therefore often used
in image processing and quality assessment. The SSIM score
takes a value between 0 and 1. An SSIM score approaching
1 indicates a high similarity between two images, while a
score approaching 0 means low similarity.

We compared our method visually and semantically with
other existing methods. In the comparisons, PSNR and SSIM
values are presented in tables to evaluate the model out-
put results with increased resolution of the face images.
Visual comparisons were alsomade between variousmethods
for different datasets. Since the training model files of the
Attention-FH model were not available, ready-made images
from the article were used for comparison purposes.

B. COMPARISON OF METHODS
Applying SR to facial images requires attention to several
critical factors. First, the algorithms must ensure that the
high-resolution image has a natural and realistic appearance,
preserving skin tones, textures and facial features. Special
emphasis should be placed on enhancing details, accurately
reconstructing crucial details such as eyes, lips and hair
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strands. Second, color accuracy is important to preserve
original colors and avoid chromatic aberration. Third, the
ability to perform SR operations quickly and effectively in a
variety of image scenarios is also crucial. Fourth, the training
data should include a variety of examples for the model to
understand facial details.

In addition, the level of detail is a key factor; in par-
ticular, details related to the main components of the face
such as the mouth, eyes, nose, hairstyle may have different
priorities depending on the intended use. Local details such
as gestures, eyebrow movements, ears and accessories can
also be effective in determining the overall facial expression.
However, it is also important to understand how the human
eye perceives these details rather than focus only on technical
details. Examining the global structure is significant when
considering perceptual conservation. The image obtained as
a result of the face SR process should maintain perceptual
integrity in terms of its overall structure. Taking the global
structure into account allows us to capture the naturalness
and proportionality of facial features that cannot be achieved
with local details alone. In some applications such as security,
details may be important while in another context the overall
form and aesthetics of the face may take precedence. In con-
clusion, in addition to technical metrics such as PSNR and
SSIM, understanding human perception and setting priorities
based on the intended use plays a critical role in the successful
evaluation of facial SR technologies.

From the quantitative and visual comparison results, it is
observed that the model behavior varies depending on the
scaling factor and data sets. For a scaling factor of 4x,
the current methods and the proposed method give similar
results. Moreover, generative network-based methods some-
times detect additional artifacts that are not present in the
image. Although these artifacts improved visual perception,
they resulted in both the lack of preservation of personal fea-
tures and deterioration in comparison metrics. For a scaling
factor of 8x, the artifacts becomemore apparent in the output.
In terms of visual perception, the results leave a positive
impression, such as people looking in different directions or
facial expression changes compared to their original state.
The proposed model has produced successful outputs both
locally and in the whole image and is a competitive method
in terms of visual perception performance. From the results,
it is seen that the proposedmethod produces quality outputs in
terms of facial expression in terms of gaze, facial expression
and emotion conveyance. In addition, the proposed method
produces better results in quantitative and especially SSIM
evaluations.

Table 4 and Table 5 show the superiority of the proposed
method over the compared methods in terms of PSNR and
SSIM metrics at different scaling factors (4x / 8x) on BioID,
CelebA, LFW and PubFig datasets. In the empirical tests of
different models on different datasets, some results stand out.
Results of the classical FSR methods are observed to be quite
low compared to the other methods. There is competition
among other methods in various aspects. The SFMNet model

produces satisfactory results at a scaling factor of 4x, but poor
results at a scaling factor of 8x.

The ESRGAN model is the second-best method in Table 4
in terms of PSNR, but worse than most methods in Table 5
in terms of SSIM. The variation in the amount of datasets
significantly affects the output of the models. Even though
the SwinIR model produces good results, it lags behind the
other models due to the large number of datasets required
for transformer model training. The diffusion-based SR3
method produces better results with large datasets due to
its generative nature, but it does not perform as well as our
method on small datasets. DRL-SRFR gives good results
in terms of local detail extraction and global preservation
even when trained with a small dataset. As the number of
datasets increases, the metric and perceptual performance of
the DRL-SRFR method increases.

The variability in the performance depending on the dataset
size is evident from the significant difference between the
results of BioID with the least data and CelebA with the
most data. However, in terms of the SSIMmetric, DRL-SRFR
gives the best results regardless of the dataset size. Compared
to the second-best method, DRL-SRFR achieved an average
PSNR gain of 0.74 dB for the BioID dataset at 4x scaling
factor.

For the CelebA dataset, it gives the third-best result with a
difference of 1.17 dB, for the LFW dataset with a difference
of 0.72 dB and for the PubFig dataset with a difference
of 0.97 dB. In terms of the PSNR measure at 8x scaling
factor, the DRL-SRFR method offered an average gain of
0.51 dB, 0.17 dB and 0.29 dB on the BioID, LFW and PubFig
datasets, respectively, compared to the second closest model.
In the CelebA dataset, it ranks third with a difference of
2.78 dB. Similarly, for a scaling factor of 4x, the DRL-SRFR
method yielded average SSIM gains of 0.0006, 0.0155 and
0.0035 for the BioID, LFW and PubFig datasets, respectively,
compared to the second-best model. It gives the third-best
result only on the CelebA dataset with a SSIM gain difference
of 0.0039. According to the 8x scaling factor SSIM anal-
ysis, DRL-SRFR outperforms all other methods, producing
average SSIM gain differences of 0.0059, 0.0199, 0.0075 and
0.0583 compared to the second-best model.

The performance of the proposed method in preserving
local details and global view compared to the other methods
can be seen in Figure 7. When the figures and quantitative
values are evaluated in general, it is seen that Attention-FH
and DRL-SRFR give better results. The other methods pro-
duce either significantly lower quantitative values or images
with poor visual perception (blurred and artifactual output).
In Figure 7, the glasses of the person in column a are almost
imperceptible in the othermethods, whereaswithDRL-SRFR
they are clearly visible in the SR3 model. Compared to the
output of the ESRGAN method, which gives the second-best
result according to quantitative metrics, DRL-SRFR gives
an output closer to the original image in terms of holistic
and visual perception. Although the visual perception of the
SR3 model was high, the squinting of the right eye and
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FIGURE 7. Outputs of different methods on the LFW-funneled dataset for scaling factor 8.

the more open left eye caused a deviation from the original
image. In the Attention-FH output, an expression close to
the expression of surprise is perceived on the face, while
there is no such perception in the original image. When
the person in column b is analyzed, all the other methods
produce eye and facial structures that are far from the original.
In contrast, the DRL-SRFR method produces an image with
a lower resolution of the eye region compared to Attention-
FH. Still, the general eye structure and facial expression
are more reminiscent of the original. In the S3 method,

although the visual perception is high, the shift of the person’s
gaze in different directions, artificial formations in the eyes,
teeth and mouth caused a departure from the original image.
In column c, while the blackness in the eye and eyebrow
area is more intense and mixed in the outputs of the other
methods or the whiter tone pupil artificial formations are
observed in the SR3 method, it is more discrete and clearer
in the DRL-SRFR output, the lip structure and nose details
are closer to the original. In column d, the lines formed in the
eye bags in the SR3 model caused differentiation. In the eye
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FIGURE 8. Outputs of different methods on the LFW-funneled dataset for scaling factor 4.

region, our model performed better than the other methods,
but not in the mouth region. However, the global structure is
closer to the original. In column e, while the other methods
tried to increase the resolution, the length and width of the
face changed considerably compared to the originals. In the
Attention-FH model, the local eye resolution is improved
and the eye is prominent, but the original structure is not
preserved. In the SR3 model, although visual perception was
good, a different emotion was conveyed due to the squinting
of the eyes. In the DRL-SRFR output, although the eye

resolution appears lower, the output is close to the original in
terms of eye region, general facial features and size. In the
Attention-FH output, which gives the best result close to
DRL-SRFR in column f, the resolution of the right eye looks
better, but there is a confused expression that is not present in
the original. There is also a change in gaze direction in the left
eye. In the SR3model, details such as the line on the forehead
are clearer than all methods, but the person’s gaze sense has
changed due to the structural change in the right eye. In the
output of the proposed method, the expression is close to the
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FIGURE 9. Outputs of our DRL-SRFR model for scale 4 on BioID, CelebA, LFW and PubFig datasets. (a) LR inputs. (b) Ground truth. (c) Ours.

original and the eye directions are correct. In addition, when
the region between the nose and the mouth is examined, the
facial contours are clearer and closer to the original. Figure 8
shows that the resolutions provided by Attention-FH, SR3,
SFMNet, SFMNet, ESRGAN and methods other than our
model are significantly lower for 4x scaling factor in the LFW
dataset. Although Attention-FH, SR3 and ESRGAN give the
second-best results, they can provide good results in visual
perception globally at 8x scaling factor. The results show that
the DRL-SRFR method outperforms all competing methods
in terms of global visual perception and quantitative values
and achieves impressive success in preserving local details
and overall appearance.

Figure 9 shows the perceptual closeness of the proposed
method output to the original image for a scaling factor of
4. In the BioID dataset, local details and global structure are
preserved in black and white contrast values. For the first
person in the BioID dataset, the mouth structure is preserved,
and the same smile perception is captured. Similarly, in the
second person, the glare details on the glasses are successfully
captured and the global similarity is quite close. In the third
person, the hair curl detail is distinct enough to be detected
and the overall similarity is quite close to the original. In the
CelebA dataset, the facial expression of the first person is
successfully captured in the same way and the stubble details
are noteworthy. In the second person, the dimple lines caused
by the smile are created quite successfully, while the gen-
eral facial expressions are preserved. In the third person,
earring details as accessories and eyebrow structure details
are successfully created. Finally, in the LFW dataset, the hair
separation detail and the similarity of the shape of the lip
structure stand out in the first person. In the second person,
despite the presence of a mustache, the general expression of

the face is preserved and the hollows on the sides of the chin
are equally prominent. In the third person, it is noteworthy
that the surprised expression on the face is preserved and
the personal posture in the mouth structure can be created
in the same way. Finally, in the PubFig dataset, in the first
person, the facial scar is significantly similar to the original.
In the second person, it is noteworthy that the alignment of
the teeth is dimpled and the flat areas are rendered to be close
to the original. In the third person, the lines on the cheek and
the eye bags are very close to the original, with preservation
of the emotional expression in the gaze. In conclusion, the
DRL-SRFR method produces an output that has perceptual
similarity to the original image in terms of local and global
details.

Figure 10 presents a comparison of the original high-
resolution (HR) and low-resolution (LR) images and their
enhanced versions by various super-resolution methods
(ESRGAN, SwinIR, SR3 and DRL-SRFR). Images of
selected individuals are from the PubFig dataset. The val-
ues in the row below the images refer to the different local
regions of the face images (eyes, nose, mouth) and show
the PSNR and SSIM values calculated from the enhanced
versions of the local regions and the versions generated from
the HR image. For the first face, the DRL-SRFR method
outperforms the other methods (except SwinIR) with a PSNR
of 33.52 and SSIM of 0.924 in the overall image, and gives
very good quantitative values, especially in the mouth region.
However, only quantitative evaluation or visual perception
should not be used to contrast models. For example, SwinIR,
which gives the highest quantitative value, produces worse
images than SR3 and our model in terms of visual perception.
On the other hand, the ESRGAN model failed to produce
favorable results in terms of quantitative values and visual
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FIGURE 10. Global / local visual and quantitative outputs of our DRL-SRFR model for scale 4 on PubFig datasets.

perception. For the second face, our model outperformed the
other methods with 34.45 PSNR and 0.932 SSIM values in
the overall image. In the quantitative evaluations of mouth,
nose and eye parts, the model outperformed the other meth-
ods. For the third face, high performance was achieved with
35.27 PSNR and 0.943 SSIM values in the overall image. Our
model outperformed the other methods in PSNR and SSIM
evaluations of all local regions. The findings in Figure 10
demonstrate the superiority of DRL-SRFR in visual enhance-
ment performance by providing higher PSNR and SSIM
values, especially in important regions of the face. In sum-
mary, the proposed method allows for sharp and detailed
facial images while preserving detail and structure quality.

Considering the parameters used for the 4x scaling factor
and batch size = 1, the computational load and parame-
ter counts for the various methods are given in Table 6.
FLOPs (Floating Point Operations per Second) refer to
the number of floating-point operations a model performs
during inference, while computational load GMAC (Giga
Multiply-Accumulate Operations) measures the total number
of multiplication and addition operations in billions that the
model needs to process an input. The number of parameters,
flops and computational load of ourmethod are low compared
to current SR studies. The time to render an image is similar
for all methods except diffusion. In the diffusion method,
an image can be created in 61 seconds.
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TABLE 6. Process loads.

FIGURE 11. PSNR performance graph according to T , RRDB number and
standard deviation values. The best result is realized for T = 20, RRDB
number 14 and std =0.21.

C. TUNING OPTIMAL HYPERPARAMETERS
There are four hyperparameters in the DRL-SRFR method,
namely the number of patches T in the process of enhancing
an image, the number of RRDBs, the patch size and the stan-
dard deviation in the REINFORCE method. Ablation studies
related to the parameters are given in the next section. In this
section, we discuss the determination of T , the number of
RRDBs and the standard deviation σ to maximize the PSNR.
The best values of the parameters were determined using

the Tree-Structured Parzen Estimator (TPE) method. TPE is a
Bayesian-based optimization method. Our conjecture is that
a given combination of parameters will maximize the PSNR.
In TPE, a priori probabilities are first determinedwith random
initial values. The initial values provide a preliminary idea
of the model’s performance. Then, using the results obtained
after each new trial as evidence, the likelihood of a given
hyperparameter combination with respect to the observed
PSNR is calculated. Finally, new parameter combinations
are tried in accordance with the updated likelihood. In our
study, probability distributions were generated by determin-
ing the threshold values corresponding to the best 10%PSNR.
To determine the parameters, 3000 training and 600 test data
were randomly selected from the LFW and Celeba datasets.
Figure 11 displays the outcomes achieved from executing the
model 100 times. Each execution has 100 epochs and involves
estimating the parameters. The parameter estimation intervals

FIGURE 12. Selected patch map depending on some epochs in the
enhancement phase.

are [0.1, 0.5] for σ , [1], [16] for RRDB number and [5],
[20] for T . As can be seen from the graph, the best results
are obtained if enough patches are optimized and the RRDB
block is used. The σ value determines the trade-off between
making a decision that has never been tried or taking the best
action found from previous experience. The best result was
obtained with T = 20, RRDB number 14 and σ = 0.21.
However, satisfactory results were also obtained with σ =

0.37, T = 20 and rrdb = 10. The effect of RRDB and
T cannot be ignored in our method. Small values of T and
RRDB produce low PSNR values. With T in the range [14],
[20] and RRDB in the range [6], [12], the PSNR value is very
close to the best result. Figure 11 shows the concentration in
these regions.

D. ABLATION STUDIES
Several ablation studies have evaluated the effects of different
important components in our study.

1) EFFECT OF PATCH COUNTS
First, we investigated the effect of using different recursive
steps (T ) at a fixed patch size. The model was trained with
four different settings (T = [5, 15, 25, 35]), keeping the
overall number of parameters constant. Table 7 shows that the
model performance improves first as T increases, but then
decreases after a certain level. Since the extracted patches
cannot cover the entire image, the low number of recursion
steps results in low PSNR values. From the experiments,
it was found that the number of recursion steps should be at
least 10 in order for the patches to cover the entire image.
As T increases, the increase in PSNR values is limited.
T = 15 was found to be optimal in terms of PSNR, speed
and computational load.

2) EFFECT OF GLOBAL ENHANCEMENT PARAMETER (Epc)
How the decision maker works with the DRL-SRFRmodel is
visualized on the image map. As shown in Figure 12, DRL-
SRFR first concentrates on specific areas of the image, and
then learns to enhance the whole image and extends to every
region of the image. The selected patch enhancements pro-
vide better learning of local features, helping to better extract
the features of the relevant area of the person’s face. The
corners of the face image are usually flat backgrounds with no
personal features of interest and are easy to enhance without
knowledge of specific facial characteristics. In a piecewise
progressive model, the features of the facial components such
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TABLE 7. Comparison of different values of T .

as ears, eyes, nose and mouth are better recognized, resulting
in a better perceptual enhancement that does not distort the
person’s personal features.

The parameter used to determine the map takes a value in
the range (0;1) since it is calculated by the ratio of the selected
local and global pixels. An increase in Epc indicates a wider
coverage of the map. In addition to the rewards obtained
with local details, the use of the reward obtained with the
increase in Epc at the end of the loop also benefits the global
improvement.

3) EFFECT OF PATCH SELECTION
The policy network can adaptively select a set of patches.
To evaluate the impact of patch selection strategies, Figure 7
compares different methods. The comparison shows that
there are significant differences between standard resolution
enhancement methods and patch selection. There are two rea-
sons for better patch selection performancewith DRL. At first
in standard methods, deformable facial patches (e.g., the nose
or mouth shown in Figure 7 (c) and (d) may appear because
the whole image or the patches used include broken facial
patches (e.g., crooked nose, misaligned eyebrows, separated
eyes). Secondly, patches selected using DRL have the ability
to discover surface relationships between patches that are
close to each other, helping to select intact surface fragments
and enhancing the local restoration network, allowing creden-
tial recovery.

4) EFFECT OF PATCH SIZE
Patch selection is one of the key strategies of SRmethods. The
effect of the patch on the resolution increase depends on the
patch size and attributes. Small patch size preserves details
and increases resolution. However, a small patch size requires
more computation and negatively affects the processing time.
On the other hand, a large patch size reduces the processing
time but makes it difficult to preserve details because a large
patch size focuses on the general features of the image, giving
a general idea of the image. The choice of patch size is a
trade-off between detail preservation and processing time.
The ideal patch size should be determined by considering
the targeted resolution, available resources and application
requirements. The improvement in resolution as a function
of patch size for a scaling factor of 4 is given in Table 8.

TABLE 8. Patch size comparison.

TABLE 9. Comparison of different number of RRDB layers.

5) EFFECT OF RRDB COUNTS
Different models were created by varying the number of
blocks in the RRDB structure. Initially, there is a basic
RRDM model with 8 blocks. By adapting the basic block,
models were derived, one with 12 blocks and the other with
4 blocks. All models are compared using performancemetrics
and the results are presented in Table 9. Increasing the number
of RRDB blocks does not affect the SR performance satis-
factorily. However, it is observed that the 12-block structure
provides significant PSNR and SSIM improvement compared
to the 4-block structure but provides marginal improvement
in the related metrics compared to the 8-block structure.
It is concluded that as the number of blocks in the RRDB
structure increases, the improvement in performance is lim-
ited due to the decrease in feature extraction after a certain
threshold.

The findings provide an important perspective on the effec-
tiveness of the RRDB structure in SR applications. Adding
more blocks initially increases the feature representation of
the model, but from a certain point the gains become neg-
ligible because the basic features are already captured by
the previous layers. This observation is consistent with the
principle of diminishing returns [96]. It is clear from the
results that additional layers provide marginal improvements
when the model is deep enough. Furthermore, using more
blocks would increase the number of parameters, which may
cause the model to overfit the training data and thus not
generalize to new data.When ESRGANwas applied for an 8x
scaling factor, an overfitting problem was observed. Another
problem is that the gradients gradually grow excessively
during backpropagation as the network depth increases. This
problem was experienced both in the ESRGAN method and
in our proposed method. Even if gradient clipping is used to
overcome this problem, the gain will be very small after a
certain number of blocks.
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V. CONCLUSION
This study proposed an original approach called DRL-SRFR
to solve the facial hallucination problem. The utilization of
a DRL-based framework for patch selection in the image
enhances the efficiency of evaluating the interconnections
among facial components. The proposed model includes
a resolution enhancement mechanism based on DRL and
RRDB. A more specialized solution is obtained instead of
the classical reward mechanism by establishing a connected
quintuple structure. The DRL-SRFR structure includes a
recurrent policy network and a local enhancement network
for face patch SR. Extensive simulation results show that this
approach can produce high-resolution face images that are
recognizable by human visual perception and outperform the
state-of-the-art face hallucination methods in terms of PSNR
and SSIM. The proposed method can potentially improve
training efficiency by using lighter network structures. This
strategy minimizes the computational resources required and
adjusts the model to suit a broader range of applications.
Additionally, integrating different attention mechanisms can
provide a more detailed analysis of the relationships between
facial components, significantly enhancing model perfor-
mance. The findings also suggest that patch-based diffusion
methods can be successful in solving the facial hallucina-
tion problem, particularly in preserving and enhancing local
details. These methods can potentially create more natural
and realistic high-resolution facial images by harmonizing
facial components with each other.
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