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ABSTRACT Deep learning has played a vital role in advancing medical research, particularly in brain tumor
segmentation. Despite using numerous deep learning algorithms for this purpose, accurately and reliably
segmenting brain tumors remains a significant challenge. Segmentation of precise tumors is essential for
the effective treatment of brain diseases. While deep learning offers a range of algorithms for segmentation,
they still face limitations when analyzing medical images due to the variations in tumor shape, size, and
location. This study proposes a deep learning approach combining a Generative Adversarial Network
(GAN) with transfer learning and auto-encoder techniques to enhance brain tumor segmentation. The GAN
incorporates a generator and discriminator to generate superior segmentation outcomes. In the generator,
we applied downsampling and upsampling for tumor segmentation. In addition, an auto-encoder is applied
in which the encoder retains as much information as possible and then the decoder with those encodings
reconstructs the image. The transfer learning technique is applied at the bottleneck using the DenseNet
model. Combining auto-encoder techniques with transfer learning methodologies in GANs feature learning
is enhanced, training time is reduced, and stability is increased. In this work, we enhanced the accuracy
of brain tumor segmentation and even achieved better results for tumors having small sizes. We train and
evaluate our proposed model using the publicly available BraTS 2021 dataset. The experimental result shows
a dice score of 0.94 for the whole tumor, 0.86 for the tumor core, and 0.82 for the enhancing tumor. It is also
shown that we achieve 2% to 4% higher accuracy than other methods.

INDEX TERMS Deep learning, GAN, auto-encoder, up sampling, down sampling, transfer learning, BraTS,
DenseNet.

I. INTRODUCTION
Image segmentation is used to segment and classify different
objects in an image. In image segmentation, we assign a label
to a certain area in an image to get meaningful information.
The procedure entails dividing an image into numerous
segments and components to comprehend different important
details contained within it. This plays a vital function in
various applications like video monitoring, examination of
medical visuals, enhanced reality, and self-driving cars,
among other examples [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

Different techniques and algorithms have been developed
for image segmentation for different problems like object
detection, disease detection, video surveillance, etc. Early tra-
ditional techniques were developed for image segmentation
like thresholding [2], histogram-based, region growing [3],
watershed [4], clustering [5]. Then the technology advanced
and some new methods were developed like sparsity-
based [6], Markov random field [7], active contours [8] and
graph cuts [9]. In recent years Deep Learning (DL) models
have been developed with performance improvements and
higher accuracy for image segmentation. These models
include fully convolutional networks (CNN) [10], encoder-
decoder-based models [11], multiscale and pyramid-based
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models [12], recurrent neural network (RNN) based mod-
els [13] and generative adversarial network (GAN) training
models [14] etc.

Medical imaging heavily relies on image segmentation,
an essential element that enables healthcare practitioners
to pinpoint and separate distinct elements within medical
images. This process of dividing images into various regions
of interest empowers researchers to gauge the dimensions of
organs or anomalies, identify irregularities, and enhance com-
prehension of physiological mechanisms occurringwithin the
human body. Within the realm of medical science, image
segmentation holds particular significance in the domains of
diagnosis, treatment preparation, andmonitoring of therapies.
With advancements in artificial intelligence and machine
learning algorithms, computer-aided image segmentation has
now become ubiquitous in medical imaging applications such
as radiology and pathology. This technology also improves
the speed and accuracy of diagnosis while reducing human
error substantially.

Similarly, brain tumor disease is also one of the most
dangerous diseases. It is important to detect brain tumor
at early stage so it can be diagnose immediately. A brain
tumor is shown in Figure 1. The diagnosis of brain-related
diseases like Parkinson‘s disease, Alzheimer‘s disease, and
brain tumor is very important in brain imaging. A report
published by the American Cancer Society and National
Cancer Institute brain cancer is the tenth most dangerous
disease that causes death. In only America 18,090 deaths
and 23,890 new cases were reported due to brain cancer in
2020 [15]. Therefore, early detection of brain tumors using
the latest brain imaging techniques is very important so that
it can be diagnosed at an early stage.

There are four types of brain tumors edema, necrosis,
enhancing tumor, and non-enhancing tumor. For diagnosis
and treatment, it is important to detect tumors accurately.
Segmentation of brain tumors is performed for the accurate
treatment planning of tumor-related disease. Due to its size,
shape, and location, it is difficult to segment brain tumor [16].
Segmenting out the type of brain tumor from an image is
also still a challenging task. For the better treatment of brain
tumor, it is necessary to segment brain tumor and its type
accurately.

Manual segmentation is still widely used for tumor
segmentation as it is still more reliable but it is a tedious
task. In the medical field automatic segmentation has played
an important role that saves time and produces better
results. From many years of development on automatic
segmentation of brain tumors carried out with traditional
machine learning algorithms. For automatic segmentation
deep neural network achieved great success and is widely
used for image segmentation in the medical field [17] but it
still lacks in producing better segmentation results and limits
the accuracy of the final output.

In contrast, deep learning methods depend on the avail-
ability of large-scale datasets for training and typically
necessitate fewer preprocessing steps compared to traditional

FIGURE 1. Brain tumor.

approaches. In recent years, convolutional neural networks
(CNNs) have emerged as the predominant technique in the
field of brain tumor segmentation [18]. Alom et al. [19]
provides a detailed review of deep learning approaches that
span across many application domains. Early studies [20],
[21] identified deep learning as a promising approach for
automating brain tumor segmentation. With deep learning,
complex features are learned hierarchically from specific
domain data, eliminating the requirement for feature engi-
neering typical in other automated segmentation techniques.
Therefore, the emphasis would be on designing network
architectures and refining them specifically for the task at
hand. Deep learning techniques have gained prominence due
to their revolutionary performance in computer vision tasks.
However, within the medical domain, there are typically
insufficient training samples to effectively train deep models
without encountering overfitting. Additionally, annotating
ground truth for three-dimensional (3D) MRI scans is
a time-consuming and specialized task typically handled
by experts such as neurologists. Consequently, publicly
accessible image datasets are scarce and often contain only
a limited number of subjects.

In deep learning we have another technique named
Generative Adversarial Network (GAN) that can be used
for image segmentation to get better results [14]. Generative
Adversarial Networks (GANs) have gained popularity in
medical image analysis, including brain tumor segmentation.
GANs consist of a generator network and a discriminator
network. The generator network produces fake samples,
while the discriminator network distinguishes between real
and fake samples. Through training, the generator network
learns to generate samples indistinguishable from real ones,
while the discriminator network learns to correctly classify
between the two [22], [23], [24], [25], [26].

In our proposed method, we focused on brain tumor
segmentation. For this, we used GAN architecture having
transfer learning with auto-encoder. In the generator part,
we applied the transfer learning technique. In transfer
learning we use already trained models for our own research
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with some changing like adding extra layers, tweaks with
the hyperparameters, etc. We also used auto-encoder with
transfer learning so that we have minimum loss in data. The
function of auto-encoder is when we are down sampling an
image we will be losing some important information. With
the use of an auto-encoder, we will be able to minimize the
loss of this information. For training and testing, we used the
publicly available BraTS 2021 dataset. This dataset contains
images of brain tumor categorizing them as whole tumor,
tumor core, and enhancing tumor. This is an edition of the
BraTS dataset family and is the latest version. Our study
shows that our model performed outclass for brain tumor
segmentation.

The main contribution of our proposed work is described
below:-

• GANs have demonstrated promising results for brain
tumor segmentation by effectively handling variations in
tumor size, shape, and location. By leveraging GANs in
conjunction with transfer learning techniques, we show
that it is possible to achieve higher accuracy rates in the
segmentation of small tumors, even with limited training
datasets.

• The integration of GANs with auto-encoders (VAEs)
enhances the retention of tumor features with varying
sizes, shapes, and locations. The encoder within the
auto-encoder learns effective data encoding while down-
sampling, preserving as much relevant information as
possible. The decoder then reconstructs the full image
from the encoding during upsampling, contributing to
improved segmentation quality.

• Combining auto-encoder techniques with transfer learn-
ing methodologies in GANs results in superior per-
formance compared to previous GAN models. This
approach enhances feature learning, reduces training
time, and increases model stability. Auto-encoders
help in learning more effective data representations,
while transfer learning facilitates efficient training on
limited datasets, thereby achieving lower computational
complexity.

The following is the structure of our paper: Section II
describes the existing deep learning andGANapproaches that
are already used by other researchers. Section III explains the
methodology we have used in our research work. Section IV
describes the experimental setup. Section V describes the
results and discussion. Section VI gives a conclusion and
future work followed by the references.

II. LITERATURE REVIEW
In recent yearsmuchwork has been done for the segmentation
of brain tumor using deep learning approaches. To show the
importance of automatic segmentation of brain tumor the
findings of this research need to be discussed here.

Rajendran et al. [27] used a Gray Level Co-occurrence
Matrix (GLCM) feature extraction technique to eliminate
unnecessary image details. Compared to the current state-of-
the-art methods, the accuracy of brain tumor segmentation

has been significantly enhanced using Convolutional Neural
Networks (CNNs), widely utilized in biomedical image
segmentation. By integrating outcomes from two separate
segmentation networks, the proposed approach introduces
a straightforward yet impactful combinatorial strategy that
results in more precise and comprehensive estimations.
Specifically, a U-Net and a Three-Dimensional Convolu-
tional Neural Network (3D CNN) are employed to partition
images into their constituent components. Subsequently,
predictions are generated by leveraging two distinct models
combined through various methodologies.

Jabbar et al. [28] introduced the Caps-VGGNet hybrid
model, which combines the CapsNet and VGGNet models
by incorporating VGGNet layers. This integrated model
tackles the challenge of needing extensive datasets by
autonomously extracting and categorizing features. The
model’s performance was evaluated using the Brats-2020 and
Brats-2019 datasets, which feature high-resolution images
of brain tumors. Comparative analysis with other traditional
and hybrid models demonstrates that the proposed model
achieved superior effectiveness, boasting higher accuracy,
specificity, and sensitivity.

Karim et al. [29] examines the current landscape of
brain tumor segmentation (BTS) through an exploration of
emerging deep learning (DL) techniques applied to brainMRI
analysis. The research provides a comprehensive comparison
of recent DL methods, highlighting their effectiveness
in addressing various types of tumors while mitigating
challenges such as limited data availability and the need for
robust validation. DL has significantly advanced BTS, with a
primary emphasis on integrating robust DL models for brain
MRI analysis. Despite outperforming traditional methods,
DL encounters several challenges, particularly concerning the
diversity of tumor types, insufficient datasets, and inadequate
validation practices. Looking forward, DL-based BTS holds
promising prospects for transforming the diagnosis and
treatment of brain tumors.

The rise of automation represents a significant opportunity,
aiming to enhance efficiency and afford medical profession-
als more time to dedicate to direct patient care. Traditional
machine learning methods have traditionally relied on inten-
sive feature engineering efforts. Vinod et al. [30] proposed
a novel approach: an ensemble technique combining the
U-Net model, a Convolutional Neural Network (CNN),
and a Self-Organizing Feature Map (SOFM) for accurate
segmentation of brain tumors using the BRATS 2020 dataset.
Our assessment not only emphasizes segmentation accuracy
but also leverages critical survival data from the dataset to
predict patient survival rates.

Majib et al. [31] explore various traditional and hybrid
machine learning models extensively constructed and ana-
lyzed to autonomously classify brain tumor images. Addi-
tionally, 16 distinct transfer learning models were evaluated
to determine the optimal one for brain tumor classification
using neural networks. Finally, employing state-of-the-art
technologies, a stacked classifier VGG-SCNet (VGGStacked
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Classifier Network) was introduced that demonstrated supe-
rior performance compared to all other models developed in
the study.

Ottom et al. [32] introduces an innovative framework for
segmenting 2D brain tumors in MR images through the
application of deep neural networks (DNN) and employing
data augmentation techniques. The proposed method (Znet)
utilizes skip connections, encoder-decoder architectures, and
data amplification to extend the inherent characteristics
observed in a smaller dataset of expert-delineated tumors
such as those from hundreds of patients with low-grade
glioma (LGG) to a much larger set comprising thousands
of synthetic cases. The outcomes and visual representation
of the DNN-generated tumor masks in the test dataset
demonstrate the ZNet model’s ability to accurately detect
and segment brain tumors in MR images. This methodology
can be extended to encompass 3D brain volumes, various
pathologies, and a diverse array of imaging modalities.

Musallam et al. [33] introduces a three-step preprocessing
method aimed at improving the quality of MRI images,
coupled with a novel Deep Convolutional Neural Network
(DCNN) architecture designed for accurate diagnosis of
glioma, meningioma, and pituitary tumors. The architecture
incorporates batch normalization to expedite training with
higher learning rates and simplify the initialization of layer
weights. It is characterized by a computationally efficient
design, featuring a modest number of convolutional and max-
pooling layers, as well as training iterations.

Lv et al. [34] presented three innovative applications
that were investigated using parallel imaging in conjunction
with the GAN model (PI-GAN) and transfer learning.
Initially, the model was pre-trained using publicly available
brain images from Calgary, and subsequently fine-tuned
for 1) patients with tumors at our institution, 2) Various
anatomical sites such as the knee and liver, and 3) Different
k-space sampling masks with acceleration factors (AFs) of
2 and 6. Regarding the brain tumor dataset, transfer learning
effectively addressed artifacts observed in PI-GAN, resulting
in smoother brain edges. Transfer learning also demonstrated
superior performance for knee and liver datasets compared
to the PI-GAN model trained on its own dataset with
fewer cases. Notably, convergence in the knee datasets was
slower than in brain tumor datasets during the learning
process. Transfer learning notably enhanced reconstruction
performance for both AFs of 2 and 6, with better outcomes
observed for the model with AF = 2.
Tokuoka et al. [35] proposed an inductive transfer learning

(ITL) approach that utilizes annotation labels from source
domain datasets to enhance tasks in target domain datasets
through Cycle-GAN-based unsupervised domain adaptation
(UDA). To demonstrate the effectiveness of the ITL approach,
they applied brain tissue annotation labels from a source
domain dataset of Magnetic Resonance Imaging (MRI)
images to improve brain tumor segmentation on a target
domain MRI dataset. The results show a significant enhance-
ment in the accuracy of brain tumor segmentation. This ITL

framework represents a significant advancement in medical
image analysis, providing a foundational tool to enhance and
facilitate various tasks using medical images.

Peiris et al. [36] utilized adversarial learning techniques
to conduct brain tumor segmentation on MR images,
specifically using the BraTS 2021 dataset. In their proposed
methodology they used an architecture consisting of seg-
mentation, critic, and Virtual Adversarial Training (VAT)
networks. In segmentation up-sampling and down-sampling
were performed. In critic fully convolutional adversarial
network was constructed to predict the segmentation similar
to ground truth. The VAT produces adversarial examples do
that new patient data can also be predicted accurately. The
result shows 90% accuracy on the whole tumor (WT), 85%
on tumor core (TC), and 81% on enhanced tumor (ET).

Fawzi et al. [37] conducted a comprehensive examination
of different approaches utilized for the segmentation of brain
tumors. They compared machine learning, deep learning,
and hybrid approaches for segmenting brain tumors in their
review. They discovered via their research that hybrid and
deep learning techniques are effective at segmenting brain
tumors and producing superior outcomes, however, these
techniques have computational and memory complexity
issues.

Skandarani et al. [38] presented a review paper on appli-
cations of GAN in medical images. In their research, they
used different GAN architectures like DCGAN, LSGAN,
WGAN, StyleGAN, HingeGAN, etc on three different
datasets SLiver07, ACDC and IDRID. They applied different
GAN architectures on these datasets and found that GAN
performed better on these medical image syntheses.

Ngo et al. [39] proposed a CNN architecture with a
multi-task learning approach to identify and segment small
tumors. In their study they mainly focused on enhancing
tumor as they are very small in size as compared to other
tumors. When sampling, they incorporate additional feature
reconstruction work as a complement to retain key features.
For their experiment they used BraTS 2018 dataset and
achieved accuracy of 81% on ET, 89% on WT and 84% on
TC.

Cirillo et al. [40] proposed a 3D GAN architecture called
Vox2Vox for segmentation of brain tumor. Their architecture
contains a generator and discriminator. The generator was
built as a U-Net which consists of Input (I), Encoder (E),
Bottleneck (B), Decoder (D), and Output (O). Images were an
input, 3D convolutional layers with padding and Leaky Relu
function as encoder, 3D convolutional layers with Leaky Relu
function as a bottleneck, 3D transpose convolutional layers
with Relu function as decoder and segmented prediction as
output. The discriminator consists of Input (I), Encoder (E),
and Output (O). In a discriminator image with its generator
segmented prediction as input, an encoder is the same as
the generator and outputs the quality segmented prediction
generated by the generator. For their research they used
BraTS 2018 dataset and achieved an accuracy of 90% onWT,
82% on TC, and 78% on ET.
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Zhang et al. [41] proposed an architecture for the
segmentation of brain tumor called AResU-Net. In their
proposed methodology they embedded residual blocks to
existing U-Net architecture. In the encoder, they used three
residual blocks with a convolutional layer at the end with a
dropout function. In the decoder, three up-sampling residual
blocks are used. At last, they integrated the softmax layer
for final segmentation. They performed their research on two
datasets BraTS 2017 and BraTS 2018. On BraTS 2017 they
achieved an accuracy of 89% on WT, 85% on TC, and 82%
on ET whereas on BraTS 2018 dataset, they achieved an
accuracy of 87% on WT, 81% on TC, and 77% on ET.

Nema et al. [42] proposed a model called RescueNet.
In their proposed architecture they used both residual and
mirroring concepts. It consists of an encoder and a decoder.
In encoder it has convolutional layers with a normalization
layer and ReLU activation function. Following this, a residual
block, which includes a max pooling layer, is employed.
In the decoder, it has a deconvolutional layer to up-sample
the data. They performed their research on BraTS 2015 and
BraTS 2017 datasets. They achieved accuracy of 94% onWT,
94% on TC and 87% on ET.

Chen et al. [43] introduced an enhanced version of
Deep Convolutional Neural Network (DCNN) called Deep
Convolutional Symmetric Neural Network (DCSNN) to
segment brain tumors. The primary objective of the simple
DCNN was to enhance the quality of feature extraction from
an image. A symmetric mask was added to simple DCNN
to extract more low-level features from an image. BraTS
2015 dataset was used by the researchers for their study. They
achieved accuracy of 84% on WT, 68% on TC and 58% on
ET.

Li et al. [44] suggested a method for segmenting brain
tumors using an adversarial network, which consisted of a
basic Generative Adversarial Network (GAN). The generator
utilized a standard convolutional neural network with a
feed-forward neural network, while the discriminator was
also a conventional convolutional neural network that ana-
lyzed MR images alongside the segmented images produced
by the generator. They used the BraTS 2017 dataset for their
research work. They achieved accuracy of 88% on WT, 87%
on TC and 77% on ET.

Pereira et al. [45] presented an adaptive feature segmen-
tation method for segmenting brain tumor. The architecture
contains a regular block of convolutional layers, residual con-
nections, and pre-activation. Then they used recombination
and recalibration of feature maps for segmentation purposes.
They used BraTS 2013 and BraTS 2017 datasets for their
experiment. On BraTS 2017 dataset the achieved accuracy of
88% on WT, 76% on TC and 69% on ET. Whereas on BraTS
2013 dataset 87% on WT, 83% on TC and 77% on ET.

Iqbal et al. [46] presented three distinct extended Seg-
Net (deep convolution encoder-decoder architecture)-based
enhanced network designs for intratumor segmentation:
Interpolated Network, SkipNet, and SE-Net are listed in
that order. Four sub-blocks were employed in each step

of the decoder/encoder architecture, which was shared by
all three structures. The training phase’s stability and the
disappearance or extension of convolutional gradients were
both protected by the placement of a batch of normalisation
layers adjacent to each convolution. However, this method
has a limitation: if the model is trained with only a few
ground truth samples, the segmentation quality may decrease.
Nonetheless, this approach has the advantage of efficiently
building a model quickly and with minimal memory usage by
utilizing intermediary convolutional maps and interpolation
techniques.

Cui et al. [47] introduced a deep convolutional neural
network (DCNN) architecture that automatically divides 2D
brain images into two distinct halves. They employed a
pixel-wise fully convolutional network (FCN) to rapidly
determine the tumor location in MR images, and then
utilized a patch-wise CNN with smaller kernels and a
deeper architecture to partition the limited tumor zone into
sub-regions. Their hybrid CNN approach addressed the
issue of unbalanced data. However, their method required
time-consuming inference for processing the image patches
during model training.

Chen et al. [43] presented a DCNN combined with
prior knowledge to enhance the detection of brain tumor
sub-compartments. They used a left-right similarity mask
(LRSM) in the feature space to determine the placement
weight of DCNN features. These features were then used
to train the model to identify the asymmetrical position
information of input images. This method improved the
overall tumor segmentation by approximately 3.6% in terms
of the dice similarity coefficient (DSC). It allowed the
application of location weights to collect features using
symmetric masks across multiple DCNN layers. However,
it couldn’t differentiate between the tumor core areas and the
enlarged tumor region.

Xue et al. [48] proposed a complete adversarial network for
segmenting brain tumors from MRI scan data. Their network
consisted of a segmenter (generator) acting as an FCNN
to produce segmentation label maps and a critic network
(discriminator) with multi-scale L1 loss. The segmenter and
critic networks were trained alternately in a min-maxmanner.
Although this approach improved the learning of tumor
characteristics, it required substantial processing resources
for tumor labeling in MR images.

Myronenko [49] utilized an asymmetrical big encoder
and decoder structure with a decoder to reconstruct dense
segmentation masks. They addressed the issue of a small
training dataset by adding a variational auto-encoder to the
encoder’s endpoint, and they reconstructed the input image
together with segmentation to regularize the shared encoder
at inference time. This model provided accurate intratumor
segmentation without the need for ground truth labels or
post-processing. However, it required substantial processing
resources for tumor labeling in MR images.

Baid et al. [50] presented a fully autonomous segmentation
of brain tumors using a novel 3D U-Net architecture
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combined with weighted patch extraction. They proposed a
weighted patch-based segmentation technique to address the
class imbalance between tumor and non-tumorous patches.
The architecture was trained using a unique set of feature
maps and a 3D weighted patch-based methodology, enabling
accurate segmentation of intra-tumor structures. They also
employed a post-processing method called 3D-linked com-
ponent analysis to improve tumor delineation. However, the
method faced challenges in separating some tumor portions
from MR images that included a small necrotic tumor cavity,
and it required more training data to overcome inter-patient
variances.

Zhou et al. [51] proposed a novel three-phase architecture
for the automated segmentation of brain tumors from
3D MR images. They utilized a dense three-dimensional
networking architecture to create reusable features and
introduced a feature pyramid module to integrate multiscale
contexts. Additionally, they implemented a supervisory 3D
deep mechanism with auxiliary components to enhance the
segmentation process.

Sun et al. [52] presented a method with multiple path
3D FCN model for segmenting brain tumors in a different
research. Using 3D dilated convolution in each route, from
multi-modal MR images, it extracts different receptive fields
of feature maps and spatially integrates these features via
skip connections. This paradigm makes it easier for this
model to identify the limits of tumor areas. Nevertheless, the
model needs a postprocessing phase since the difference in
semantics between encoders and decoders and direct links
between high-level and low-level characteristics would have
unexpected results.

Ramzan et al. [53] suggested an efficient mapping of
brain tissue segments to voxel-levels from MR volumes.
In their approach, they used a 3D CNN that utilizes
skip connection, residual learning concepts and dilated
convolutions. By employing dilated convolutions to calculate
spatial attributes at a high resolution, the computational cost
was decreased. In this model, the spatial complexity was
higher due to the usage of dilated convolution.

Hu et al. [54] proposed the integration of the multi-cascade
convolutional neural network (MCCNN) with CRFs for
the sub-region segmentation of brain tumors. In order
to account for local label dependency and the usage of
multi-scale features for coarse segmentation as the first stage
of the segmentation process, which requires two phases,
a multi-cascade network architecture was proposed. Second,
by preserving the spatial contextual information of tumor
edges and eliminating false positives, CRFs were used
to improve segmentation findings. With minimal training
data and computational complexity, the approach effectively
segmented entire tumors using 2D patches taken from the
Flair, T1c, and T2modalities. The segmentation effectiveness
for augmenting tumors and tumor cores, which are lower in
size than entire tumors, might be impacted by this approach’s
sample imbalance problem.

In a more recent work, Zhou et al. [55] presented the
3D DCNN in combination with 3D atrous convolution
filters (AFPNet) for intra-tumor segmentation. In addition
to enhancing the learning characteristics of brain tumors,
the combination of approaches intended to prevent spatial
information loss brought on by the striding and pooling
operations of conventional DCNNs. An atrous convolution
feature pyramid was built by applying the 3D atrous
convolution layers at various atrous speeds. Then, to carry
out additional structural segmentation, a 3D fully connected
CRF was used as the post-processing step. Notwithstanding
the benefits, the method has certain drawbacks, such as
the ineffective segmentation of microscopic lesion tissue.
As a result, compared to total tumor segmentation, it has a
comparatively poor segmentation rate for augmenting and
core tumor areas. It also needs a post-processing step to
improve segmentation even further.

Mahesh and Renjit [56] proposed the FJODCNN method,
an automated segmentation and tumor severity level clas-
sification technique based on PSO for tumor segmentation
and meta-classifiers for glioma severity analysis. There
are three key steps in the model: Initially, using the
PSO as a clustering technique, the core and edema areas
were segmented. Following the extraction of the features
from these areas, the features were then optimized by the
fractional Jaya optimizer method before the classification
was completed using the DCNN. With PSO-based segmen-
tation, however, no qualitative or quantitative results were
found.

One popular approach is to use machine learning algo-
rithms such as convolutional neural networks (CNNs) to
segment brain tumors. These algorithms use a large amount
of labeled data to learn the features of brain tumors and
then use this knowledge to segment new images. For
example, the U-Net architecture is a widely used CNN
for medical image segmentation that has shown promis-
ing results in segmenting brain tumors [57]. The U-Net
architecture consists of a contracting path that captures
context and a symmetric expanding path that enables precise
localization.

VAE-GANs for brain tumor segmentation are presented
in the work of Li et al. [58], where they proposed a VAE-
GAN-based method for segmenting small gliomas. They
used a dataset of 50 patients with low-grade gliomas and
trained their model on patches of size 64 × 64 × 64. Their
results showed that the proposed method achieved better
segmentation accuracy and generalization performance than
other state-of-the-art methods.

Several studies have explored the use of GANs for brain
tumor segmentation. For example, a recent study proposed a
GAN-based approach for brain tumor segmentation that uses
a 3D U-Net as the generator network and a 3D convolutional
neural network (CNN) as the discriminator network [59],
[60], [61]. The 3D U-Net is used to generate a segmentation
mask for the input image, and the 3D CNN is used to
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TABLE 1. Comparison of existing research.

classify between real and generated segmentation masks. The
two networks are trained simultaneously, with the objective
of generating segmentation masks that are indistinguishable
from real segmentation masks.

Here are some previous works and their study or results
in given Table 1. In the table WT represents the whole
tumor, TC represents the tumor core, and ET represents the
enhancing tumor.

In our literature review, we explored research papers
regarding deep learning and GAN in brain tumor segmenta-
tion. We found that traditional deep learning approaches are
widely used but the problemwith these traditional approaches
is that they lack memory and computational complexities.
We also found that the already work done is mainly focused
on improving accuracy of overall tumors. Very few papers
worked on small tumors, but they also lack higher accuracy.

So, to overcome this issue a deep learning approach GAN can
be used.

III. METHODOLOGY
In our research, we proposed another deep learning algorithm
Generative Adversarial Network (GAN) with transfer learn-
ing and auto-encoder for better segmentation. GAN is
used for transforming low-resolution images into high-
resolution images. GAN uses a generator and discriminator
to produce better segmentation results for a brain tumor.
GAN architecture consists of fully connected dense layers for
segmentation.

In this section, we will discuss our proposed model for
brain tumor segmentation. Our proposed model is based on
the GAN architecture that uses auto-encoder and transfer
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FIGURE 2. Flowchart of proposed model.

learning techniques for better performance. Figure 2 shows
the flowchart of our proposed model.
Input Image: The model will get input from the BraTS

2021 dataset. This dataset contains images of WT, TC, and
ET.
Pre-processing: The imageswill be cropped to the size that

fits in themodel and it will also reduce thememory issues that
most deep learning architecture faces.
Generator: The generator with the help of some noise will

create fake segmented images using the pre-trained model
and give them as input to the discriminator. The generator
will use transfer learning to produce segmented images.
Transfer Learning: This is a deep learning concept to

uses the pre-trained models that already work for similar
purposes. The DenseNet is the pre-trained model on the
ImageNet dataset. This model produces better results in the
segmentation process.
Discriminator: The discriminator will be first trained on

the real images that are inputted from the dataset and then will
take generated images from the generator. The discriminator
will give the segmentation of brain tumor.
Output: Finally, the model will produce a segmentation of

brain tumor.
Model Evaluation: Bases on Dice Similarity Coefficient

(DSC).
The segmentation of brain tumors will be performed using

a technique called Generative Adversarial Network (GAN).
GAN is a deep learning model that uses a generator and
a discriminator to maximize and minimize a certain object.
Initially, the images in the provided dataset will undergo
preprocessing to prepare them for training or testing. During
the training process, the generator aims to maximize a
particular feature in order to deceive the discriminator, which
in turn tries to minimize the same feature to avoid being
fooled. Then the discriminator will produce a segmented
brain tumor as an output.

A. IMAGE PRE-PROCESSING
To fit within the CPU memory, each and every one of
the brain MR pictures are sampled with a size of 128 ×

128 × 128. The datasets are unaffected by this approach,
which nevertheless preserves the majority of the image’s
content within the resize region while reducing the size
and computing complexity of the image. By resizing the
images to focus only on the region of interest (ROI) e.g., the
brain in MRI scans, pre-processing can help reduce irrelevant
background noise. Resizing focuses the model’s attention
on the critical areas of interest, potentially improving the
training process. We mainly focus on the ROI which is the
tumor part. To align with our proposed architecture and
efficient execution we resized the data. To resolve this issue,
we resized the data using the Keras resize library technique.

MRI scans for medical pictures are typically acquired
using various scanners and acquisition techniques. Therefore,
normalizing MRI intensity values is essential for balancing
picture heterogeneity. Every input picture is normalized to
have a mean of zero and a variance of one. Additionally,
we collect each voxel’s intensity between 5% and 95% from
the MR picture.

B. GENERATOR
Input a 3D image with four channels: T1, T2, T1Gd, and T2
FLAIR. These channels refer to different types of MRI scans
that capture images from various angles and perspectives.
T1 shows fat in white and fluid in dark colors while T2
reverses this effect by making fat appear dark and fluid
bright. Adding Gadolinium (T1Gd) further enhances contrast
and can highlight areas of inflammation or abnormal tissue
growth. Finally, the T2 FLAIR sequence helps identify water
accumulation in regions where it shouldn’t be present such as
tumors or lesions.

Our model is inspired by the U-module. The U-module is
based on an auto-encoder with the purpose of better param-
eter initialization of CNNs for medical image classification.
The U-module is proven to retain the feature in the next layers
of CNNs. In our paper, besides the main task of segmentation,
we add a U-module to our model as an auxiliary task, which
helps to force the model to preserve as much of the relevant
and important information as possible. In detail, the operation
of the U-Module [39] is described as the following formula:

ϕ : F → Z (1)

ρ : Z → F (2)

ϕ, ρ =

(
argmin ∥ F − (ϕoρ)F ∥

2

ϕ, ρ

)
(3)

where the ϕ and ρ transitions present the encoder and decoder
of the U-module. The encoders compress the original feature
map F into a smaller feature map Z. The decoder uses the
upsampling layer and MF unit to recover the original feature
map. The difference between the reconstructed map and the
features map is minimized so the small feature map can
represent the large feature map. This way, the most important
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FIGURE 3. Overall architecture proposed model.

and relevant features of the previous layer will be retained
in the next layer. In our model, we used two U-modules
at the first and second encoder layers because those layers
had the largest feature resolution to be kept. In addition to
helping our model retain the properties of small tumors, the
U-Module can also improve parameter initialization as its
original purpose.

Figure 3 shows the complete architecture of the proposed
generator.

1) AUTO-ENCODER
An auto-encoder is a type of neural network that is able
to learn how to compress and then decompress data. In the
context of tumor segmentation, this means that it can take
in images of a patient’s brain and then output an image with
just the tumor highlighted. The encoder in the auto-encoder
learns effective data codings while down sampling and tries
to keep as much of the pertinent data as it can. The decoder
takes the encoding and builds a whole picture from it while
upsampling.

In the encoder, with the kernel size 4 × 4 × 4, the same
padding, and stride 2 there are 3D convolutional layers. These
layers are followed by the ReLU activation function and batch
normalization.
Normalization is mathematically defined as:

mean =
1
m

n∑
i=0

xi (4)

variance =
1
m

n∑
i=0

(xi − mean)2 (5)

normalized =
xi − mean

√
variance+ ϵ

(6)

ϵ is added in the denominator for numerical stability and is
an arbitrarily small constant.

In the decoder, with the kernel size 4× 4× 4 and stride 2,
there are 3D transpose convolutional layers. These layers
are followed by the ReLU activation function and batch
normalization. Concatenation of each 3D convolution input
with the corresponding encoder output layer.

2) DOWN SAMPLING
Downsampling operation that compresses the input images
into low-resolution representations. This reduces compu-
tational complexity while preserving critical information
about the location and arrangement of image features.
Downsampling ensures that larger regions can be analyzed
effectively without overloading computer memory or causing
other issues.

At each step, we use an encoder which have a 3D
convolutional layer with the kernel size of 4 × 4 × 4, the
same padding, and stride 2. This layer is then followed by
Instance normalization and ReLu activation function. For
regularization purpose, we set the dropout ratio to 0.2. This
process is added to each encoder step. This will help the
encoder to retain as much information as possible. The
detailed architecture of downsampling in Figure 4.

3) TRANSFER LEARNING
Transfer Learning refers to the process by which a machine
learning model leverages the knowledge it acquired from
solving a specific problem to tackle another related problem.

VOLUME 12, 2024 183533



A. Ali et al.: Brain Tumor Segmentation Using Generative Adversarial Networks

FIGURE 4. Down sampling architecture.

It involves transferring learned skills from one task to
another. By utilizing a pre-trained model, it becomes possible
to fine-tune it for a new task using fewer data and
computational resources compared to training it from scratch.
This technique has demonstrated remarkable effectiveness in
various domains such as computer vision, natural language
processing, and speech recognition. It enables models to
quickly learn from limited labeled training data, address the
challenge of overfitting on smaller datasets, and improve
overall performance in real-world scenarios.

In this paper, the DenseNet model is employed. DenseNet
is a convolutional neural network (CNN) specifically
designed for transfer learning purposes. It allows pre-trained
models to serve as a starting point for various tasks, including
image classification, object detection, and segmentation.
The key idea behind the DenseNet model is to establish
connections among all layers within the network, enabling
each layer to receive information from all preceding layers.
This approach promotes effective feature reuse and facilitates
fine-tuning even with smaller datasets.

In the bottleneck, we used the DenseNet architecture
for the better performance of the algorithm. The DenseNet
is trained on the ImageNet dataset which is a very huge
dataset. This architecture is trained on this dataset. We set the
trainable parameter to false so that we can freeze the layers
of this model so that the weights cannot be updated with our
algorithm. The model uses the input that is provided by the
dataset with the activation function softmax.

This model is then followed by the max pooling and flatten
layer. Then it is followed by the Dense layers and activation
function softmax. It will produce the segmented result from
an image and then will be given to the upsampling model.

4) UP SAMPLING
Upsampling in U-Net is a technique used to increase the
resolution of an image or feature map by interpolating and/or
copying information from lower-resolution layers. In U-Net
specifically, the up-sampling step helps to recover spatial
details that were lost during downsampling, allowing for
more accurate segmentation of objects at different scales

At each step, we use a decoder which has a 3D transpose
convolutional layer. This layer has a kernel size of 4× 4× 4,
applies the same padding, and has a stride of 2. Subsequently,
Instance normalization and ReLu activation function are
applied. Then this is followed by the concatenation process
with the encoder layer. For regularization purposes, we set the
dropout ratio to 0.2. This process is added to each decoder

FIGURE 5. Up sampling architecture.

step. This will help the decoder to rebuild the segmented
image with the encodings provided by the encoder. The
detailed architecture of upsampling is shown in Figure 5.

At the end with the size of 128 × 128 × 128 × 4 having
transpose convolutional with 4 filters, 2 strides, and 4 × 4 ×

4 kernel size followed by Softmax activation function give a
prediction of the input image.

C. DISCRIMINATOR
We build the GAN model using a 3D convolutional neural
network with a classification function as the discriminator.
An image pair serving as both the original, unsegmented
pictures and the corresponding, segmented images are
inputted into the discriminator. These image pairings may
be categorized into two groups based on the succession of
segmented images. The first category is made up of a series
of original images and segmented images that have been
carefully labeled by specialists and correspond to the genuine
value. The generator automatically labels segmented images
in the second category, which corresponds to the produced
value and is labelled as 0, in a cascade of original images.
Figure 6 shows the architecture of the discriminator.

In the discriminator, there are five convolutional layers.
Each convolutional layer contains two blocks of convolutions
with the kernel size of 3 × 3 × 3 and the Relu activation
function. After the convolutions, a maximum pooling block
with a sliding window of 2 × 2 × 2 was applied reducing
the feature maps. With the help of these pooling blocks, the
features are reduced to half of the features. Additionally, the
discriminator included three fully connected dense layers.
In the first two layers, there are 4096 neurons and the last one
has 2 neurons that correspond to the number of categories.
These fully connected dense layers are followed by the
Sigmoid activation function.

D. LOSS FUNCTION
As we had discussed earlier the GAN works with a
generator and discriminator. The generator tries to fool the
discriminator and the discriminator tries not to be fooled with
the fake image generated by the generator. If generator wins
then its discriminator loss and if the discriminator wins then
its generator loss. So, there will be two loss functions for each
generator and discriminator.

First, we have discriminator loss, LD, is the sum of LE error
of discriminator, D(x, y), the original image x and the gound-
truth y with tensor one and LE error of discriminator between
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FIGURE 6. Architecture of proposed discriminator.

the original image and the respective segmentation prediction
ŷ generator by generator with tensor zero. Discriminator
loss [40] is calculated using the following equation:

LD = LE [D(x, y), 1] + LE [D(x, ŷ), 0] (7)

Now generator loss, LG, is the sum of LE error of
discriminator, D(x, y), the original image x the respective
segmentation prediction y generator by generator with tensor
one and the generalized dice loss, GDL(y, ŷ), between the
gound-truth and generator output multiplied by scaler α ≥

0. Generator loss [40] is calculated using the following
equation:

LD = LE [D(x, ŷ), 1] + αGDL(y, ŷ) (8)

From equation 11, it is concluded that if α = 0,
it will minimize only the unsupervised loss given by the
discriminator.

IV. EXPERIMENTAL SETUP
This section will describe the experimental setup of our
proposed research work.

A. DATASET
In the proposed work a well-known and publicly available
images dataset BraTS 2021 has been used [62], [63], [64].
This dataset is the latest version of the BraTS challenge.
In this dataset, there are 1251 MR images of shape 240 ×

240 × 155 for training, 219 images for validation, and
570 images for testing. These MR images are required for the
segmentation of tumors in the brain. Table 2 shows the dataset
samples distribution for training, validation, and testing with
class labels.

In this dataset, the MR images are described as T1
weighted sequence (T1), T1-weighted post-contrast (T1Gd),

TABLE 2. Summary of distribution of BraTS 2021 data across training,
validation, and testing.

T2-weighted sequence (T2), and T2-Fluid attenuated recov-
ery (T2-FLAIR). From this description, four different
sub-regions of tumor can be identified from MR images
as Enhancing Tumor (ET), Non-Enhancing Tumor (NET),
Necrotic Tumor (NCR), and Peritumoral Tumor (ED).

Then further these four sub-regions are clustered together
to form tumor classes as Enhancing Tumor (ET), the
combination of NET, ET, and NCR represents Tumor Core
(TC), and the combination of ED with TC represents Whole
Tumor (WT).

B. EXPERIMENTAL PARAMETERS
The proposed model is implemented in Python using the
TensorFlow and Keras libraries. We employ the ADAM opti-
mizer for training our technique. The segmentation network
generator denoted as G, undergoes training for 100 epochs.
5× 10−4 is the initial learning rate, and after 2000 iterations,
it decreases by a factor of 0.5. On the other hand, the
discriminator, denoted as D, is trained for 200 iterations,
approximately equivalent to one epoch, with amini-batch size
of 1. Additionally, we trainG for 100 iterations using the same
mini-batch size. Since G contains pre-training parameters,
it requires fewer training iterations compared to D. The
training process involves alternating between training the
discriminator and the generator. To evaluate the effectiveness
of the algorithm, we reserve one subset as a validation set for
each cross-validation, while the remaining subsets are used
for training.
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Algorithm 1 Training Process
for i_round in number of training rounds do

for kD steps do
sampling a batch of images xpdata as training data;
generating prediction yPred for x with G(x);
updating Discriminator parameters θD from LD;

end for
for kG steps do

end for
sampling a batch of images x́pdata as training data;
generating prediction ýPred for x́ with G(x́) and

compute D(G(x́));
updating Generator parameters θG from LG;

end for

We always need a good framework while working with
machine learning/ deep learning techniques. Keras is the
most widely used deep learning framework that provides us
more power to do experiments and to generate faster results.
Tensorflow helps us to make machine learning models and to
train them. Tensor flow is an endways open-source stage for
CNN and ML(machine learning) [65].

C. MODEL EVALUATION METRICS
The overlap between prediction and ground truth is repre-
sented by the Dice Similarity Coefficient (DSC), which is
frequently employed as an assessment criterion in medical
picture segmentation [63]. The distinction between false
positive (FP) and false negative (FN) detections is not taken
into account by the generalized dice loss function. Due of the
modest size of the foreground, the algorithm would typically
allocate a voxel to the background when FPs and FNs
are equally weighted. Due to the extreme class imbalance,
FN detections must get heavier penalties than FP detections.
The weight of FNs is enhanced using the DSC coefficient,
which is a variation of the Tversky coefficient.

For evaluation of result metrics Dice Similarity Coefficient
(DCS) is used for the accuracy measurement. Mathemati-
cally, it is defined as below:

DSC(Xp,Xg) =
2 | Xp ∩ Xg |

| Xp | + | Xg |
=

2TP
FP+ 2TP+ FN

(9)

where Xp refers to the segmentation predicted by the
algorithm and Xg represents the actual ground truth. Whereas
TP refers to the true positive, FP represents the false positive
and FN represents the false negative.

D. HYPER PARAMETERS
Hyper-parameters are deep learning model parameters that
are specified before training begins and are not learned during
training. Hyper-parameters are used to manage the model’s
behavior and fine-tune its performance. In deep learning,
several types of hyper-parameters can be adjusted to achieve

TABLE 3. Hyper-parameter values.

accurate predictions, such as learning rate, hidden layers,
optimizer, batch size, activation functions, and many more.

We used the Bayesian Optimization technique for hyper-
parameters tuning. Bayesian optimization is a powerful tech-
nique used to optimize black-box functions that are expensive
to evaluate. Bayesian optimization for hyper-parameter
tuning is a probabilistic approach to finding the optimal
hyper-parameters for a machine learning model. This method
uses fewer evaluations and finds better hyper-parameters than
a grid or random search. It can handle complex relationships
between hyper-parameters and model performance.

In our proposed work, there are two separate models for the
generator and discriminator. So we have different parameter
settings. The hyper-parameters we used in our models are
displayed in the Table 3.

V. RESULTS AND DISCUSSION
In this section, the proposed technique’s results are discussed.
To verify the performance of our method, we conduct two
steps: training and testing. The training set accounts for
approximately 80% of the total data, while the test set com-
prises approximately 20% after preprocessing the dataset.
The test set and training set lists are generated independently
of each other through random selection. After augmenting
the training set with additional data, we utilize adversarial
training to alternate between training the generative network
and the discriminative network. Once the model achieves an
optimal balance, we save the network parameters generated
for subsequent segmentation experiments.

A. RESULTS OF PROPOSED MODEL IN TERMS OF
ACCURACY
Our model is evaluated with the Dice Similarity Coeffi-
cient. We have achieved good accuracy with our proposed
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FIGURE 7. Accuracy graph.

TABLE 4. Dice score for three of the tumor categories.

generative adversarial networks framework. The main reason
and difference between our and previous approaches is that
we have used auto-encoder and transfer learning techniques
in the generator. With the help of this approach, we are able
to show better results for enhancing tumor.

Figure 7 illustrates the dice score, which represents the
precision of our model’s brain tumor segmentation for three
distinct tumor categories. Figure 8 shows the segmented
image of tumor.

After undergoing 100 epochs of training, our model
achieved 0.94 score for the whole tumor, 0.86 score for the
tumor core, and 0.82 score for enhancing tumor.
Table 4 shows the values for the dice similarity score,

sensitivity, and specificity for the three of the tumor
categories namely whole tumor, tumor core, and enhancing
tumor.

The accurate segmentation of small tumors remains a
challenging task due to their limited size and the subtle
differences between tumor and non-tumor regions. Our
approach leverages the synergistic combination of Trans-
fer Learning (TL), Auto-Encoders (AEs), and Generative
Adversarial Networks (GANs) to address these challenges
effectively. Here, we provide a detailed explanation of how
this performance is achieved:

1) TRANSFER LEARNING (TL)
Transfer learning allows the model to leverage pre-trained
weights from large, annotated datasets, which significantly
enhances its ability to generalize from limited training data.

By using a pre-trainedmodel as the starting point, the network
benefits from learned features that are already well-suited
for segmentation tasks. Fine-tuning the pre-trained model on
our specific dataset ensures that these features are further
refined to capture the nuances of small tumors. This approach
reduces the risk of overfitting and improves the overall model
performance.

2) AUTO-ENCODERS (AEs)
Auto-encoders play a crucial role in enhancing the feature
learning process. In our method, the encoder part of the
auto-encoder is responsible for compressing the input image
into a lower-dimensional latent representation while pre-
serving essential features. This compressed representation is
particularly effective in highlighting the subtle characteristics
of small tumors. The decoder then reconstructs the image
from this latent representation, ensuring that the fine details
of the tumor are retained. The encoder-decoder architecture
aids in capturing complex patterns and enhancing the model’s
ability to distinguish between tumor and non-tumor regions,
even for small-sized tumors.

3) GENERATIVE ADVERSARIAL NETWORKS (GANs)
GANs are employed to generate high-quality synthetic
images that augment the training data, addressing the issue
of limited datasets. The generator network produces realistic
tumor images, while the discriminator network ensures
that the generated images are indistinguishable from real
ones. This adversarial training process not only enriches
the training set but also forces the generator to learn and
retain intricate details of small tumors. The enhanced dataset,
combined with the discriminator’s feedback, improves the
model’s robustness and accuracy in segmenting small tumors.

The combination of TL, AEs, and GANs contributes to
the high Dice Similarity Coefficient (DSC) observed in our
results. Specifically:

• TL initializes the model with robust, generalized fea-
tures that are fine-tuned for our specific task.

• AEs ensure effective feature compression and recon-
struction, focusing on retaining tumor-specific details.

• GANs enhance the diversity and quality of the training
data, improving the model’s ability to generalize and
segment small tumors accurately.

Our experimental results demonstrate that this integrated
approach significantly outperforms traditional methods in
terms of accuracy, particularly for small tumors. The DSC
values indicate that our method achieves precise segmen-
tation by effectively capturing and utilizing the intricate
features of small tumors, thereby validating our claims.

B. COMPARATIVE ANALYSIS OF THE PROPOSED MODEL
We compared the suggested GAN approach with many
new brain tumour segmentation techniques using broad
computational indicators. Since MRI images are made up
of voxels, 2D and 3D segmentation techniques are often
used. In these listed methods, Figure 9 shows the results of

VOLUME 12, 2024 183537



A. Ali et al.: Brain Tumor Segmentation Using Generative Adversarial Networks

FIGURE 8. Validation phase results for the sample BraTS2021.

three different research works namely adversarial learning
techniques for brain tumor segmentation [36], 3D GAN for
brain tumor segmentation modified U-Net with dense block
[66], CNN architecture with multitask learning for extracting
features like small tumor [39], and 3D volume to volume
GAN called Vox2Vox [40] are included.
We compared our model with the most recent researches

that used GAN architecture as well because our goal was
to achieve better results for the enhancing tumor as they
are in small size. We have achieved a dice score of 0.92
for the whole tumor, 0.86 for the tumor core, and 0.82 for
enhancing the tumor. Our model contained GAN architecture
with auto-encoder and transfer learning technique for brain
tumor segmentation. Here presented the comparative study of
four recent research work done by the other researchers with
our model.

Our proposed model shows better results than the others
because we used an auto-encoder and tranfer learning
technique for brain tumor segmentation. In the generator part
of GAN while downsampling the encoder retains as much
information as possible and while upsampling the decoder
uses that information to create the real image back. At the
bottleneck, we used the transfer learning technique. In this
technique, pre-trained model DenseNet is used. It produces
better results while segmenting the enhancing tumor. The
experimental result shows a dice score of 0.94 for the whole

tumor, 0.86 for the tumor core, and 0.82 for the enhancing
tumor. This presents well in comparison to other different
techniques. Our proposed work presents a good result in the
segmentation of brain tumor with variation in size, shape, and
location. The results in table 5 show that our method has the
highest accuracy in terms of segmentation. It is also showed
that we achieve 2% to 4% higher accuracy.

By combining auto-encoder techniques with transfer
learning methodologies in GANs, several synergistic effects
occurred:

• Enhanced feature learning: Auto-encoders aid in learn-
ing more effective data representations, which improves
the GAN’s ability to generate high-quality outputs.

• Reduced training time: Transfer learning speeds up
GAN training by starting from weights learned on other
tasks or datasets.

• Increased stability: Both auto-encoders and transfer
learning contributed to stabilizing the challenging train-
ing process of GANs, leading to a more consistent and
reliable generation of outputs.

Overall, the incorporation of auto-encoder and transfer
learning methodologies into GANs represents a strategic
approach to overcome challenges and achieve superior
outcomes in terms of output quality, training efficiency, and
model robustness compared to earlier GAN models that lack
these advancements.
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FIGURE 9. Comparison of three other architectures.

TABLE 5. Dice score for three of the tumor categories.

VI. CONCLUSION AND FUTURE WORK
Brain tumor segmentation is a significant field in medical
research that utilizes deep learning techniques. Accurate
tumor segmentation is crucial for the effective treatment
of brain diseases. Although deep learning offers various
algorithms for segmentation, it still faces challenges in
providing precise analysis of medical images due to tumor
characteristics such as structure, size, and location. With
our approach, we found that GANs have shown promising
results for brain tumor segmentation, with their ability to
segment tumors with variations in size, shape, and location.
With the help of GAN and transfer learning techniques,
it shows that the segmentation of small tumors is possible
with a higher accuracy rate. We found that GAN with
auto-encoder shows promising results in retaining features
of the tumor with different sizes, shapes, and locations. The
encoder in the auto-encoder learns effective data encoding
while downsampling and tries to keep as much of the
pertinent data as it can. The decoder takes the encoding
and builds a whole image from it while upsampling. GANs
have been effectively employed in diverse medical image
segmentation assignments, such as the segmentation of brain
tumors. By incorporating auto-encoder and transfer learning
methodologies, GANs yield superior outcomes compared
to prior GAN models. We trained and tested our proposed
model using the publicly available BraTS 2021 dataset. The

evaluation of our work was based on the Dice Similarity
Coefficient (DSC). The experimental results demonstrate a
dice score of 0.94 for the whole tumor, 0.86 for the tumor
core, and 0.82 for enhancing the tumor.
Through semi-supervised or poorly supervised deep learn-

ing techniques, we may attempt to address the issue of
inadequate medical picture datasets in the next work and
improve the model’s segmentation accuracy and generaliza-
tion capacity.We can attempt to apply the suggested approach
to further multi-model medical pictures (such as ultrasound,
CT, etc.).
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