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ABSTRACT Prosumer communities are integrating renewable energy sources to reduce energy costs
and carbon emissions for sustainable and clean energy awareness. However, increasing solar photovoltaic
penetration in low-voltage distribution networks leads to serious power quality challenges, such as
overvoltage for grid operators and prosumers. Integrating electric vehicles (EVs) as deferable loads can
reduce prosumer costs and maximize environmental benefits as EV charging is managed. Therefore, this
paper proposes a novel EV charging management that maximizes prosumer communities’ power quality and
benefits PV-rich prosumers by applying a dynamic active power curtailment framework. The methodology
calculates each prosumer’s maximum power injection into the grid based on their voltage sensitivities. The
performance of the developed charging management is examined on the European 906 bus low-voltage
distribution networks under unmanaged, managed, and vehicle-to-grid (V2G)-empowered scenarios. The
prosumers’ individual and aggregated economic cost-benefit results are analyzed considering increasing
EV penetration. The results show that the proposed method considering fair active power curtailment
could increase self-consumption and renewable fraction for prosumers. It is observed that increasing EV
penetration could reduce the curtailed energy by 14.6%. The V2G-empowered method also increased up
to 20% more renewable energy for charging EVs, improved self-consumption and renewable fraction up to
11% and 19.4%. Moreover, the V2G option reduced total costs by up to 37.93%. This work can potentially
promote renewable energy sources by modifying consumers’ charging behaviors to be more sustainable and
environmentally friendly.

INDEX TERMS Active power curtailment, vehicle charging management, self-consumption, over-voltage
mitigation, sensitivity matrix.

I. INTRODUCTION
Due to the growing worldwide awareness of sustainable,
environment-friendly, and on-site energy generation, pro-
sumer communities are increasingly integrating renewable
energy sources (RES) to reduce energy costs and car-
bon emissions [1]. Despite all advantages, the increased
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penetration of PV in low-voltage distribution networks
(LVDN) leads to serious power quality challenges, like over-
voltage, for both network operators and prosumers due to
the time mismatch of renewable energy generation and the
demand [2], [3]. The reverse power flow increases the voltage
at the prosumer’s node due to surplus energy. The cable
impedance may increase the overvoltage effects in nodes
far from the power supply. Active power curtailment (APC)
in LVDN is a highly effective method for over-voltage
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mitigation. APC generally curtails a certain amount of
clean and renewable power regardless of the prosumers’
location and interaction with LVDN. Thus, current standard
droop-based APC techniques use local voltage and power
measurements to prevent over-voltages, resulting in direct
renewable energy losses and unfair power curtailment. Since
the line resistances in LV systems are more significant,
the relationship between voltage and active power is more
dominant than in reactive power [4], [5]. Several studies on
APC have been proposed to control the active and reactive
power injected by PV units using droop control to share
the curtailed power among the prosumers uniformly [6],
developing a distributed control scheme [7] and determining
a voltage bandwidth for each prosumer for over-voltage
mitigation [8]. Although APC has been explicitly evaluated
in various studies, these APC methods generally result in
an unfair power curtailment when mitigating overvoltage.
Simply curtailing active power will result in more renewable
energy losses for prosumers in the sensitive parts of the grid
compared to those close to the substation transformer [9].
On the other hand, some studies [10] apply the same sense
of power curtailment for all prosumers of the same feeder
in a particular part of the electricity grid at every instant.
Since all prosumers are responsible for the overvoltage at
different nodes, it is unfair to curtail different active power
for each user depending on the connection voltage. Thus, the
unfairness asks for an approach to curtail the power equitable
among the prosumers based on predefined fairness. Fair
APC can become equality in curtailed power, PV production,
or power export among prosumers. If all prosumers curtail the
same power, a smaller percentage is curtailed from prosumers
whose exported power is higher. Furthermore, uniform export
curtails more power for the same prosumer. So, curtailment
based on PV production finds the middle ground. Thus,
it can be concluded that deciding on a suitable fairness
method depends on the requirements of the prosumers since
there are trade-offs between various factors that determine
fairness [10]. Therefore, a droop-control-based APC was
presented to provide fair curtailment among prosumers
controlling each prosumer’s inverters. Nevertheless, this
method leads to more power curtailment than unfair methods,
reducing overall energy export [9]. Therefore, the study has
focused on equalizing the loss of revenue for each prosumer
in designing a fair APC algorithm [11]. This technique
considers only economic fairness, avoiding fairness in total
curtailed power. It recommends fair APC as a ratio of active
power and the injected actual power by different prosumers,
even if leading to more power curtailment [10]. Nevertheless,
these effective APCmethods mitigate over-voltages in LVDN
and cause significant renewable energy loss. Sensitivity-
based approaches can be more helpful for fairness in
APC regarding prosumers’ needs. Several studies have
used sensitivity-based APC using primary load flow results
to calculate sensitivity indices for LVDN and a perturb-
and-observe-based algorithm to estimate sensitivities for

overvoltage mitigation [12]. However, these techniques need
more computational effort and are hard to implement.
On the other hand, analytical methods can efficiently and
quickly implement and estimate sensitivities [13]. However,
a few presented analytical solutions apply to balanced three-
phase LVDN. An APC method can minimize renewable
energy losses and equitably share the curtailed power among
prosumers for more attractiveness. Also, APC methods aim
to reduce the net energy exchange with the grid and enhance
the prosumers’ energy independence [6].
Similarly, electric vehicles (EVs) have been recognized as

a significant step in decarbonization and improving power
grid flexibility [14], [15]. EVs are expected to increase
rapidly due to global encouragement for expanding EVs
to achieve net-zero emission targets. Many countries have
witnessed dramatic increases in grid energy prices over
the past decade [16]. Furthermore, a growing number of
awareness-raising projects are encouraging public commit-
ment to environmental sustainability. As a result, local
renewable energy production is expanding across European
countries, accompanied by a proliferation of subsidies to
offset costs [17]. However, increasing unmanaged and unpre-
dictable EV charging demand, especially in residential, can
cause a substantial adverse impact on distribution systems,
such as voltage deviations and additional power losses [18],
[19]. Chargingmanagement can postpone charges to off-peak
times. Smart chargingmay use renewable and cheaper energy,
improving benefits for both the prosumer and network,
compared to immediate unmanaged charging [20]. Existing
research on EV charging management mainly focuses on
centralized and decentralized power control to minimize its
effect on the distribution system assets and reduce trans-
mission congestion and greenhouse gas (GHG) emission via
integrating RES into charging management [21]. Charging
management methods optimize the charge level, location,
and duration [22], [23], considering arrival-departure times,
arrival and desired state of charge (SOC) of EVs, RES
availability, power constraints, and loading conditions of
the grid [24], [25], [26], [27]. By implementing charging
coordination, prosumers self-consumption increases to 65%
for vehicle-to-grid (V2G)-enabled smart charging. Thus, this
leads to higher revenues and autarky using PV energy rather
than grid power [28].

RES-integrated smart EV charging strategies can min-
imize renewable energy curtailment to improve the
self-consumption of prosumers equipped with a solar pho-
tovoltaic where excess energy injection into the distribution
system is not allowed for reducing network congestion [29].
Smart EV charging seems more feasible and cost-effective
than local and stationary energy storage systems (ESS).
Because this approach has achieved reducing 76% in
energy curtailment and 67% in daily savings compared to
a traditional consumer of the same size and characteristics
without smart charging [30]. EV charging management
smooths load profile effectively and reduces charging
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cost in a short computational work and is applicable
for large-scale EV charging, avoiding higher transformer
capacity costs without hampering EV owners’ SOC desires
and charge durations [31]. Coordinated EV charging can
lighten the negative impact of uncoordinated EV charging.
Managing EV charging to facilitate RES inCalifornia reduces
curtailment by up to 40%. Overnight charging saves the cost
but raises curtailment [32]. The decentralized managed EV
charging mitigated the charging impact of 100 EVs with a
rated power of 7 kW charged simultaneously on power grids
successfully, safely, and effectively. It can be extended with
vehicle-to-grid (V2G) functionality exchanging information
between EVs [33]. Due to loading uncertainties and
unpredictability in EV charging, a charging approach for
large irregular EVs to minimize the degradational effects on
the distribution system and reduce transmission congestion
and GHG emission has been proposed to determine the
maximum number of vehicles that should be charged during
the next hour avoiding increasing the loss of life (LOL) of
the transformer or degrade the reliability of the system. Power
system-level communication must be improved to implement
the proposed work [34]. However, this approach needs to
improve the scheduling of each EV based on the battery state
of charge and their V2G availability. Moreover, EV owners
may suffer from charging anxiety, which refers to the stress
of reaching the destination if they participate in V2G [35].
Full participation of the EV fleet in managed charging and
V2G integration allows for supplying 4% and 11.1% of the
system load from zero-emission sources, respectively [36].
Increasing EV battery sizes or charging power together does
not provide additional flexibility, as charging times do not
change [37].

Prosumers have different PV power in real life. However,
most works have assumed that all prosumers have the same
PV power [38], [39]. Most studies have not considered high
PV penetration rates that significantly cause overvoltage
in the LVDN and grid dynamics, such as voltage profile
and capacity utilization. In addition, even though most
consider grid power quality, they do not consider the
improving economic benefits through fair APC when
investigating prosumer benefits at high RES penetration.
To this end, the required power curtailments for prosumers
having different PV power are determined by considering
critical self-consumption rates (SCRs) to eliminate the
overvoltage. Moreover, the increase in EV numbers affecting
the cost-benefit analysis of SCR and V2G options has not
been focused on sufficiently in the recent literature [40], [41],
[42], [43]. This study investigated the effects of increasing
EV numbers considering individual energy exchange. All
seasonal variations have been evaluated in terms of self-
consumption. The main contributions of this study are as
follows:

• Developing a novel electric vehicle charging manage-
ment with a dynamic fairness active power curtailment
framework for PV-rich prosumers.

• Investigating the relationship between SCR and daily
travel range under high renewable energy penetration.

• Analysis of the impact of an increase in the EV
population on evening charging peaks when the vehicle-
to-grid (V2G) strategy is applied.

• Examination of the potential reduction of curtailed
energy associated with increases in the EV population
under high RES penetration conditions.

This paper has been organized as follows. Section I
presents the motivation behind the fairer APC method
empowered with EV charging management and summarizes
the recent related studies, indicating the research gap and
the paper’s main contributions. The APC method combined
with voltage sensitivity analysis for fairness is described and
applied to the charging management framework in Section II.
Several case studies are introduced, and their results are
discussed in Section III. Finally, Section IV concludes the
study by giving future suggestions.

II. METHODOLOGY
A. THE PROPOSED DYNAMIC APC-BASED CHARGING
MANAGEMENT STRATEGY
The same droop coefficients control PV inverters with
standard droop-based APC. Vcri is defined as the voltage at
which the curtailment starts. The PV inverter active power
(PPV ) is reduced linearly with the local voltage. Starting from
Vcri until the low boundary of voltage limit (Vlb), PV inverters
should not inject any power into the grid. The coefficient m
is obtained from Equation (1) by dividing the power in kW to
be reduced during this time by the voltage change.

m =
PPV ,max

Vcri,pu − Vlb,pu
(1)

The disadvantage of the standard droop-based APC
method is that prosumers far from the transformer inject less
of their excess power into the grid. For example, prosumers
near the transformer could inject all their PV power even
during maximum power generation. However, prosumers far
from the transformer could only export 35% of their PV
power at the time of maximum power generation. Therefore,
the PV revenues of these prosumers are lower than other
prosumers, creating an unfair situation [9]. Prosumers at the
most distant nodes are more likely to suffer from overvoltage
and, thus, higher active power curtailments when PV power
injection increases. However, the prosumers closer to the
transformer are not curtailed due to the radial nature of most
LVDNs. It is known as an unfair curtailment of renewable
energy. Therefore, the proposed method uses sensitivity
to redistribute the curtailed power more equitably among
prosumers.

In dynamic APC, inverters are controlled by separate droop
parameters and power losses are shared equally among all
inverters. Here, the design of droop coefficients is based on
the voltage sensitivity determined using power flow analysis.
The sensitivity analysis is used to understand the effect of
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the active and reactive power variation of the inverters on
the voltage variation of the radial distribution feeder. The
sensitivity matrix, which is the inverse Jacobian matrix of
the network, measures the voltage magnitude and angle
variations considering active and reactive power fluctuations.
Namely, it shows the dependencies between bus voltage and
power flow. Jacobian-based methods are commonly used for
the analysis of voltage sensitivities. Three-phase AC power
flow are provided in Equations (2)-(6) for determining power
flow among the prosumer community.

PGi,t − PDi,t =

N∑
j=1

Vi,t · Vj,t · Yij · cos
(
θij

+ δj,t − δi,t
)
, ∀i, j, t, b (2)

QGi,t − QDi,t =

N∑
j=1

Vi,t · Vj,t · Yij · sin
(
θij

+ δj,t − δi,t
)
, ∀i, j, t (3)

Iij,t = |Yij| ·
[
V 2
i,t + V 2

j,t − 2 · Vi,t · Vj,t

· cos
(
δj,t − δi,t

)]1/2
, ∀i, j, t (4)

Ploss =

N∑
j=1

I2ij · rij, ∀i, j (5)

Vmin ≤ Vi,t ≤ Vmax , ∀i, t (6)

In Equation (2), the generated and demand active powers at
bus i at time t are expressed as (PGi,t ) and (PDi,t ), respectively,
for describing active power flow. In Equation (3), describing
reactive power flow, the generated and demand reactive
powers at bus i at time t are expressed as (QGi,t ) and (QDi,t ),
respectively. Yij and θij are the amplitude and angle of the
admittance between buses i and j. Equation (4) represents
the line current (Iij,t ) from bus i to bus j using the voltage
amplitude (Vi,t ) of bus i at time t and angle (δi,t ). Equation (5)
calculates the total active power losses on all lines where rij
is line resistance between buses i and j. Equation (6) is the
voltage constraint commonly used in DN stability. The slack
bus voltage is 1, and its angle is 0 (Vi,t = 1, δi,t = 0).
According to the results of power flow analyses, the voltage
sensitivity matrix can be derived like Equation (7).[

1P
1Q

]
= J ·

[
1δ

1V

]
=

[
∂P
∂δ

∂P
∂V

∂Q
∂δ

∂Q
∂V

]
·

[
1δ

1V

]
(7)

[
1δ

1V

]
=



∂δ2
∂P2

· · ·
∂δ2
∂PN

∂δ2
∂Q2

· · ·
∂δ2
∂QN

...
. . .

...
...
. . .

...
∂δN
∂P2

· · ·
∂δN
∂PN

∂δN
∂Q2

· · ·
∂δN
∂QN

∂V2
∂P2

· · ·
∂V2
∂PN

∂V2
∂Q2

· · ·
∂V2
∂QN

...
. . .

...
...
. . .

...
∂VN
∂P2

· · ·
∂VN
∂PN︸ ︷︷ ︸

voltage sens. at P

∂VN
∂Q2

· · ·
∂VN
∂QN︸ ︷︷ ︸

voltage sens. at Q



[
1P
1Q

]
(8)

SV =

[
1δ
dP

1δ
dQ

1V
dP

1V
dQ

]
(9)

The voltage sensitivity matrix (SV ) consists of 4 sub-
matrixes (SVmn;m = 1, 2; n = 1, 2) with partial derivatives
showing variations in the voltage magnitude and angle of
buses, as shown in Equations (8) and (9). The sub-matrix
SV21 is used to analyze the voltage variation as a function
of the active power variation. Equation (10) calculates bus
voltages after curtailment (VCi/i+1 ) using voltages before
curtailment (Vi/i+1) and total curtailments depending on the
voltage sensitivity. Then, the m coefficient is calculated in
Equation (11).

VCi/i+1 = Vi/i+1 − 1P
∑
j

1VPi/i+1

1PPj/j+1
(10)

mi/i+1 =
1P

VCi/i+1 − Vcri
(11)

Since an APC method is adopted to mitigate overvoltage
effectively, the sub-matrix SV21 is of primary interest, as it
refers to the voltage variations against the active power
injections (1V/1P). The sensitivity theory is based on,
Firstly, reducing the computational complexity for low
execution times and, secondly, obtaining a good numerical
result regardless of the network non-linearities.

Vehicle charging management (VCM) is suggested for a
fairer curtailment of the excess renewable power considering
each prosumer’s position within the network, given in
Figure 1. The proposed VCM adjusts the curtailment energy
of prosumers according to the voltage sensitivity matrix. For
this reason, EV profiles, including charging and traveling
behaviors, have been implemented in VCM for presenting a
real driving consumption and V2G availability of prosumers’
EVs.

In the first stage of the close loop optimization framework,
the operational cost of prosumers has been minimized
without network constraints using a mixed integer linear
programming (MILP) solver via Gurobi. Gurobi optimizer
is one of the best performance solvers for MILP problems
in terms of returning high-quality and feasible solutions
due to advanced searching algorithms in Gurobi. Reducing
the number of variables and constraints can accelerate the
solution time in MILP. Gurobi is very sensitive to changes
in the number and order of constraints and variables. Thus,
several buses have violated the voltage constraints and
exaggerated prosumer profits. The results of this case will
be used to compare the superiorities of the proposed VCM.
According to the results of the first stage, violated buses
have been determined to calculate the network sensitivity
matrix (NSM). Therefore, the computed total curtailment
active renewable power is distributed among prosumers
considering the NSM. Namely, NSM dispatches the curtailed
power regarding each prosumer’s contributions. So, each
prosumer’s curtailed power is founded by Panda Power and
proceeded to the second stage. In the second stage of the
close loop optimization framework, the total operation costs
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FIGURE 1. Charging management framework.

of prosumers have been minimized considering network
constraints and fair APC. Thus, no bus violated the voltage
constraints, and curtailment of surplus renewable energy has
been minimized and distributed equitably among the pro-
sumers. Also, after rechecking buses for voltage violations,
total line losses have finally been updated to evaluate the
overall results. An unmanaged VCM has been compared to
managed and bidirectional VCMs to present the superiorities
of the proposed VCM with fair APC. Additionally, this
paper evaluates the impacts of increasing charging power
and battery size of EVs in the proposed VCM framework.
A possible increase in EV numbers has also been considered.
Furthermore, the implementation of common ESS in the
prosumer community has been investigated.

The energy purchase price at time t from the grid pbuyt , the
energy sale price from PV pPVsellt , and from EV is pEVsellt . The

grid powers flowing to the load and EV of prosumer k at time t
are PG2Lt,k and PG2EVt,k . The powers of PV and EV discharge
belonging prosumer k at time t delivered to the grid arePPV2Gt,k
and PEV2Gt,k .

PLt =

nodes∑
k=1

(
PG2Lt,k + PEV2Lt,k + PPV2Lt,k

)
, ∀k, t (12)

P
Ginjected
t,k = PPV2Gt,k + PEV2Gt,k , ∀k, t (13)

PGusedt,k = PG2EVt,k + PG2Lt,k , ∀k, t (14)

The total system load at time t fed from the grid,
EV (PEV2Lt,k ) and PV (PPV2Lt,k ) is given in Equation (12). The

powers injected to (P
Ginjected
t,k ) and supplied by the grid (PGusedt,k )

are given in Equations (13) and (14).

P
PVgen
t,k = PPVusedt,k + PPV2Gt,k + PPVcurt,k , ∀k, t (15)

PPVusedt,k = PPV2Lt,k + PPV2EVt,k , ∀k, t (16)

The total PV generation of prosumer k at time t (P
PVgen
t,k )

is either transferred to load (PPV2Lt,k ), EV charging (PPV2EVt,k )
or injected into the grid (PPV2Gt,k ), as shown in Equations (15)
and (16). If excess power exists, (PPVcurt,k ) is curtailed to keep
the bus voltage within the limit.

PEV2Lt,k = PEV2Gt,k = 0,

{
t ∈ [06, 18]
t ∈ [22, 06]

(17)

For minimizing EV battery degradation due to V2G oper-
ations, power discharges to the load or the grid are prevented
during non-peak load times, as given in Equation (17).

PPV2Gt,k + PEV2Gt,k ≤ M · ut1, Vmin < Vk < Vmax , ∀t (18)

PGusedt,k ≤ M . (1 − ut1) (19)

In Equations (18) and (19), the unit step function (ut1)
prevents bidirectional energy flow at the same bus and time.
For prosumer k at time t, using grid power (PGusedt,k ) is not
possible, while PV power injection (PPV2Gt,k ) or discharging
EV power (PEV2Gt,k ) into the grid at the same bus. M is a
sufficiently large number.

PEVchrt,k ≤ c.ut2, c ∈ {7} (20)

PEVdischrt,k ≤ c. (1 − ut2) , c ∈ {7} (21)

PEVchrt=0,k = PEVdischrt=0,k = 0, ∀k (22)

The unit step function (ut2) in Equations (20) and (21)
ensures that EVs are not charged and discharged simultane-
ously. The coefficient c refers to the charging power of 7 kW.
Equation (22) defines the initial (t = 0) charge (PEVchrt,k ) and
discharge (PEVdischrt,k ) powers for each EV.

PEVchrt,k = PG2EVt,k + PPV2EVt,k + PESS2EVt , ∀k, t (23)

PEVdischrt,k = PEV2Gt,k + PEV2Lt,k , ∀k, t (24)

In addition to the grid and PV power, the charging power
from the shared ESS is given in Equation (23). When there
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is no shared ESS, PESS2EVt = 0. Similarly, the EV discharge
(PEVdischrt,k ) towards the grid (PEV2Gt,k ) and the prosumer load
(PEV2Lt,k ) is seen in Equation (24).

SoEEVt,k = SoEEVt−1,k + PEVchrt,k · ηchr

−
PEVdischrt,k

ηdischr
, ∀k, t (25)

SoEEVmax,k ≥ SoEEVt,k ≥ SoEEVmin,k , ∀k, t (26)

The state of energy at time t for the EV at prosumer k
(SoEEVt,k ) is given in Equation (25). The charging efficiency is
ηchr , and the discharging efficiency is ηdischr . Equation (26)
expresses the maximum (SoEEVmax,k ) and minimum SoE
(SoEEVmin,k ) values for each EV.

PPV2Gt,k ≤ PPV2GAPCt,k , ∀k, t (27)

Finally, Equation (27) expresses the maximum PV power
that can be injected into the grid according to the fair
curtailment power determined for each prosumer at each
time t by the proposed APC method.

The proposed method minimizes the total cost of the
system in Equation (28). The optimization model considers
two types of network constraints: voltage deviations and
network capacity. pEVsellt covers both operational costs
and degradation costs of EV battery. pPVsellt covers both
PV’s operational and maintenance costs. Furthermore, the
objective function incorporates c.PPVcurt,k , which minimizes
the amount of curtailed energy. An important point is that
curtailed energy costs are subtracted from the minimized
total cost after optimization. c is a very small cost constant,
and PPVcurt,k is the amount of power curtailed. Additionally,
the objective function in Equation (28) was utilized to
minimize the system’s total cost, irrespective of whether
grid constraints were considered. However, the constraint in
Equation (18) was excluded from the optimization model,
which did not incorporate grid constraints. Therefore, there
is no need for energy curtailment because surplus energy can
be totally sold to the grid in this scenario.

minimize
K∑
k=1

T∑
t=1

(
pbuyt

(
PG2Lt,k + PG2EVt,k

)
− pPVsellt

· PPV2Gt,k − pEVsellt · PEV2Gt,k

)
+ c.PPVcurt,k (28)

Self-consumption rate (SCR) and renewable fraction (RF)
are already considered in various technical and economic
evaluation works. SCR is defined as the amount of directly
self-consumed PV energy (EconsPV ) over the total PV pro-
duction (EgenPV ), as expressed in Equation (29). Renewable
fraction (RF) shows the total annual RES energy rate
transferred to the load, as in Equation (30). Where RF is
renewable energy fraction (%), andEnonren is the conventional
energy source (kWh/yr). The ratio between the total PV
generation directly transferred to the load and charging
demand and the annual total demand gives the self-supply rate

(SSR), as in Equation (31).

SCR =

∑
EconsPV∑
EgenPV

(29)

RF = 1 −

∑
Enonren∑
Eserved

(30)

SSR =

∑
EconsPV∑
Eload

(31)

III. SIMULATION RESULTS AND DISCUSSIONS
Firstly, the system under study is presented. Afterwards,
distinct scenarios are presented for consideration. The first
scenario examines the impact of charging coordination on
both charging management and the potential for V2G over
a year. The daily results have demonstrated the impacts of
coordinated charging and increased V2G participation on the
grid power quality, including line loading, voltage drop, and
energy losses. The second scenario also illustrates the impact
of an increase in EV numbers on the prosumer and the grid in
terms of curtailed energy reduction, total cost reduction, and
the increasing injected power from EV to the grid, in addition
to the benefits of renewable energy utilization.

A. SYSTEM UNDER STUDY
The IEEE European LVDN represents a radial distribution
network suitable for simulating distributed power supply
voltage/reactive power controls [44]. The test network
comprises 906 buses, 55 single-phase residential loads, and
an 11/0.416 kV delta-wye medium voltage transformer.
The IEEE European LVDN has been modified by adding
55 prosumers to randomly selected buses and has been
used to simulate the proposed novel VCM with fair APC.
Each prosumer’s PV power was defined by considering
the EPV /Eload ratios. In addition, considering the space
constraints of residential prosumers in LVDN, the maximum
PV power was determined as less than 15 kW. A total of
465 kWp PV installed power is defined in PV-rich LVDN.
Also, PV productions were obtained from NASA. The
number of EVs in the scenarios is determined by increasing
from 20% (11 EVs) to 80% (44 EVs) of 55 prosumers.
The battery capacities of EVs are created by considering
the different EV sales rates in the Turkish market and
are randomly assigned to each prosumer. The selected EV
battery capacities are between 52 and 89 kWh. The time-
of-use (TOU) pricing structure, as determined by the utility
company of Türkiye, is comprised of three distinct rate
periods: flat (6 AM-5 PM), peak (5-10 PM), and valley
(10 PM-6 AM). The corresponding rates are 0.11, 0.18, and
0.056 $/kWh.

B. DAILY PERFORMANCE EVALUATION OF CONTROL
METHODS
In contrast to uncoordinated EV charging as soon as it is
plugged in or at random times, off-peak or smart charging
makes it possible to charge with renewable and cheaper
energy. Thus, it is possible to complete charging under more
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beneficial conditions for both the user and the grid. This
study optimizes the proposed control method and charging
process by considering EVs’ arrival and departure times, SOC
values during critical hours, daily range requirements, RES
availability, charging power constraints, and grid loading
conditions. The interaction of the prosumer with the grid in
the case of uncoordinated EV charging for a low-voltage grid
with high RES installed capacity is detailed with technical
and economic aspects. The uncoordinated EV charging
caused morning peaks in the grid. In addition, the charging
demand in the evening hours, when domestic loads are at their
maximum, poses a problem in terms of both economic and
grid capacity constraints.Moreover, the absence of a charging
demand at noon, when RES power generation is at its peak,
misses the opportunity to utilize both cheap and renewable
energy sources. While this situation increases the unit energy
costs of the users, it also leads to a move away from the
environmental zero-carbon targets. SCR increased by 7%
and RF by 10% for a sample clear day due to coordinated
charging. Thus, renewable energy loss due to overvoltage and
curtailment is reduced. Grid power quality is improved with
the APC method applied to prevent overvoltage. However,
this resulted in up to 35% curtailment in some prosumers.

The daily results of coordinated charging management
and V2G potential are shown in Figure 2. The excess
energy generated at noon, when PV generation (yellow line)
is highest, is curtailed (orange line) by the APC method.
However, for the prosumer, part of the curtailed energy was
used to charge the prosumer’s EV (black dotted line) with the
managed charging method.

FIGURE 2. Coordinated charging management and V2G potential.

Table 1 shows the LVDN impacts of the EV fleet with V2G
participation for a sample day. The lines were overloaded
in the scenario without V2G participation, and the voltage
dropped below 95%. On the same day, because of the EV
support to the grid via V2G, line loading could be reduced
below 80%, and bus voltages could be kept above 95%. Line
losses were also reduced by up to 40%.

C. THE IMPACT OF INCREASING EV NUMBERS
Demand response practices such as TOU pricing to minimize
EV charging loads are not the optimal solution. Moreover,
at high EV penetrations, second peaks may occur due to
price-based demand response practices, and new power

TABLE 1. The V2G potential.

TABLE 2. The results of increasing EV penetration.

system capacity and efficiency problems may occur. There-
fore, EV charging rates and times should be optimized by
considering grid dynamics and targets to use the power
system more efficiently. In particular, approximately half
of the generated energy can be curtailed when the network
average SCR falls below 30%, depending on the load profile
and grid constraints. Conversely, the optimization method
ignores power system constraints so that almost all excess
energy can be sold to the grid. Thus, misleading increases
in grid energy sales revenues can reduce total costs by
up to 100%. Therefore, smart charging algorithms that
eliminate the negative impacts of high RES installed capacity
and EV penetration on the distribution system should be
developed to maximize the benefits for utilities and EV
owners. This section analyzes power system performance
and individual and collective economic cost-benefit analyses
of prosumers in unmanaged, managed, and managed-V2G
scenarios considering grid power constraints. In the unman-
aged EV charging scenarios, it is observed that up to 57%
of the generated energy is generated as excess energy due
to grid constraints at high PV installed capacities. The
consequences of increasing EV penetration are detailed in
Table 2. Figure 3 shows that increasing EV penetration rises
the energy transferred from PV directly to EVs by up to
5 times and reduces the excess energy by up to 9.16%. Thus,
the increase in EV penetration from 20% to 80% increases
the SCR from 19.8% to 25.2%, as shown in Figure 4. On the
other hand, the increase in EV penetration decreased the SSR
by 4.1% to 27.8%, increasing grid dependency.

In the case of managed charging, the excess energy
generated in the unmanaged scenario at low EV penetrations
takes similar values and improves only up to 2%. However,
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FIGURE 3. The impacts of increasing EV penetration on curtailed energy.

FIGURE 4. The impacts of increasing EV penetration on SCR.

increasing EV penetration improved the SCR by up to
8.5% compared to the unmanaged scenario, reaching 33.7%.
In this way, the total cost could be reduced by up to 12.1%
compared to the unmanaged scenario. Moreover, controlling
EV charging times increased the energy transferred from
PV directly to EV up to 2.31 times. RF, which decreased
up to 27.8% in the unmanaged case due to increased EV
penetration, increased to 39.1% due to charging coordination.
Moreover, Figure 5 shows that the increase in EV penetration
in the unmanaged case decreases the RF by up to 4%.
In contrast, it increases by up to 2.9% in the managed
scenario. In addition, with increased EV penetration, excess
energy was reduced by 14.6%, and the curtailed energy was
reduced by up to 7.6% compared to the unmanaged case.
Thanks to the V2G option, the energy transferred from PV to
EV can be increased by up to 20% compared to the managed
scenario. This increase improved the SCR by 11% and 2.5%
compared to the unmanaged and managed scenarios.

In the managed-V2G scenario, the energy transferred
from PV to the grid could be reduced by up to 13%
and excess energy by up to 18% due to increased EV
penetration. With an increase in EV penetration to 80%,
the energy transferred from PV to the grid decreases by
13.82% compared to the unmanaged scenario. However, the
curtailed energy due to high PV installed capacity can be
reduced by 11.25% compared to the unmanaged scenario.
In addition, RF increased by 19.4% compared to the
unmanaged scenario.With the increase in EV penetration, the
energy transferred from EV to the grid increased by 2.02%
to 12.60% of the total charging power. SSR, which was as
low as 27.8% in the unmanaged case, can be increased up

FIGURE 5. The impacts of increasing EV penetration on RF.

FIGURE 6. The impacts of increasing EV penetration on the total cost.

to 47.7% in the managed-V2G scenario, and grid energy
dependency can be reduced by up to 20%.Moreover, Figure 6
shows that the V2G option reduced total costs by 37.93% and
29.36% compared to the unmanaged and managed scenarios,
respectively.

The analysis shows that despite the same installed capacity
and load profiles, prosumers can increase their individual grid
dependency by up to 2 times depending on the seasons. For
example, for the P5 prosumer with the EPV /Eload ratio of
0.28, the SSR decreased by 8.55% in winter and increased
up to 15.86% in summer. Moreover, its SCR varies in a wide
range of 36-53% depending on climatic conditions. Due to
unmanaged charging, only 6%of the annual PV energy can be
transferred to EV,while 36%of the generated energy is excess
energy. On the other hand, 69% of the curtailed energy was
generated in the summer months. The 88.39 kWh of curtailed
energy generated in July decreased by more than 50% to
26.62 kWh in February. Furthermore, 68.9% of the renewable
energy was sold to the grid between April and September.
However, almost all the PV energy was used for prosumer
load in the fall and winter months. As a result, energy costs
in summer are 20% lower than in winter. The unmanaged
curtailed energy could be reduced up to 16.51% thanks to the
managed charging. Thus, the average SCR increased by 10%
compared to the unmanaged case. Themanaged-V2Gmethod
reduced the curtailed and grid-to-load energy by 25.6% and
28.3% compared to the unmanaged method. The V2G option
increased the SCR by up to 12.62% and 4.91% compared
to the unmanaged and managed scenarios. In addition, RF is
increased up to 25%.
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Since the EPV /Eload ratio is 1.18, the SSR for the P8
prosumer is 37.75%, and the curtailed energy is 46%. Thus,
unmanaged charging transfers only 12.3% of PV energy to
EVs. Due to the APC constraint, RF could not be increased,
and only 22% of the total PV generation was transferred to
the grid. Due to the high PV installed capacity, the energy
curtailment of P8 is 10% higher than that of P5 prosumer.
On the other hand, the total cost in summer months is up
to 52% lower than in winter months. The managed method
reduced the curtailed energy of P8 by 21.2%. Moreover,
with managed charging, the energy sold from PV to the
grid decreased by 16.5%, and the average SCR increased
up to 48%. Furthermore, 28.2% of the EV charging demand
can be met directly from PV in the unmanaged charging
method, compared to 69.2% in the managed scenario. In the
summer months, the SSR increases up to 76%. Thus, the total
energy cost decreases by 19.5% compared to the unmanaged
scenario. In addition, the energy cost decreases only by
12% in winter compared to the unmanaged scenario but
by 70% in July. In the control-V2G scenario, 18% of the
total charged energy was discharged during the evening
peak demand to meet the energy demand. Furthermore, the
energy transferred from PV directly to the EV was increased
by 17.8%, thus increasing the SCR to 51.44%. Moreover,
the curtailed energy is reduced by up to 12.6% and 31%
compared to the unmanaged and managed scenarios. Energy
costs could be reduced by up to 58% and 27.8% by reducing
the energy purchased from the grid by up to 33.9% and
11.58% according to the unmanaged and managed scenarios,
respectively.

P11 contributed more to the overvoltage as the prosumer
EPV /Eload ratio was 1.87. In P11, 51.6% of curtailed energy
occurred. The curtailed energy in July is 2.4 times higher
than in December. On the other hand, in the unmanaged
scenario, the energy transferred directly from PV to EV
increased by 8.2% compared to other prosumers. It reached
up to 14% of the total PV generation. Thus, 35% of P11 EV
charging energy is provided directly from PV. EV charging
demand accounts for 76% of the total load demand of P11
due to long-range travel behavior. On the other hand, during
the summer months, the SCR drops to 15%, negatively
impacting both P11 economics and grid power quality. Due
to unmanaged charging, SSR only increased up to 33.77%.
In fact, this ratio drops to 21% in the winter months, and
P11’s energy cost in February is 2.54 times higher than in
July. In the managed charging strategy, the curtailed energy
decreased by 15%, and the energy transferred directly from
the PV to the EV increased up to 29.21%. In addition,
the energy purchased decreased by 40%. However, the SSR
decreased to 37% in winter and increased to 74% in summer.
Compared to the unmanaged scenario, SCR increased by
16.5%, and energy cost decreased by 35.3%. Moreover, SCR
increases up to 46% in winter and decreases to 21.63%
in summer due to increased PV generation. 68% of the
curtailed energy is realized between April and September.
In the control-V2G scenario, P11V2G participation is limited

due to its longer average daily travel range and technical and
environmental outputs are not improved at the desired level
compared to our managed scenario. In P11, 8% of the charged
energy was transferred to the load and the grid thanks to V2G.
However, this rate is 18% in P8. Thus, the total energy cost for
P8 in the managed scenario with the V2G option is reduced
up to 27.8%, while for P11, it is 22.38%.

The system’s availability is the primary factor determining
the feasibility of V2G implementation. To realize the
envisaged benefits through V2G, the EV must be at home
and connected to charging, and the user must volunteer
for V2G participation. It has been revealed that privacy
and loss of control concerns have decreased V2G program
participation by 7-12% for every 20% decrease in the reliable
driving range [45]. Integrating EVs alters load patterns
and provides improved opportunities for energy storage
for EV charging. Thus, some governments will promote
bidirectional EV charging that supports benefits via V2G.
As the EV charging infrastructure is tightly interconnected
in terms of both electrical (physical) and information flow
(cyber), an attack on the charging system can significantly
compromise both the reliability of the charging process and
information security. The electric Vehicle Supply Equipment
(EVSE) determines the EV charge/discharge rate using a
protocol. The EVSE interacts with the Distribution System
Operator (DSO) and payment method to control the energy
flow and charging bill. EV-grid integration, which involves
communication and control interactions, can increase the risk
of cyber-attack vulnerabilities. Additionally, using different
standards and protocols to manage EV-grid charging and
discharging operations can further increase the potential
for cyber-attacks. Therefore, future studies may focus on
enhancing bidirectional charging capabilities, cyber-security
issues, and the willingness to participate in V2G to investigate
further the feasibility of EV-grid integration benefits.

IV. CONCLUSION
For sustainable and environmentally friendly energy produc-
tion and consumption, prosumer communities are turning
to using RES to reduce energy costs and carbon emissions.
However, increasing PV penetration in the low-voltage
distribution grid leads to serious power quality challenges,
such as overvoltage for both grid operators and prosumers.
Integrating EVs with renewable energy sources, whose
charging loads can be shifted, reduces prosumer costs
and maximizes environmental benefits. However, unplanned
EV charging loads will also lead to voltage problems.
Thus, a novel EV charging management is developed that
maximizes the power quality and benefits of a prosumer
community with high renewable energy penetration by
applying a fair power curtailment that considers voltage
sensitivities. The performance of the developed charging
management is analyzed under three scenarios: unmanaged,
managed, and managed-V2G. The prosumers’ individual and
collective economic cost-benefit analyses are analyzed by
considering the EV penetration increase. In unmanaged EV
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charging scenarios, it is observed that the curtailed energy
is up to 57%, and RF is 27.8% due to grid constraints
under high renewable penetration. On the other hand, a
60% increase in EV penetration reduces the curtailed energy
up to 9.16% and increases the self-consumption by 6%.
Nevertheless, it increases grid dependency. In managed
scenarios, increasing EV penetration could reduce curtailed
energy by up to 7.6% and total cost by up to 12.1% compared
to unmanaged scenarios. The managed-V2G method could
increase the direct energy transferred from PV to EV by up
to 20% and the self-consumption by up to 2.5% compared
to the managed scenario. The increase in EV penetration
could reduce the energy transferred from PV to the grid
by up to 13%, the curtailed energy by up to 18%, and
grid dependency by up to 20%. Moreover, the V2G option
reduced total costs by up to 37.93% and 29.36% compared
to unmanaged and managed scenarios, respectively. Policy-
makers should consider grid dynamics with high renewable
energy generation to expand EV use. Investigating easy and
powerful EV charging management methods is important for
sustainable energy and environmental goals. Future studies
should explore the potential impact of increasing EV battery
capacities on overall system performance within the current
V2G framework. Additionally, future research will focus on
developing a multi-objective energy management strategy
that simultaneously addresses both consumer and network
benefits.
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