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ABSTRACT Understanding the link between material composition and mechanical properties is crucial for
material design and optimization. This study utilized four machine learning models—K-Nearest Neighbor
(KNN), Support Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), and Artificial Neural
Network (ANN)—to predict tensile strength and examine how alloying composition affects the tensile
strength of titanium (Ti) alloys. The first three models are considered simpler machine learning approaches,
while the ANN is a deep learning method. The models were trained on publicly available experimental data,
using fifteen alloying elements as inputs: Al, C, Cr, Cu, H, Fe, Mo, Ni, Nb, N, O, Si, Sn, V, and Zr. A new
frameworkwas proposed for evaluating the bestmodel, which involves running severalMLmodels, assessing
metrics such as R2 value, absolute percentage error distribution, and stability of R2 through multiple trials,
and finally comparing model accuracy using the Diebold-Mariano test. The evaluation showed that all four
models achieved good accuracy, with R2 values above 80%. However, the framework identified KNN as
the best model due to its low error rate, the narrowest range in absolute percentage error, and more stable
R2 value. Additionally, the feature importance analysis highlighted how alloying elements impact tensile
strength, revealing both linear and non-linear correlations. It was found that increasing Ti content and using
alloying elements with an atomic radius smaller than Ti affect the tensile strength. This study illustrates the
potential of machine learning in material screening and design for Ti alloys.

INDEX TERMS Machine learning, Ti alloy, mechanical property, tensile strength.

I. INTRODUCTION
Titanium alloys are known to be highly coveted for their
outstanding properties, including excellent corrosion resis-
tance, toughness, and strength. These attributes make them
indispensable not only for lightweight structural applications
but also in a number of industries such as aerospace, high-
temperature environments, advanced manufacturing, and
biomedicine [1], [2], [3]. Despite their advantages, Ti alloys
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can be somewhat semi-brittle, exhibiting different mechani-
cal behaviors when compared tometals and ceramics [4]. As a
consequence, this necessitates ongoing development of new
titanium alloys to ensure greater safety and effectiveness in
high-strength applications. A thorough understanding of the
relationship between alloy structure and mechanical proper-
ties, especially strength, is, therefore, essential for creating
these new alloys. However, screening numerous alloy compo-
sitions to optimize strength is a time-consuming process [5].

Against this backdrop, machine learning (ML) offers a
robust solution for identifying complex patterns between
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inputs and outputs, proving to be a valuable tool in
material science for predicting properties and discover-
ing new materials. It complements experimental work and
serves as an alternative to traditional computational meth-
ods like density functional theory and molecular dynamics,
which are often resource-intensive and time-consuming.
With proper model tuning, ML can significantly reduce
the time and resources needed for material prediction and
generation [6].

Researchers have increasingly applied ML algorithms to
predict properties of Ti alloys and to develop new materi-
als. For instance, Li et al. used artificial neural networks
to forecast the mechanical properties of forged TC 11 tita-
nium alloys [7]. Tkachenko employed random forests and
the Kolmogorov-Gambol polynomial to classify titanium
alloys based on various powder characteristics, achiev-
ing high classification accuracy [8]. Paul et al. utilized
decision tree variants to predict the thermal profiles of
additively manufactured titanium alloys with 99% accu-
racy [9]. Liu et al. applied K-means clustering to link
mechanical properties with microstructure [10]. Zhu et al.
used the Back Propagation (BP) neural network method
to explore the connection between alloy composition and
properties in Mo and Cr-added titanium alloys, finding
close agreement between ML predictions and experimental
results [11]. Zou et al. combined data mining with ML to
enhance the strength and flexibility of titanium alloys, utiliz-
ing high-throughput first-principles calculations as training
data. Though effective, this approach may be less accessi-
ble for industrial applications [12]. Zhan et al. applied a
random forest model to predict the fatigue life of titanium
alloys using both experimental and simulated fatigue life
data [13]. Banerjee et al. employed support vector machine
(SVM) classifiers to predict the mechanical properties of
additively manufactured titanium alloys, incorporating data
on laser power, scan speed, hatch spacing, and layer thick-
ness [14]. Zou et al. also applied XGBoost, an enhanced
decision tree method, to predict the relative density of
Ti-6Al-4V [15].
Although numerous studies have explored the use of

machine learning (ML) for modeling titanium (Ti) alloys,
there has yet to be research establishing a general correlation
between alloy structure and mechanical properties, particu-
larly tensile strength. This paper employs both shallow and
deep learning ML techniques to predict and investigate this
correlation. The challenge of limited experimental data can
affect ML prediction accuracy, as noted by Cui and Gong,
who found that the accuracy of regression ML methods
declines significantly with smaller sample sizes [16]. How-
ever, with the appropriate MLmodel or algorithm, acceptable
prediction performance can still be achieved for materials
engineering applications, even with limited data [17]. This
study proposes a framework for predicting alloy properties
using ML with a small dataset and aims to identify the best
ML model based on the average R2 score for predicting

the tensile strength of Ti alloys from composition alone.
Additionally, it seeks to explore how various alloying ele-
ments influence tensile strength.

II. METHODS
A. DATASET
Experimental data on titanium alloy composition informa-
tion was obtained from the publicly available MatWeb
(https://www.matweb.com/). In this study, titanium alloys
containing the main element and 15 (fifteen) elements: Al, C,
Cr, Cu, H, Fe, Mo, Ni, Nb, N, O, Si, Sn, V, and Zr, were used.
The input and output parameters were elemental composition
and tensile strength, respectively, as displayed in Table 1. The
‘‘iloc[]’’ function from the Pandas library was employed to
extract input and output variables, which can extract specific
columns and rows from the data set. Initially, the total data
of titanium alloy obtained from the MatWeb website was
342 data. Following the data cleaning process, the titanium
alloy data was then reduced to 213 to be processed in the
machine learning model.

TABLE 1. 16 features and 1 output of titanium alloys.
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B. MACHINE LEARNING MODELS AND
EXPERIMENTAL SETUP
In this study, Python version 3.8 was used to develop property
prediction models for the tensile strength of titanium alloys,
employingKNN, SVR,XGBoost, andANN.KNN, SVR, and
XGBoost represent simpler machine learning methods, while
ANN represents a more advanced deep learning approach.
The advantages and disadvantages of these methods are sum-
marized in Table 2. The Scikit-learn Python library was used
to build the KNN and SVR models. In the KNN model, the
K parameter (Equation (1)) determines the number of nearest
data points considered for prediction. The Euclidean distance,
used to calculate the distance between the prediction data
points and other data points, is described by Equation (2) [18].

ŷ (x) =
1
K

∑
xi ∈ NK (x)yi (1)

d (p, q) = d (q, p) =

√∑n

i=1
(qi − pi)2 (2)

The radial basis function (RBF) kernel, γ , and C param-
eters were used to build the SVR model. The SVR model
offers various mapping capabilities, and its performance
depends significantly on the kernel’s ability to project
low-dimensional data into higher dimensions and trans-
form linear SVR models into non-linear ones. Equation (3)
describes the influence of distance from a data point, affecting
the curvature of the line or plane defined by the SVR model.
This kernel can be applied to nearly any type of data [19].
Equation (4) demonstrates how parameter C, which is closely
related to the slack variable (ξ ), impacts the amount of vari-
ance the SVR model can tolerate [20]. Parameter C acts
as a penalty factor applied to any kernel, balancing model
confidence against empirical risk.

γ =
1

2σ 2 (3)

T = min :
1
2
||w||

2
+ C

∑l

i−1
(ξi+ξ∗

i ) (4)

The XGBoost has a unique architecture in the form of
incorporated decision trees, an extension of the decision tree,
and random forest algorithms. Decision trees in XGBoost are
dependent on each other and the training process is serial,
which means the training of a decision tree depends on
the training results of the previous decision tree [21]. The
XGBoost model can overcome the drawback of decision trees
and random forest models that are prone to overfitting by
applying this principle, thereby improving predictive perfor-
mance [22]. Prediction produced by the XGBoost model can
be determined by referring to Equation (5) [23].

ȳi = y0i + η
∑n

K=1
fk (Ui) (5)

where ȳi denotes the prediction of the XGBoost model for
i-th data, y0i represents the mean of the original parameters
in the training data, η is the learning rate, n displays the
number corresponding to independent tree structures, and Ui
represents the parameter vector. XGBoost offers numerous

parameters for fine-tuning, including max_depth (the depth
of the tree), min_samples_split (the minimum number of
samples required to split an internal node), min_samples_leaf
(the minimum number of samples required at a leaf node),
max_features (the maximum number of features considered
for splitting a node), splitter (the strategy used to select
splits at each node), criterion (the metric used to evaluate
node splits), min_impurity_decrease (a threshold related to
node split quality to limit tree growth), n_estimators (the
number of decision trees to build), learning_rate (the shrink-
age factor to prevent overfitting), min_child_weight (which
controls tree complexity by specifying the minimum number
of weights), gamma or min_split_loss (the minimum loss
reduction required for further partitioning), subsample (the
fraction of observations randomly sampled for each tree), and
reg_alpha and reg_lambda (which specify L1 (Lasso) and L2
(Ridge) regularization of the weights) [24].

The ANN model was constructed using the TensorFlow
library, with key parameters including learning rate, batch
size, number of epochs, number of nodes in each layer, and
number of hidden layers. The epoch represents the number
of complete cycles through the training dataset. The learning
rate determines how quickly the ANN adjusts weights based
on gradient loss during each epoch, while batch size indicates
the amount of data processed at one time. The model archi-
tecture is detailed in Table 2.

TABLE 2. The advantages and disadvantages of KNN, SVR, XGBoost, and
ANN.

The hardware that was used to run the models was a
computer desktop with a 12-core 4.6 GHz processor, memory
of 32 GB, and storage of 1 TB. The text editor for the
Python program was written using Jupyter Notebook. The
libraries used were Pandas for data processing, Numpy for
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mathematical operations, Scikit Learn for machine learning
features, Matplotlib for visualization, Tensorflow, and Keras
for machine learning model customization.

C. PREDICTION PERFORMANCE EVALUATION
The R2 value and Root Mean Square Error (RMSE) calcula-
tionwere used to assess the quality of themodel. The R2 value
was obtained from Equation (6) which is given as follows:

R2 = 1 −

∑n
i=1 (ŷi − yi)2∑n
i=1 (yi − ȳi)2

(6)

where n, y, ȳi, dan ŷi represent the sum of the data, the actual
value, the average value, and the model’s predicted value,
respectively. The R2 value refers to an evaluation metric that
shows the amount of the difference between the actual value
in the dataset and the predicted outcome of the model. The
R2 value ranges -∞ to 1. If the R2 score value is near 1, the
accuracy level will be higher [30].

The evaluation metric known as root mean square error
or RMSE is denoted by the square root of the average dif-
ference between the value predicted by the model and the
actual value. The RMSE was calculated using the following
formula:

RMSE =

√
1
n

∑n

i=1
(ŷi − yi)2 (7)

According to Tatachar, the RMSE value ranges between 0 and
+∞ [31]. A value closer to 0 signifies a smaller difference
between the predicted and actual values associated with a
greater accuracy level.

Mean absolute percentage error (MAPE) is one of the most
used evaluation metrics, which represents the mean abso-
lute difference between the actual and the predicted value.
The MAPE value was derived from Equation (8) and it is
expressed in the form of percentage [32]. A smaller value
indicates a smaller absolute difference and vice-versa.

MAPE =
1
n

∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ × 100% (8)

After obtaining the evaluation matric values for each
model, the next step is to determine the best model by imple-
menting a framework as shown in Figure 1. In our proposed
framework, the best model is chosen not only from the model
that has the highest R2 value but also from its absolute
percentage error distribution and fluctuation of the R2 score
based on various trials with the same configuration of data
training and testing. The models that have nearly the same R2

score will be tested using the Diebold-Mariano test to check
whether they have a similar degree of accuracy or not.

D. FEATURE IMPORTANCE ANALYSIS
Three feature importance analysis methods were employed
to understand the contribution of each alloying element to
the tensile strength prediction models: Pearson Correlation
Coefficient (PCC), Spearman’s rank correlation coefficient
(SCC), and Permutation Feature Importance (PFI). PFI is a

FIGURE 1. The framework for selecting the best ML model.

measure of a feature’s significance in relation to the predictive
performance of the model. A higher PFI score indicates that
the particular feature will exert a greater influence on the
predictive model for a given variable. PFI measures how
much the model’s prediction error increases when the val-
ues of the features are switched around. In this paper, PFI
was calculated using XGBoost model with higher predictive
performance.

PCC and SCC analyses were conducted to explore the
relationship between alloying elements and tensile strength
in more detail, with the results compared to experimental
data from the literature. Pearson correlation coefficient (PCC)
is a measure to reflect the linear correlation between two
variables. The range is between 1 and −1, where positive
and negative values give positive and negative associations
between two variables. The PCC value was obtained by using
the following equation:

PCC =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
∑

i (yi − ȳ)2
(9)

where x and y are the variables to be compared; x̄ and ȳ are
the mean of those two variables. The SCC, on the other hands,
measures the monotonic relationship between two variables,
where the interval value is similar to that of PCC. SCC value
was calculated using the following equation:

SPC = 1 −
6

∑
i d

2
i

n(n2 − 1)
(10)

where d and n represent difference between two variables and
the number of observations, respectively.

Atomic-property-based features were examined using
the most effective methods from performance evaluation,
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leading to recommendations for selecting alloying elements
with atomic radii smaller than titanium to potentially enhance
tensile strength. PFI, PCC, and SCC were all integrated
into the Atomic-property-based features analysis, providing
comprehensive insights into composition-based models for
predicting tensile strength in titanium alloys.

E. RESULT AND DISCUSSION
Table 3 and Figure 2 present the statistical details of the
dataset and the distribution of tensile strength as the output,
respectively. This study used only the composition of titanium
alloys as input features, excluding processing parameters.
According to predictive regression rules, the number of data
points should be at least ten times the number of vari-
ables [33]. Given that our dataset comprises only 214 data
points, it is relatively small, leading to a larger deviation
around the mean.

TABLE 3. Statistical information of the titanium alloys.

FIGURE 2. Tensile strength distribution of the used dataset.

Table 4 shows the optimized hyperparameters for KNN,
SVR, XGBoost, and ANN as determined by Tuner in Ten-
sorFlow. Figure 3 illustrates the accuracy of these models,

TABLE 4. The optimized hyperparameter for KNN, SVR, ANN, and
XGBoost.

represented by R2 scores. For a clearer view, Figure 4 depicts
the data distribution between actual and predicted tensile
strengths for a selected set of 20 test data points. The x-axis
shows the order of 20 test data points. Chicco et al. noted
that the R2 score provides a more informative and accurate
measure than other metrics such as symmetric mean absolute
percentage error (SMAPE) and mean absolute percentage
error (MAPE) [34]. The results indicate that all models
achieved good accuracy, with R2 scores and MAPE values
exceeding 80% and falling below 15%, respectively. The
discrepancies between the models and experimental results
may stem from the exclusion of processing parameters in
the input data. Previous research has shown that process-
ing parameters, such as heat treatment, can significantly
influence the microstructure and mechanical properties of
titanium alloys [11]. Despite this, the models are deemed
sufficiently effective for material screening purposes.

Among the four machine learning models used, KNN
demonstrated performance comparable to SVR, ANN, and
XGBoost, despite its simplicity. The ANN model achieved
the highest R2 value of 88.69%, indicating the best accuracy.
However, it is important to note that R2 scores for ANN can
vary with each run due to its inherent stochastic nature [35].

Figure 5 presents a boxplot that measures performance
based on the distribution of absolute percentage errors. The
plot reveals that while ANN has the lowest mean error, it has
a broader distribution range compared to KNN. In contrast,
KNN shows the second lowest error with the narrowest dis-
tribution range, indicating that it tends to produce results
clustered around lower error values. XGBoost, on the other
hand, exhibits the highest error and widest distribution range,
as evidenced by its lowest R2 score. Thus, KNN is preferred
over XGBoost, despite bothmodels achieving high R2 values.

The next step in our framework is to assess model reliabil-
ity by conducting multiple trials with similarly split training
and testing data at an 80:20 ratio, as shown in Figure 6. After
10 trials, the R2 score for the ANN model varied signifi-
cantly, while the R2 values for KNN, SVR, and XGBoost
remained stable. The ANN mean of the cross-validation
value is 82.2±4.2. This suggests that simpler models like
KNN, SVR, and XGBoost offer higher reliability due to their
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FIGURE 3. R2, RMSE and MAPE Score of KNN, SVR, XGBoost, and ANN models.

ability to handle smaller datasets more effectively compared
toANN,which requires amore complex relationship between
input and output features. Kordos et al. found that KNN
with well-tuned parameters performed best in their experi-
ments [36]. Alwosheel et al. recommended that the dataset
size should be at least fifty times the number of weights for
neural network models [37]. In our case, with 78 weights, this
would require at least 3900 datasets, a number challenging
to obtain. Therefore, simpler models like KNN, SVR, and
XGBoost, which achieved R2 scores above 80, are preferable
as they indicate that the relationship between composition and
tensile strength is not overly complex.

In materials science, the limited number of data points is
common due to the high cost and complexity of experimental
setups. Although generating large datasets through compu-
tational methods is feasible, it was not possible in this study.
Agrawal and Choudhary [38] highlighted the need to evaluate
multiple ML models with limited data and cautioned against
relying solely on high R2 scores due to error distribution
issues. Zhang and Ling proposed a targeted property code
crude estimation strategy for small datasets [39]. However,
this approach may be more challenging for users to imple-
ment compared to our strategy, which focuses on selecting an
ML model with a high R2 score.

FIGURE 4. Comparisons between actual and predicted tensile strength.

In the next stages of our framework, we analyzed the
performance of each model and then compared it with each
other by using the Diebold-Mariano test as presented in
Table 5. It is worth noting that the test result from the com-
parison of all models yields statistic values of larger than
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FIGURE 5. Boxplot of prediction absolute percentage error distribution.

FIGURE 6. R2 values as a function of the number of trials.

zero indicating that each ML model has a different accuracy
from the others. Nonetheless, the p-value reveals that only
ANN-XGBoost and SVR-XGBoost model pairs exhibit sig-
nificant performance differences associated with the values
below the generally chosen significant value of 0.05.

Based on the performance evaluation, KNN is identified
as the most effective model due to its simplicity, accuracy,
and stable performance. Although the p-value indicates no
significant performance difference between KNN and other
models, the Diebold-Mariano test confirms that KNN’s accu-
racy is distinct from the others.

To investigate the relationship between alloy composition
and tensile strength, we calculated the Pearson Correlation
Coefficient (PCC), as shown in Table 6. The results indicate
that Al has the strongest positive effect on tensile strength,
followed by Zr, Sn, V, and Mo. Other alloying elements have
a less significant impact on tensile strength compared to these
five. Spearman’s rank correlation analysis also supports these
findings, confirming that Al, Zr, Sn, V, and Mo significantly
affect tensile strength.

To validate the reliability of the PCC values from our
model, we compared them with existing experimental data.
For Al and Sn, adding these elements to titanium alloys in the

TABLE 5. Diebold-mariano test result for each ML model.

TABLE 6. PCC and SCC values of titanium alloy.

range of 2 to 6% acts as alpha stabilizers. Huang et al. demon-
strated that aluminum increases tensile strength by altering
the atomic bond configuration in the alpha-Ti lattice, thereby
strengthening it [40]. This change also enhances resistance
to dislocation movement. Similarly, Xie et al. found that
increasing Sn content boosts yield strength by preventing the
transformation from beta to alpha phase. The beta phase’s
body-centered cubic structure has higher slip resistance com-
pared to the alpha phase’s hexagonal close-packed structure,
thereby maintaining strength performance [41]. Our findings
on Sn align with these experimental results.

In the case of Zr, Si et al. observed that the increase of the
Zr element in titanium alloys results in higher strength due to
the solid solution strengthening of the α and β phases [42].
Thus, the addition of the Zr element increases tensile strength,
which is in line with our PCC calculation. For the V alloying
element, An et al. observed that the increase of the V alloying
element resulted in an increase in tensile strength despite
reductions in fracture strain and impact toughness, and the
increase in tensile strength is due to the weaker texture of the
α phase in the {0001} plane [43]. For Mo alloying elements,
Kotov et al. demonstrated that increasing Mo content to 5%
in titanium alloys increased yield and tensile strength due to
the promotion of the β-phase fraction above 20% [44].
On the other hand, our PCC calculation showed that

O and C alloying elements have a large negative effect on ten-
sile strength. However, observations conducted by Ogden and
Jaffee and Morita et al. showed that the increase of O to 5%
and C elements resulted in higher tensile strength [45], [46],
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TABLE 7. Atomic-property-based features of titanium alloy.

which contradicts our calculation. It is important to note that
the PCC only captures linear relationships between input
and output features. Our study revealed a non-monotonic
relationship between carbon (C) content and the tensile
strength of titanium alloys. Ogden and Jaffee observed a sim-
ilar non-linear relationship between C% content and tensile
strength in Ti-7Mn alloys up to 0.3% C content, which sup-
ports our findings [45].

To evaluate the importance of each feature on model per-
formance, we used PFI with the SVM model, which showed
high accuracy, as illustrated in Figure 7. A higher PFI value
indicates a greater contribution of a feature to the model’s
predictive performance. The results revealed that Al and Ti
have the highest PFI values, meaning the model’s ability to
predict tensile strength significantly depends on the presence
of Al and Ti composition data. This underscores the relative
importance of Al in comparison to other alloying elements in
titanium alloys.

Table 7 presents the atomic-property-based features used
to predict tensile strength in titanium alloys. We propose
this approach based on the idea that atomic properties are
directly related to composition rather than processing con-
ditions. Therefore, we hypothesize that if a machine learning
model utilizing atomic properties as inputs can predict ten-
sile strength accurately, then our previous model, which
relied solely on atomic species compositions, should also

FIGURE 7. Normalized permutation feature importance of 16 features for
tensile strength of titanium alloys.

be effective in predicting tensile strength. We employed
KNN (with K of 7) and composition data as models and
inputs, respectively. The R2 score, shown in Figure 8,
reached 95.17%, demonstrating high model accuracy. This
result indicates that atomic-property-based features are capa-
ble of predicting tensile strength, validating the use of
composition-based features in our initial model. While this
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FIGURE 8. Actual versus predicted value of tensile strength of titanium
alloy.

does not diminish the importance of processing parameters—
which are crucial for further optimizing tensile strength—our
composition-basedmodel is sufficient for materials screening
applications that do not demand near-perfect accuracy.

For measuring the atomic-property-based correlation to
tensile strength, PCC and SCC were conducted as shown
in Table 7. In this context, titanium serves as the matrix of
the alloy, with the alloying elements acting as solutes within
the titanium solvent. The PCC calculations reveal that the
difference in atomic radius between the alloying elements and
titanium, as well as the atomic percentage of titanium, are
the parameters most strongly correlated with tensile strength.
Specifically, the atomic radius difference shows a significant
positive correlation, while the titanium atomic percentage
shows a notable negative correlation. These findings are cor-
roborated by the SCC analysis. The results suggest that tensile
strength increases with the addition of alloying elements that
have a much smaller atomic radius compared to titanium.
Conversely, a high concentration of titanium in the matrix can
impair tensile strength.

III. CONCLUSION
Four machine learning models—KNN, SVR, XGBoost, and
ANN—were effectively developed to predict the tensile
strength of titanium alloys based on their compositions.
Our framework identified KNN as the most predictive and
stable model compared to SVR, XGBoost, and ANN. The
KNN model, utilizing atomic property features, achieved an
accuracy of 95.17%, demonstrating that composition-based
models are suitable, as these features are only related to
composition and not to processing parameters. This result
underscores that for pre-screening purposes where accuracy
ranges from 85% to 95% is acceptable, composition-based
prediction alone is adequate.

Feature importance analysis revealed that the alloying ele-
ments Al, Zr, Sn, V, and Mo have the most significant impact

on tensile strength compared to other elements. Our mod-
eling showed that the tensile strength of Ti alloys increases
with the addition of alloying elements whose atomic radius
is smaller than that of titanium. Future research will focus
on exploring other mechanical properties, such as fatigue
life, hardness, and corrosion resistance. For these properties,
however, composition-based features alone may not be suf-
ficient, and incorporating various processing parameters will
be necessary.
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