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ABSTRACT To improve the shortcomings of the classic Black-Scholes model, mainly on the constant
volatility and normal distribution assumptions, this paper investigates the dynamic calibrationmethod, which
makes the expected return rate, volatility and interest rate become data-driven and time dependent. Based
on the dynamic procedure, four distinct calibration models are proposed by using Bayesian method, among
which Model I and Model II are used for comparison, Model III simultaneously uses the data of underlying
asset, put and call options by introducing the bivariate normal distribution, andModel IV simplifiesModel III
by employing the put-call parity. The results of numerical experiments and empirical analysis illustrate that
Model III is the most accurate but time consuming, whileModel IV is the most efficient. Dynamic calibration
method is also verified to be much more accurate in data fitting and option pricing than the commonly
used global calibration. Overall, the dynamically calibrated Black-Scholes model can be regarded as an
improvement on the classic Black-Scholes model, where model coefficients are functions of time. As a
result, leptokurtic and negative skew distribution of log returns is regenerated, which makes the model more
consistent with the data observed in real markets without an increase of the complexity.

INDEX TERMS Bayesian method, dynamic calibration, Black-Scholes model, Markov Chain Monte Carlo,
volatility surface, leptokurtosis.

I. INTRODUCTION
The Black-Scholes model [1], developed by Fischer Black
and Myron Scholes in the early 1970s, revolutionized the
field of quantitative finance by providing a mathemat-
ical framework for pricing European options. However,
despite its widespread adoption and enduring influence,
the Black-Scholes model is not without its limitations,
among which the normal distribution and constant volatility
assumptions are of the most concern [2]. As a result, two
empirical phenomena from financial markets, the asym-
metric leptokurtic distribution of returns and the volatility
smile/skew, can not be replicated from the Black-Scholes
model. To develop more consistent models, modifications
of the Black-Scholes model have been extensively stud-
ied, including but not limited to stochastic and local
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volatility models [3], [4], [5], [6], jump-diffusion models [2],
[7], [8], GARCH models [9], [10], rough volatility mod-
els [11], [12], neural-SDE models [13] and signature-based
models [14], [15].

Model calibration is a necessary and important step
before the application of option pricing models to the real
market. However, as accurate but complicated models keep
emerging, the problem of calibrating the model parameters
is getting increasingly difficult. Traditionally, there are two
main methods for model calibration, parametric method and
non-parametric method. In the parametric method, authors
usually obtain estimations of model parameters based on the
historical data from financial markets, such as maximum
likelihood estimation [16], and Bayesian estimation [17],
[18], [19]. For the non-parametric method, parameters
are often approximated by some regularized optimization
methods to deal with the ill-posed inverse problem, for exam-
ple, Tikhonov-type regularization method [20], [21], [22]
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and relative entropy method [23], [24], [25]. Besides,
some researchers also resort to partial differential equation
based method [26], [27] to obtain the approximate values
by iterations. Most recently, machine learning and neural
networks are also devoted to both modeling and calibration
with their fast development [28], [29], [30].
In this work, a dynamic calibration method is proposed

based on the classic Black-Scholes model, estimating the
model parameters by Bayesian method. By continuously
updating the dataset used for calibration, the calibrated
model parameters become time dependent, which makes the
dynamically calibrated model more consistent with the real
market. To further enhance the accuracy of model calibration,
different types of available data are exploited in this dynamic
procedure. Inspired by local volatility models, put and call
options with the samematurity and strike price share common
model parameters, including expected return rate, volatility
and interest rate. Thus, the prices of underlying assets, put and
call options are combined together in our dynamic calibration
to improve the accuracy of parameter estimation. In this
paper, Bayesian method is adopted for its robustness and
flexibility, as well as its natural way to derive the interval
estimates for model parameters, which plays an important
role in analyzing the accuracy of option price prediction.

To illustrate the superiority of the proposed method,
four different parameter calibration models are constructed,
among which Model I only uses data from underlying
assets, Model II incorporates both underlying asset and call
option data, while Model III and Model IV utilize data from
underlying assets, put and call options. More specifically,
Model IV is a modification of Model III by means of the put-
call parity, which significantly improves the efficiency while
maintaining a certain level of accuracy.

In fact, with the rapid development of the computational
power and artificial intelligence, research on parameter
calibration based on various types of data keeps emerging
constantly [14], [15], [27], [31]. Specifically, in signature-
based models, spot prices as well as the data from vanilla and
exotic options can be combined together to implement a more
precise joint calibration. In comparison with these studies, the
contributions of this paper are summarized as follows.

1) EFFICIENCY OF CALIBRATION TO PUT AND CALL
OPTIONS
The proposed dynamic calibration method is efficient
because on the one hand the standard Black-Scholes model
is quite simple. On the other hand, the size of the calibration
dataset is relatively small. These two features dramatically
accelerate the process of finding the maximum a posteriori
estimation (MAPE) and the sampling by Markov Chain
Monte Carlo (MCMC). Moreover, the efficiency is further
improved by exploiting the put-call parity in Model IV.

2) MARKET CONSISTENCY
In our empirical analysis, the asymmetric leptokurtic distri-
bution of returns and the volatility skew are observed from

the calibrated model, which is consistent with real financial
markets and a significant improvement of the standard Black-
Scholes model.

3) ACCURATE IN OPTION PRICING AND PRICE PREDICTION
FOR OUT-OF-SAMPLE DATA
Unlike the literature mentioned above, the empirical analysis
in this work not only validates the accuracy of data
fitting, but also examines the precision of option pricing
and price prediction for out-of-sample data, indicating that
the proposed dynamic calibration method exhibits good
generalization ability.

4) COMPUTATION OF INTERVAL ESTIMATION
One of the most important advantages of Bayesian method
is that the interval estimates can be computed according to
the samples from the posterior distribution. In this paper,
highest posterior density intervals (HPDI) are calculated as
predictions for the future option prices, not just a predicted
value.

The remainder of this paper is structured as follows: In
Section II we introduce four different calibration models
and the dynamic procedure. Then numerical experiments are
carried out in Section III based on simulated data. Section IV
is dedicated to our empirical analysis of the daily data of
SPX options from 16th September, 2022 to 8th September,
2023 with different strike prices and the same maturity on
15th September, 2023. Finally, Section V concludes our
work by summarizing key findings and offering valuable
recommendations for future research directions.

To explain the meaning of abbreviations used in the paper
clearly, a list of commonly used nomenclatures are provided
in the following table for easy reference by readers.

TABLE 1. Nomenclatures.

II. MODEL CONSTRUCTION AND DYNAMIC CALIBRATION
The dynamic calibration method proposed in this paper
is based on the standard Black-Scholes model. Let
(�, {Ft }t∈[0,T ],F , P) denote a probability space, where
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{Ft }t∈[0,T ] is the natural filtration of standard Brownian
motion Bt . The dynamics of the asset price St follows the
stochastic differential equation (SDE){

dSt = µStdt + σStdBt , t ∈ (0,T ]
St |t=0 = S0,

(1)

where µ and σ are assumed to be constants, denoting the
expected return rate and the volatility, respectively. By the
principle of risk-neutral pricing, the Black-Scholes model
yields an explicit pricing formula for European call and put
options, that is,

Ĉt = Ĉ(t, St ) = N (d1)St − N (d2)Ke−rτ ,

P̂t = P̂(t, St ) = N (−d2)Ke−rτ − N (−d1)St , (2)

where N (x) denotes the cumulative distribution function of
the standard normal distribution, τ = T − t is the remaining
time to thematurity,K signifies the strike price, r is a constant
representing the risk-free interest rate, d1 and d2 are defined
as

d1 =
1

σ
√

τ

(
log

(
St
K

)
+

(
r +

σ 2

2

)
τ

)
,

d2 = d1 − σ
√

τ .

From the Black-Scholes formula for call and put options (2),
the factors influencing the price of European options include
the current price of the underlying asset, strike price, time
to maturity, risk-free interest rate and volatility, while the
expected return rate does not appear in the pricing formula.

The put-call parity is based on the principle of arbitrage-
free pricing, that is, two portfolios that always have the same
payoff at time T must have the same value at any prior
time. Under this assumption, the price of European call and
put options with the same underlying asset, strike price and
maturity must satisfy the following condition:

C(t, St ) − P(t, St ) = St − Ke−rτ . (3)

It is worth to note that the Black-Scholes formula (2) also
holds in a arbitrage-free market, which means that call and
put option prices derived by Black-Scholes formula satisfy
the put-call parity.

Under the framework of the Black-Scholes model, we pro-
pose four distinct calibration models and introduce our
dynamic calibration method in this section. In each model,
parameters are estimated by Bayesianmethod, obtaining their
posterior density by the Bayes’ theorem

p(θ |D) =
p(θ ) · p(D|θ )

p(D)
, (4)

where θ represents parameters to be estimated, D is a given
dataset, p(θ), p(D), p(D|θ ) and p(θ |D) are known as the
prior distribution, evidence, likelihood function and posterior
distribution, respectively. However, the evidence, which can
be expressed as

p(D) =

∫
2

p(θ) · p(D|θ )dθ,

is a multi-dimensional integral that even complicated to
approximate in most practical situations, where 2 denotes
the parameter space. Thus we resort to the well-known
Markov Chain Monte Carlo method [32], [33], [34] to draw
samples from the posterior distribution while circumventing
the evaluation of p(D). Specifically, the No-U-Turn Sampler
(NUTS) [35] is employed in the proposed four models.

Before introducing our calibration models, we define the
following notations on the dataset. Suppose that data on the
prices of underlying assets, call options and put options in
the financial market can be periodically observed at times
ti ∈ [0,T ], with the time interval size 1t . Let DSt ,D

C
t and

DPt denote the datasets of spot prices, call option prices and
put option prices before time t , respectively. That is,

DS
t = {(ti, Sti )}ti≤t ,DC

t = {(ti,Cti )}ti≤t ,DP
t = {(ti,Pti )}ti≤t .

A. MODEL I: SPOT PRICES MODEL
Model I is a naive model to estimate parameters θ1 = (µ, σ )
on the dataset DS

t . From the Black-Scholes model (1) and
the Itô formula, we can easily deduce the log returns of the
underlying assets follow a normal distribution, which is,

Rti = log
(
Sti+1

Sti

)
∼ N

(
(µ −

1
2
σ 2)1t, σ 21t

)
. (5)

Thus we can write the likelihood function as

L(DS
t |θ1) =

∏
ti≤t

φ

(
log

(
Sti+1

Sti

)
−

(
µ −

1
2
σ 2
)

1t

∣∣∣∣ σ 21t
)

,

where φ(·|σ 2) denote the probability density function (PDF)
of N (0, σ 2). Then by setting the priors as

µ ∼ N (0, δ2µ), σ ∼ N+(δσ ),

the posterior distribution of θ1 can be derived as

p(θ1|DS
t ) ∝ φ(µ|δ2µ) · φ+(σ |δσ ) · L(DS

t |θ1), (6)

whereN+(δ) denotes half-normal distributionwith parameter
δ, φ+(·|δ) denotes the PDF of N+(δ).
Remark 1: In Bayesian analysis, the posterior distribution

has a strong reliance on the prior distribution. How to select
reasonable prior distributions for different models is a major
concern in many researches, which is beyond the discussion
of this work. Interested readers may refer to [32] and [36]
for more information. In this paper, we assume that the
prior distributions of parameters are mutually independent
and set them to be normal or half normal distributions with
large variance, which can be regarded as weakly informative
priors [32].

B. MODEL II: COMBINED WITH CALL OPTION PRICES
One of the major drawbacks of Model I in option pricing is
that it does not estimate the (implied) risk-free interest, which
is a key parameter in pricing formula (2). To this point, Model
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II is built based on the datasetDS
t ∪DCt . Similar to the analysis

in [31], the call option price in the real market Cti can be
expressed as

Cti = Ĉti + εcti , εcti ∼ N (0, τiσ 2
c ), (7)

where τi = T − ti and Ĉti denotes the Black-Scholes price
in (2). There are many reasons for the presence of error terms
εcti , such as the market liquidity, supply-demand levels and
bid-ask prices. As our assumption, the theoretical option price
is determined by the Black-Scholes formula, leading to the
zero mean of εcti . Moreover, the impact affecting the error
term diminishes in influence as the maturity date approaches,
so we introduced a factor τi into the variance term.
Denote the parameters to be estimated in Model II by

θ2 = (µ, σ, r, σc), the likelihood function in Model II can
be obtained according to (7), that is,

L(DS
t ∪DC

t |θ2)

= L(DS
t |θ2) · L(DC

t |θ2,DS
t )

= L(DS
t |θ1) ·

∏
ti≤t

φ(Cti − Ĉ(ti, Sti )
∣∣τiσ 2

c ). (8)

Setting the priors by

µ ∼ N (0, δ2µ), r ∼ N (0, δ2r ), σ ∼ N+(δσ ), σc ∼ N+(δc),

we derive the posterior distribution of θ2 as

p(θ2|DS
t ∪DC

t ) ∝ φ(µ|δ2µ) · φ+(σ |δσ ) · φ(r|δ2r )

· φ+(σc|δc) · L(DS
t ∪DC

t |θ2) (9)

Remark 2: If the priors in Model II is set to be uniform
distribution, then the posterior PDF can be simplified to

p(θ2|DS
t ∪DC

t ) ∝ L(DS
t |θ2) · L(DC

t |θ2,DS
t ).

Regarding L(DS
t |θ2) as a prior distribution of θ2 from the past

information of spot prices, then p(θ2|DS
t ∪ DC

t ) updated the
prior with the information of call option prices.

C. MODEL III: COMBINED WITH CALL AND PUT OPTIONS
In this model, we try to combine the data from underlying
assets, put and call options together to obtain the posterior
PDF of model parameters on the dataset DS

t ∪ DC
t ∪ DP

t .
Similar to the discussions in Model II, the corresponding put
option prices, with the same strike price and maturity to the
call option, can be expressed as

Pti = P̂ti + ε
p
ti , ε

p
ti ∼ N (0, τiσ 2

p ),

where the definition of P̂ti comes from (2). In consideration
of the correlation between εcti and ε

p
ti , we propose that[

Cti
Pti

]
=

[
Ĉti
P̂ti

]
+

[
εcti

ε
p
ti

]
, (10)

where [
εcti

ε
p
ti

]
∼ N (0, τi6) , 6 =

[
σ 2
c ρσcσp

ρσcσp σ 2
p

]
.

Thus the parameters to be estimated in Model III is denoted
by θ3 = (µ, σ, r, σc, σp, ρ). And the likelihood function can
be obtained as

L(DS
t ∪DC

t ∪DP
t |θ3)

= L(DS
t |θ3) · L(DC

t ∪ DPt |θ3,DS
t )

= L(DS
t |θ1) ·

∏
ti≤t

φ∗((Cti − Ĉti ,Pti − P̂ti )
∣∣τi6),

where φ∗(·, ·|6) denotes the PDF of two-dimensional normal
distribution with mean zero and covariance matrix 6.
To choose a reasonable prior distribution for 6, we decom-
posed the covariance matrix as

6 = S · C · S, where S = diag(σc, σp),C =

[
1 ρ

ρ 1

]
.

Then we set

σc ∼ N+(δc), σp ∼ N+(δp), C ∼ LKJ (η),

where LKJ (η) denotes the Lewandowski-Kurowicka-Joe
distribution [37] with parameter η. By selecting the priors of
µ, σ, r as the same as Model II and an assumption of mutual
independence, we get

p(θ3|DS
t ∪DC

t ∪DP
t )

∝ φ(µ|δ2µ) · φ+(σ |δσ ) · φ(r|δ2r ) · φ+(σc|δc)

· φ+(σp|δp) · ρ(C|η) · L(DS
t ∪DC

t ∪DP
t |θ3), (11)

where

ρ(C|η) ∝ [det(C)]η−1
∝ (1 − ρ2)η−1

denotes the PDF of LKJ (η).

D. MODEL IV: EXPLOITING THE PUT-CALL PARITY
In Model III, the posterior distribution of model parameters
is derived under reasonable assumptions. However, the use
of multivariant normal distribution makes the inference pro-
cedure much more complicated, especially for the covariance
matrix 6. Therefore, we are attempting to modify Model III
by simplifying the model structure.
Unlike the straight forward way expressed in (10), the

dataset DP
t is incorporated in Model IV through the put-call

parity conditional on DC
t , which is

Cti = Ĉti + εcti , εcti ∼ N (0, τiσ 2
c ),

Pti = Cti − Sti + Ke−rτi + ε
p
ti , ε

p
ti ∼ N (0, τiσ 2

p ), (12)

where ε
p
ti is the error in the put-call parity, Sti ,Cti and Pti

denotes the market prices of underlying asset, call and put
option at ti, respectively. Although the put-call parity holds
exactly in arbitrage-free markets, data from real markets
always contains arbitrage [38], [39]. Therefore, the error term
ε
p
ti appears in (12). By denoting θ4 = (µ, σ, r, σc, σp), the
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likelihood function of Model IV is

L(DS
t ∪DC

t ∪DP
t |θ4)

= L(DS
t |θ4) · L(DC

t |θ4,DS
t ) · L(Dp

t |θ4,DS
t ∪ DCt )

= L(DS
t ∪DC

t |θ2) ·

∏
ti≤t

φ(Pti − Cti + Sti − Ke−rτi)
∣∣τiσ 2

p ),

where L(DS
t ∪ DC

t |θ2) is defined in (8). Thus the posterior
distribution of θ4 is obtained as

p(θ4|DS
t ∪DC

t ∪DP
t )

∝ φ(µ|δ2µ) · φ+(σ |δσ ) · φ(r|δ2r ) · φ+(σc|δc)

· φ+(σp|δp) · L(DS
t ∪DC

t ∪DP
t |θ4) (13)

by setting the priors similar to Model III.
Taking advantage of the put-call parity, Model IV incor-

porates the dataset of put option prices without using a
two-dimensional normal distribution. As a result, we avoid
the complicated procedure for inferring the covariance
matrix. The results in numerical experiments and empirical
analysis illustrate that Model IV is much more efficient than
Model III.
Remark 3: It is worth to note that we do not need to discuss

the correlation between εcti and ε
p
ti in Model IV. In fact, the

distribution of ε
p
ti is conditioned on εcti from the deviation of

the likelihood.

E. THE DYNAMIC CALIBRATION METHOD
Inspired by the method of local volatility, parameters in the
above four models are closed related to the current state of the
financial market. Therefore, in order to adjust the proposed
models to the current market conditions, we calibrate the
parameters using the most recent data and dynamically
update the dataset. To this point, we define the dynamic
parameter calibration in the following definition.
Definition 1: Let θ denote the parameters to be estimated,

andD = {(ti, xti )}1≤i≤N be time series dataset with t1 < t2 <

· · · < tN and xti ∈ Rn can be vectors. For a fixed calibration
data size n, we define the dynamic posterior distribution of θ

as a family of posterior distributions {p(θ |D∗
i,n)}n≤i≤N , where

D∗
i,n = {(tj, xtj )}i−n<j≤i.

Based on the dynamic posteriors, the dynamic Maximum
A Posteriori Estimation (MAPE) and dynamic Expected A
Posteriori Estimation (EAPE) can be respectively defined as

θ̃i = argmax
θ∈2

p(θ |D∗
i,n),

θ̂i = E
[
θ |D∗

i,n
]

=

∫
2

θ · p(θ |D∗
i,n)dθ, ∀n ≤ i ≤ N . (14)

Denote the dynamic dataset used in the above four models
by

DS
i,n = {(tj, Stj )}i−n<j≤i, DC

i,n = {(tj,Ctj )}i−n<j≤i,

DP
i,n = {(tj,Ptj )}i−n<j≤i, Di,n = DS

i,n ∪DC
i,n ∪DP

i,n.

The dynamic MAPE and EAPE of the proposed four models
can be easily obtained according to (14). Taking Model III
as an example, for any n ≤ i ≤ N , the dynamic MAPE and
EAPE at time ti can be expressed as

θ̃3,i = arg max
θ3∈2

p(θ3|Di,n),

θ̂
(j)
3,i = E

[
θ
(j)
3

∣∣∣Di,n

]
=

∫
2j

θ
(j)
3 · p(θ (j)3 |Di,n)dθ

(j)
3 , (15)

for j = 1, 2, · · · , 6, where θ
(j)
3 denotes the j-th component of

θ3 and p(θ (j)3 |Dti,1) is the corresponding marginal posterior
distribution. In our numerical experiments and empirical
analysis, θ̃3,i and θ̂

(j)
3,i need to be approximated numerically

because the posterior PDF is often in a complex form.
More specifically, the MAPE is approximated by L-BFGS-
B algorithm [40]. And the EAPE is calculated by the Monte
Carlo method based on the samples from the posterior
distribution by MCMC. The code in this paper is written in
Python, and theMCMC sampling is implemented through the
PyMC package [41].

III. NUMERICAL EXPERIMENTS
In this section, we conducted numerical experiments on the
dynamic calibration of the four distinct models proposed
in Section II with simulated data. Our experiments were
designed to evaluate each model’s performance in terms of
parameter estimation accuracy and computational efficiency.

First of all, data were simulated according to the
Black-Scholes model (1), (2) and Model III (10), which is
the most complicated and able to generate all useful data
of underlying assets, put and call options. Then a numerical
test was conducted on how to select the dynamic calibration
data size n. At last, we examined the efficiency and accuracy
of each calibration model for a fixed n. More specifically,
we calculated the errors of MAPE and EAPE, as well as the
posterior standard deviation for estimations of the expected
return rate µ, volatility σ and interest rate r to measure
the accuracy of the parameter calibration. We selected the
NUTS [35] as our MCMC sampling method in all the
experiments in Section III and Section IV.

A. DATA SIMULATION
Based on Model III, we set the maturity T = 1 and define a
uniform partition over [0,T ] as

0 = t0 < t1 < t2 < · · · < tN−1 < tN = T ,

with N = 250, 1t = ti − ti−1 and ti = i1t , for
i = 1, 2, · · · ,N . Then we set the true values of the model
parameters as follows

µ = 0.5, σ = 1.0, r = 0.2,

σc = 1.2, σp = 1.0, ρ = −0.5.

Moreover, the call and put options are supposed to be at-
the-money with the same strike price, i.e. S0 = K = 10.0.
The next procedure is to generate random variables according
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FIGURE 1. Absolute errors and the posterior standard deviation of the estimations for σ and r over different calibration data size.

to the settings of Model III. That is, for i = 1, 2, · · · ,N ,
simulate independent random numbers as

1Bti ∼ N (0, 1t),

[
εcti

ε
p
ti

]
∼ N

(
0, τi

[
σ 2
c ρσcσp

ρσcσp σ 2
p

])
,

(16)

where 1Bti = Bti − Bti−1 , τi = T − ti. Then we compute the
prices of underlying assets, put and call options as

Sti = S0 exp
(
(µ −

1
2
σ 2)ti + σBti

)
,

Cti = Ĉ(ti, Sti ) + εcti ,

Pti = P̂(ti, Sti ) + ε
p
ti ,

where Bti =
∑i

j=1 1Btj , Ĉ(ti, Sti ) and P̂(ti, Sti ) are defined
in (2). Thus we generate all the necessary datasets for the
dynamic calibration.

B. ANALYSIS OF CALIBRATION DATA SIZE
In this section, we analyze the impact of varying calibration
data size n on the accuracy of parameter estimation in
the proposed four models. We assess the errors in both
volatility and interest rate estimations, which are crucial
in option pricing, using MAPE and EAPE techniques. The
posterior standard deviation (PSTD) are also analyzed. As an
illustration, we set i = 100 and plot our results over different
data size n in Figure 1.
The results show that the absolute errors and PSTD of

Model III and Model IV are much smaller than the other

two models for almost every n. Moreover, as more data
are included in the parameter calibration, the accuracy and
stability for each model are improved gradually. Particularly
when n ≥ 20, the errors and standard deviations become
small and stable. Therefore, in the following studies, we set
the dynamic calibration data size n = 20.

C. ANALYSIS OF THE RUNNING TIMES
To compare the efficiency of the four models, we examined
their running times with the same setting n = 20. In the
process of calculating EAPE, the most important step is to get
samples from MCMC sampling. While the main procedure
in obtaining MAPE is to find the maxima of the posterior
by the optimization method iteratively. The running times of
calculating EAPE and MAPE are presented in Figure 2.

FIGURE 2. Running times of calculating EAPE and MAPE by the four
distinct models.
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FIGURE 3. PSTD for µ, σ and r by dynamic calibration with n = 20.

It is obvious from the above figure that the computational
complexity of Model III is significantly higher than that of
the other models. Model IV greatly simplifies Model III by
using the put-call parity, reducing its model complexity to be
on the same level as that of Model I and Model II.

D. ANALYSIS OF THE ACCURACY
The next experiments focus on testing the calibration
accuracy of the four distinct models. The primary discussion
is on the accuracy for µ, σ and r . As mentioned above, σ

and r are key parameters in option pricing. Although the
expected return rate µ does not appear directly in the option
pricing formula, it influences the changes in the price of the
underlying asset, which in turn affects predictions of option
prices.

In this section, we calculated the root mean squared
error (RMSE) for MAPE and EAPE, and compared the
standard deviation of the estimated posterior distributions.
The corresponding results are presented in Table 2 and
Figure 3.

TABLE 2. RMSE of dynamic calibration for µ, σ and r with n = 20.

For the considered three parameters, the experimental
results in Table 2 show that the calibration accuracy for σ and
r is muchmore accurate thanµ. And the calibration errors for
µ is similar over the four models. This is because, although
the subsequent models increase in complexity and dataset, the
data containing information on the expected return is limited

to the price of the underlying asset, which has been already
fully incorporated in Model I.

For the four distinct models, it is clear from the errors listed
in Table 2 that calibration based on Model III has the highest
accuracy for all considered parameters. The calibration errors
of Model IV is slightly larger than that of Model III. But they
are essentially on the same level and significantly better than
the estimation results of Model I and Model II. The PSTD
shown in Figure 3 also confirms that the dynamic calibration
procedure based on Model III and IV are more accurate and
stable than Model I and II.

Therefore, through the above results of numerical exper-
iments, we have arrived at the following conclusions:
Model III and IV significantly improve the accuracy of
calibration by introducing more data. Although there is no
large enhancement for the calibration accuracy of µ, the
fluctuations of PSTD obtained by Model III and IV are much
less, which implies a better stability. Additionally, Model IV
greatly reduces the computational complexity by utilizing
the put-call parity, making the parameter calibration more
efficient. In summary, Models III and IV are significantly
superior to Model I and Model II in the proposed dynamic
calibration procedure. Therefore, in the empirical analysis,
we mainly discuss the empirical results of Model III and
Model IV, with Model I and Model II only appearing as
references for comparison.

IV. EMPIRICAL ANALYSIS OF SPX OPTIONS
In this section, we employed the European option data on the
Standard & Poor’s 500 Index (SPX) with the same maturity
date on 8th September, 2023 and different strike prices ranges
from 3500 to 4500, covering the 245 trading days from 16th

September, 2022 to 8th September, 2023. Time in our dataset
is expressed in years, so that the length of each day is set
to be 1/365. In case there is no deals on some trading days,
the midpoint between bid and ask prices is used as the price
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TABLE 3. Convergence diagnostics of MCMC sampling by global and dynamic calibration based on Model III. Small Monte Carlo standard errors for mean
(MCSE Mean) and standard deviation (MCSE SD) and large effective sample size (ESS) are observed, as well as the value of R̂ closed to 1.

data. All data in this paper are sourced from the Bloomberg
database.

To illustrate the advantages of dynamic calibration,
we introduce a global calibration method for comparison.
Recalling the Definition 1, global calibration means the
posterior distribution, MAPE and EAPE are obtained based
on the entire datasetD, which means more data are exploited
while the dynamic property of parameters is overlooked.

This section contains three parts. First of all, a comparison
was made between the global and dynamic calibration on
the accuracy of data fitting and option pricing. Then we
attempted to predict option prices by the dynamic calibration
method under the condition that the price of underlying asset
is unknown. Highest posterior density intervals (HPDI) are
estimated by using the proposed four models. In the end,
we investigated other properties of dynamic calibration. The
volatility surface was computed and the leptokutic property
of log returns was reproduced.

A. COMPARISON BETWEEN GLOBAL AND DYNAMIC
CALIBRATION
In this section, we compare the accuracy of global and
dynamic calibration on the option data with strike price
K = 4000 based on Model III and Model IV. Firstly,
we conducted convergence diagnostics for the MCMC
sampling because it is crucial for our approximations on
posterior distribution and EAPE. For each estimation in
our experiments, four Markov chains are generated at the
same time. After discarding the first 1000 samples in each
chain, the subsequent 2500 samples are selected to ensure the
convergence, making a total of 10000 samples.

In Table 3, we listed the main results of the MCMC
sampling for global and dynamic calibration based on
Model III, which is the most complicated. For the dynamic
calibration, we only listed the results on the dataset Di,n
with i = 133 and n = 20. The results clearly indicate that
the Markov chains has reached their stationary distribution
for both global and dynamic calibrations. The corresponding
results computed by Model IV is very similar, so they are not
listed here. Consequently, in the data fitting part, we just take
Model III as an example. And in the option pricing part, only
the results of Model IV are provided.

1) DATA FITTING
This section compares global and dynamic calibration
methods in terms of data fitting for call and put options. First

of all, the results of calibration for key parameters in option
pricing by Model III are shown in Table 4 and Figure 4.

TABLE 4. Results of the global calibration by Model III.

FIGURE 4. Results of dynamic calibration for µ, σ and r by Model III.

From the results, it is evident that the calibration accuracy
forµ is significantly lower than that for σ and r in both global
and dynamic calibration. But this part focuses on option
prices, which is theoretically irrelevant to µ in data fitting
and option pricing. In the dynamic calibration, EAPE has less
fluctuation and is more stable thanMAPE, especially near the
expiration date. But during this period, the primary impact
on option prices is the underlying asset price. The effects of
volatility and interest rate diminish, which will not lead to
significant fluctuations in option prices.
Remark 4: The severe fluctuations of MAPE near expira-

tion date are due to the oscillations of optimization algorithm.
The reasons for this phenomenon are twofold. On the one
hand, the complex structure of Model III makes it more
difficult for the optimization algorithm to find the maximum
value point. On the other hand, the gradient of the option price
functionwith respect to the estimated parameters is very close
to zero near the expiration date, which further increases the
difficulty of the optimization process.

With the results of global and dynamic calibration, the
estimated put and call option prices can be calculated by the
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Black-Scholes formula (2), that is

C̃G
ti = Ĉ(ti, Sti; σ̃ , r̃), P̃Gti = P̂(ti, Sti; σ̃ , r̃),

ĈG
ti = Ĉ(ti, Sti; σ̂ , r̂), P̂Gti = P̂(ti, Sti; σ̂ , r̂),

C̃D
ti = Ĉ(ti, Sti; σ̃i, r̃i), P̃Dti = P̂(ti, Sti; σ̃i, r̃i),

ĈD
ti = Ĉ(ti, Sti; σ̂i, r̂i), P̂Dti = P̂(ti, Sti; σ̂i, r̂i), (17)

where C̃G
ti and ĈG

ti are the estimated prices of call options
at time ti based on MAPE (σ̃ , r̃) and EAPE (σ̂ , r̂) by global
calibration, C̃D

ti and ĈD
ti are the estimated prices of call

options at time ti based on MAPE (σ̃i, r̃i) and EAPE (σ̂i, r̂i)
by dynamic calibration, respectively, P̃Gti , P̂

G
ti , P̃

D
ti , P̂

D
ti are the

corresponding estimated put option prices.
It is worth to note that Sti is the price at time ti from the

real market, so the comparison between prices defined in (17)
and in the real market is to examine the performance of data
fitting. The relative errors are shown in Figure 5 and Figure 6.

FIGURE 5. Relative errors of data fitting using MAPE.

FIGURE 6. Relative errors of data fitting using EAPE.

From above figures, we can see the relative errors of
dynamic fitting is smaller than global fitting in general for
both call and put options, except that the fitting error for put
option prices rapidly increases near the expiration date. That
is because put options are deeply out of the money in this
period, and the market price approaches zero.

2) OPTION PRICING
In this section, we test the accuracy of dynamic calibration
based on Model IV in terms of option pricing. Firstly,
we clarify the option pricing problem under consideration

here. Given a fixed time ti, suppose the data of underlying
asset, call and put options before ti are available. Then for
ti+k , pricing the call and put options under the condition that
Sti+k is known with k being a positive integer. Thus we define

C̃ti+k = Ĉ(ti+k , Sti+k ; σ̃i, r̃i), P̃ti+k = P̂(ti+k , Si+k ; σ̃i, r̃i),

Ĉti+k = Ĉ(ti+k , Sti+k ; σ̂i, r̂i), P̂ti+k = P̂(ti+k , Sti+k ; σ̂i, r̂i),

where C̃ti+k and Ĉti+k are call option pricing at ti+k by the
MAPE and EAPE of dynamic calibration respectively, P̃ti+k
and P̂ti+k are the corresponding prices of put option pricing.
We only define the notations for option pricing with dynamic
calibration, because the option pricing with global calibration
is the same to the data fitting. That is to say, the call option
pricing at time ti+k based on MAPE by global calibration is
Ĉ(ti+k , Sti+k ; σ̃ , r̃) = C̃G

ti+k according to (17).
To illustrate the relative errors of option pricing over a

period to time, we define the root mean square relative errors
(RMSRE). As an example, for a given k , the RMSRE of
option pricing by MAPE of dynamic calibration over the
period [tn+k , tN ] is defined as

ε̃DRMSRE =

√√√√ 1
N − k − n+ 1

N−k∑
i=n

(
C̃ti+k − Cti+k

Cti+k

)2

.

Then the RMSREs based on MAPE and EAPE of global
and dynamic calibration are listed in Table 5, from which we
can easily see that dynamic calibration is more accurate than
global calibration in option pricing.

TABLE 5. RMSREs of the k-day option pricing by global and dynamic
calibration for k = 1, 2, · · · , 5.

The main reason of the better results for dynamic
calibration is that the dynamic estimates of model parameters
vary over time, which reflects the current state of market
more precisely. The global estimates of parameters are only
constant values, which only reflect the mean state of the
market and lead to greater errors.

B. OPTION PRICE PREDICTION
In this section, we focuses on examining the accuracy of
price prediction for call and put options. Different from
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TABLE 6. Comparison of price prediction accuracy for call and put options by dynamic calibration based on all models.

FIGURE 7. 50% HPDI of price prediction for call (top) and put (bottom) options obtained by dynamic calibration based on all models for k = 2.

the option pricing, the price of the underlying asset Sti+k
is assumed to be unknown in price prediction. As a result,
option price prediction consists of two steps: firstly, predict
the price of the underlying asset by the SDE (1); secondly,
predict the price of the option by the predicted price of the
underlying asset and the calibrated parameters. In fact, it is
challenging to find a point estimation for the price prediction
of the underlying asset. Because the solution of SDE (1) is
influenced by the trajectory of the Brownian motion, which
is stochastic. Therefore, we conduct interval estimations for

option price predictions, which means computing the highest
posterior density interval (HPDI) for predictions of option
price. Moreover, in the global calibration, all the available
data have already been used including the spot and option
prices we need to predict. So we just compare the accuracy
among the four different models by dynamic calibration.

To express the details, let {(µ(m)
i , σ

(m)
i , r (m)i )}Mm=1 be the

MCMC samples from the dynamic calibration at time ti. And
{ξ (l)}Ll=1 be a sequence of random numbers following stan-
dard normal distribution. Then for each sample, we predict
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the price of underlying asset at ti+k by

S(m,l)
ti+k = Sti exp

(
(µ(m)

i −
1
2
(σ (m)
i )2)1ti,k + σ

(m)
i

√
1ti,kξ (l)

)
,

for m = 1, 2, · · · ,M and l = 1, 2, · · · ,L, where 1ti,k =

ti+k − ti. Then the predicted prices of call and put options can
be computed for all m and l by

C (m,l)
ti+k = Ĉ(ti+k , S

(m,l)
ti+k ; σ

(m)
i , r (m)i ),

P(m,l)
ti+k = P̂(ti+k , S

(m,l)
ti+k ; σ

(m)
i , r (m)i ).

Finally, for a given probability p, find the α =
1−p
2 and β =

1+p
2 quantiles of the samples {C (m,l)

ti+k } and {P(m,l)
ti+k }, which is

denoted by Cα
ti+k ,C

β
ti+k and P

α
ti+k ,P

β
ti+k , respectively. Thus the

HPDI with probability p for the predictions of call and put
option prices are [Cα

ti+k ,C
β
ti+k ] and [Pα

ti+k ,P
β
ti+k ].

Remark 5: The parameters in Model I do not include the
interest rate r . So we use the federal funds rate and the cubic
spline of the yield curve as our reference data.

In our following analysis, we set p = 0.5 and compute the
k-day prediction HDPI for i = n, · · · ,N − k based on four
proposed models by dynamic calibration for k = 1, 2, · · · , 5.
Then we calculate the percentage of real data falling inside
the 50% HPDI and the average size of the prediction interval,
which is listed in Table 6.

The calculation results indicate that Model III and
Model IV have a better accuracy on the price prediction than
Model I and Model II. Because the size of HPDI in Model III
and Model IV are smaller, and their inside percentage are
higher for both call and put options. When k increases, the
ratio of inside percentage to interval size becomes small
for all models, which means the prediction accuracy is
decreasing. The main reason for this phenomenon is that the
estimation of µ in dynamic calibration is of relatively low
accuracy, leading to a decrease in the prediction accuracy
of the underlying asset price as the length of time interval
becomes larger. To further illustrate the prediction accuracy,
we plot the market prices and 50% HPDI obtained by the
proposed four models for k = 2 in Figure 7.

C. OTHER PROPERTIES OF DYNAMIC CALIBRATION
Although the proposed four models in this paper are all
based on the classic the Black-Scholes framework, the
dynamic calibration method enables them to possess many
fine properties. To illustrate these properties more clearly,
we analyze the dynamic calibration methods from two
aspects: the volatility surface and the log returns of the
underlying asset.

1) VOLATILITY SURFACE
Firstly, we draw the volatility surface by the dynamic
calibration method based on Model III, as an example.
Different from the standard volatility surface, which serves
as a graphical representation of implied volatility across a
range of strike prices and expiration dates, we calculate the
volatility of a set of options with different strike prices but

the same expiration date T by dynamic calibration method
from t ∈ [0,T ]. Moreover, the calibrated volatility is not just
implied because the historical data of options and underlying
asset are used together.

According to the price of the S&P 500 index, we selected
22 options with the expiration date of 15th September, 2023,
including 11 call options and 11 put options with strike prices
ranging from 3500 to 4500 with an interval of 100. Then
the volatility of each option is calibrated by dynamic method
based Model III from 16th September, 2022 to 8th September,
2023. The results are shown in Figure 8.

FIGURE 8. Volatility surface estimated MAPE obtained by dynamic
calibration based on Model III.

From the figure, it is clearly that the calibrated volatility
changes over time. And there is a distinct skewness in the
volatility for different strike prices on each day, which is
consistent with the theoretical results for SPX options.

2) LEPTOKURTIC PROPERTY
One of the main drawbacks of the Black-Scholes model
is the assumption that the log returns of the underlying
asset follow a normal distribution, which is actually derived
from the assumption of a constant expected return and
volatility. Fortunately, the dynamic calibration method is able
to approximate µ and σ with a time-varying estimation,
which makes it possible for the log returns of the underlying
asset to exhibit the leptokurtic property in the calibrated
model, which is consistent with the data from real markets.
To this end, regenerate the log returns of the SPX with µ

and σ calibrated by the dynamic method based on Model IV
according to the following equations,

R̃i = log
(
Sti+1

Sti

)
= (µ̃i −

1
2
σ̃ 2
i )1ti + σ̃i1Bti , (18)

R̂i = log
(
Sti+1

Sti

)
= (µ̂i −

1
2
σ̂ 2
i )1ti + σ̂i1Bti , (19)
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where 1Bti ∼ N (0, 1ti), and (µ̃i, σ̃i) and (µ̂i, σ̂i) are MAPE
and EAPE for expected return and volatility by dynamic
calibration with data size n = 20, respectively. Then the basic
statistics for {R̃i}Ni=1 and {R̂i}Ni=1 are listed in Table 7. To make
it more clear, we draw the histogram of the generated data
and the corresponding probability density function of normal
distribution for comparison in Figure 9.

TABLE 7. Basic statistics for the regenerated log returns.

FIGURE 9. Comparison between the regenerated data by MAPE (left) and
EAPE (right) based on Model IV and the Normal distribution.

From the statistics in Table 7 and Figure 9, it is clearly
evident that the distribution of the regenerated log returns
exhibits the features of leptokurtosis and negative skewness.
In fact, many researches have focused on improving the
Black-Scholes model by assuming the log returns of the
underlying asset follow a leptokurtic distribution, which has
made the option pricing model increasingly complex and
the calibration of parameters more difficult. The dynamic
calibration method proposed in this paper achieves this
goal without increasing the complexity of the model, which
improved the standard Black-Scholes model in a highly
efficient manner.

V. CONCLUSION
In conclusion, our study has provided comprehensive insights
into the accuracy and efficiency of dynamic calibration
by Bayesian method based on the Black-Scholes model.
The proposed dynamic calibration method has a better
performance than the global calibration method in terms
of data fitting, option pricing, and option price prediction.
Among the four proposed calibration models, Model III and
Model IV exhibit better performance than other models.
More specifically, Model III has the highest accuracy, while
Model IV is more efficient. In addition, the log returns
of underlying asset exhibit leptokurtic and negative skew
features in the dynamically calibrated Black-Scholes model,
which is a significant improvement over the classic Black-

Scholes model, making it more consistent with market data
without introducing new complex models.

The reasons why dynamic calibration with Model III and
Model IV have better performances are twofold. First of all,
the calibrated parameters by dynamic calibration change over
time, making them more responsive to changes in market
states. Secondly, different types of the data allow for a certain
degree of accuracy in parameter estimation.

Besides the aforementioned advantages, to improve the
accuracy of option price prediction by the proposed dynamic
calibration method still requires a more precise estimation
on the expected return rate µ. However, it is difficult to
simply improve the accuracy of estimating µ following the
method of this paper. Because adding information on the
option prices will not help. In fact, the expected return rate
influences the prediction of the spot price, which significantly
affects the accuracy of option price prediction. Therefore,
from a more general perspective, we should focus on the
accuracy of predicting the price of the underlying asset,
rather than just concerning with obtaining a more precise
estimation on µ. To this point, many improvements could
be made for the spot price prediction model. For example,
Long Short-Term Memory (LSTM), deep learning models,
and so on. Amajor feature of these models is that they exploit
more information from the spot market, such as opening
prices, closing prices and trading volumes, which can make
the prediction of the underlying asset prices more accurate.
Moreover, our future work also includes finding applications
of dynamic calibration method in American option and exotic
option pricing models.
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