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ABSTRACT The automation of systems and the accelerated digital transformations across various industries
have rendered the manual monitoring of systems difficult. Therefore, the automatic detection of system
anomalies is essential in diverse industries. Various deep learning-based techniques have been developed
for anomaly detection in multivariate time-series data with promising performance. However, there are
several challenges: 1) difficulty in understanding the relationships among time-series data due to their
complexity and high-dimensionality, 2) limitation in distinguishing anomalies from normal data that exhibit
similar distributional patterns, and 3) lack of intuitive interpretation of anomaly detection results. To address
these issues, we propose a novel approach referred to as the time-series to image-transformed adversarial
autoencoder (T2IAE), which adopts image transformation techniques and convolutional neural network
(CNN)-based adversarial learning. Image transformation techniques were used to effectively capture the
local features of adjacent time points. Two CNN-based adversarial autoencoders competitively learned to
distinguish between normal and abnormal data. We experimentally analyzed five real-world multivariate
time-series datasets, wherein the proposed model achieved superior anomaly detection performance com-
pared with state-of-the-art methods. Moreover, the proposed model enables humans to intuitively interpret
the detection results, facilitating appropriate explanations of the results and enhancing the model’s usability.

INDEX TERMS Anomaly detection, unsupervised learning, multivariate time-series data, image
transformation.

I. INTRODUCTION
With the advancement of Industry 4.0 driven by the Internet
of Things, various industries are automating and digitizing
their systems [1]. These real-world systems comprise several
interconnected sensors that generate a significant amount
of time-series data. Owing to the high-dimensionality and
complexity of sensor data, monitoring them manually is
becoming increasingly difficult. Therefore, approaches that
can rapidly and automatically detect anomalies and notify
human operators have been extensively researched, leading to
the emergence of anomaly detection as a major research area
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in various application domains, such as manufacturing [2],
healthcare [3], finance [4], security [5], social analysis [6],
drug development [7], and IoT networks [8], [9].
Time-series anomaly detection aim to identify the data

points that significantly deviate from normal patterns within
a chronologically ordered dataset. In the case of multivari-
ate time series, it is central to model both the interactions
between variables and the effects that occur over time.
Anomalous time-series data are infrequent and costly to
label due to the diverse manifestations of anomalies, such
as unpredictable fluctuations, missing data, and seasonal
variations. Therefore, anomaly detection in time-series data
often uses unsupervised learning, wherein models are trained
solely on normal data. Traditional unsupervised learning
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approaches include distance-based methods, such as the local
outlier factor [10] and K-nearest neighbors [11]; density-
based methods such as the density-based spatial clustering of
applications with noise [12] and ordering points to identify
the clustering structure [13]; and clustering-based methods
such as K-means [14]. However, these approaches exhibit
poor performance and require high computational costs
when handling high-dimensional complex data, rendering
their application to real-world multivariate time-series data
difficult.

In recent years, various deep learning-based techniques
have been proposed for the detection of anomalies in
multivariate time-series data. These techniques employ
architectures such as autoencoders (AEs) [15], recurrent
neural networks (RNNs) [16], long short-term memory
(LSTM)-based approaches [17], variational autoencoders
(VAEs) [18], graph neural networks [19], generative adver-
sarial networks (GANs) [20], and hybrid approaches [21],
[22]. The most crucial aspect of a well-established time series
anomaly detection model is its ability to accurately identify
anomalies. To achieve this factor, it is essential to precisely
capture inter-variable and temporal dependencies. Also, the
interpretability of the detected anomalies is another impor-
tant factor. If the model can provide human-recognizable
explanations for anomalies, it can aid in detecting, explain-
ing, and preventing them, thus enhancing its applicability in
real-world scenarios. Although recent advanced deep learn-
ing models demonstrate promising performance for anomaly
detection, several challenges remain unaddressed.

The main challenges in multivariate time-series anomaly
detection include the high-dimensionality of the series and
the presence of anomalies that closely resemble normal pat-
terns. Time-series data often exhibit intricate relationships
between different variables, making them difficult to learn,
particularly in high-dimensional contexts. This inherent com-
plexity impedes the accurate identification of anomalies.
Additionally, distinguishing anomalies that are similar to nor-
mal data distributions is challenging. Unsupervised learning
methods, which are trained exclusively on normal data, strug-
gle to detect these subtle anomalies accurately.

Another significant challenge is the lack of interpretability
in detected anomalies. Providing an intuitive explanation for
why an observation was identified as an anomaly is crucial
for assisting human operators in troubleshooting and solving
real-world problems. However, interpretability in multivari-
ate time-series data is difficult to achieve. Previous deep
learning-based studies, while achieving acceptable perfor-
mance, further complicate the task of making the detection
process transparent and understandable.

To address these issues, we propose a novel approach
referred to as the time-series to image-transformed
adversarial autoencoder (T2IAE), which utilizes image trans-
formation techniques and convolutional neural network
(CNN)-based adversarial learning. By transforming mul-
tivariate time-series data into images, our model learns

complex relationships through temporal and spatial informa-
tion between variables. Anomalies tend to exhibit stronger
correlations with adjacent time points [23], and the pro-
posed model facilitates learning these correlations between
consecutive time-series data. By employing an adversarial
learning approach with two AEs, our model effectively
captures subtle differences between normal data and anoma-
lies. Consequently, the active combination of these two
approaches precisely detects anomalies. Additionally, this
model requires less computational cost compared to other
models by utilizing a simple and efficient autoencoder archi-
tecture. Moreover, the model presents the detection results in
a human-recognizable image format, enabling users to visu-
ally inspect and intuitively interpret the detected anomalies.
The effectiveness of the proposedmodel is demonstrated with
respect to anomaly detection in time-series data by consider-
ing five real-world datasets using three image transformation
techniques. The primary contributions of this study can be
summarized as follows.

• We propose T2IAE, a novel approach that learns com-
plex spatial–temporal patterns. The proposed approach
effectively detects anomalies by using images that cap-
ture subtle changes in temporal information within
variables and the correlations between variables in mul-
tivariate time-series data.

• We performed empirical studies using publicly available
real-world datasets to evaluate the anomaly detection
performance of the proposed model. The experimental
results demonstrate that the developed approach outper-
forms other state-of-the-art methods.

• The model’s effective time-series to image transforma-
tion enables an intuitive interpretation of the results. This
allows for clear explanation of the detected anomalies,
ultimately enhancing the model’s usability.

The remainder of this paper is organized as follows.
Section II briefly discusses the related studies on unsuper-
vised anomaly detection using multivariate time-series data.
Section III describes the proposed T2IAE model in detail.
Section IV introduces the experimental environment and set-
tings. Section V discusses the obtained experimental results
and intuitive interpretability for evaluating the performance
of the proposed model. Finally, Section VI summarizes the
study findings and concludes the paper.

II. RELATED WORK
One of the traditional models for unsupervised anomaly
detection is the Isolation Forest (IF) model [24]. IF utilizes
randomly generated binary trees to detect anomalies based
on the degree of isolation of data points. Although the model
is computationally efficient and easy to train, it is sensitive
to the distribution of normal data. Moreover, its performance
varies significantly depending on the type of anomaly. A one-
class support vector machine (OCSVM) is an algorithm that
identifies a hyperplane that separates normal and abnor-
mal univariate data [25]. Although this can be trained with
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relatively fewer data points, it is not suitable for data in which
the boundary between anomalies and normal data is unclear.
This algorithm transforms the data into a higher-dimensional
space and identifies a hyperplane that maximizes the distance
between the transformed and original data. Autoregressive
integrated moving average (ARIMA) is a representative sta-
tistical model used for time-series forecasting, wherein past
values and forecasting errors are leveraged to estimate the
current value [26]. This model combines autoregressive (AR)
and moving average (MA), and non-stationary data are trans-
formed into stationary data via differencing. This method
effectively captures the characteristics of trends, seasonal-
ity, and autocorrelation in time-series data. However, the
model is unsuitable for multivariate time-series data because
it requires multiple hyperparameters for AR and MA.

Deep learning neural networks have gained significant
attention in recent years owing to their ability to capture
complex nonlinear relationships in time-series data [27]. AEs
are neural network models trained to condense input data into
a lower-dimensional latent space and to recreate output data
that are highly similar to the original input. They can extract
important features from the data and detect anomalies based
on reconstruction errors. AE-based models enable distinct
distributions at each timestamp while capturing temporal
dependencies within the time-series data [28], [29]. However,
these models cannot preserve important information present
in the original data in a lower-dimensional space.

To compensate for this, the deep autoencoding Gaussian
mixture model (DAGMM) combines an AE with GMM to
learn the normal data distribution [21]. This method pre-
serves important information in a lower-dimensional space by
maintaining reduced dimensionality and reconstruction error
characteristics. The unsupervised anomaly detection (USAD)
model is composed of two AEs that utilize adversarial train-
ing to maximize the reconstruction error between normal
and abnormal data [30]. However, these two methods do not
account for the temporal dependency of the sequences.

SES-AD is another approach to project high-dimensional
time-series into a low-dimensional embedding space [31].
This method employs a space-embedding strategy that first
reduces the dimensionality of the time series and then calcu-
lates the dissimilarity between adjacent sub-sequences in this
lower-dimensional space. The dissimilarity vector is subse-
quently processed by an LSTM-basedmodel for signal recon-
struction and abrupt change point identification, followed
by a statistical method to detect abnormal sub-sequences.
While SES-AD effectively reduces the dimensionality of
multivariate time series to identify anomalies, it has limited
interpretability, similar to the aforementioned models.

MTAD-GAT utilizes two graph layers, namely, the feature-
and time-oriented layers. It captures temporal dependency
within each time series by forecasting a single timestamp
and reconstructing the entire time series [32]. The algorithm
OmniAnomaly utilizes a stochastic RNN to detect anoma-
lies in multivariate time-series data [33]. It focuses on
learning robust representations by incorporating stochastic

variable connections and planar normalizing flow techniques.
MAD-GAN incorporate an LSTM-based GAN architecture
to capture the temporal dependencies in time-series data [34].
This model uses an anomaly score that combines the losses
of the generator and discriminator of GAN. CAE-M uses
a characterization network and a memory network to con-
sider spatial–temporal dependency in time-series data [35].
Although above methods capture the fundamental aspects
of time-series data, they fail to consider the interactions
between variables and their significance in multivariate time-
series data. Additionally, their complex model structures
lead to high computational costs during model training and
inference. Furthermore, these methods struggle to provide
intuitive explanations for anomaly detection results.

Recently, LRRDS utilized time series visualization tech-
niques for anomaly detection [36]. LRRDS identifies dis-
cords in multivariate time series by generating a recurrence
plot and detecting abrupt changes through local recurrence
rates. It segments the time series at these change points and
calculates the dissimilarity between sub-sequences to find
discords. However, the algorithm for determining anoma-
lies or discords relies on statistical features, which limits
its flexibility. To address this issue and enhance both the
interpretability and performance of the model, we propose a
new approach that visualizes the time series and then applies
a neural network-based anomaly detection algorithm.

III. PROPOSED ARCHITECTURE
A. PROBLEM DESCRIPTION
Univariate time-series data (τ ) contain one variable value (xt )
at one time point (t):

τ = [x1, x2, . . . , xt } (1)

The primary objective of the univariate time-series anal-
ysis is to investigate the correlation, trend, and seasonality
within the value based on chronological order. Unlike univari-
ate time-series data, multivariate time-series data comprise
multiple variables at each timestep, wherein each variable
represents a distinct aspect and undergoes a change over time.
Owing to the high-dimensionality of multivariate time-series
data and the interactions and influences between multiple
variables, a more intricate analysis is necessary. There-
fore, multivariate time-series analysis requires an architecture
capable of meticulously exploring temporal dependen-
cies, interactions, and causal relationships among multiple
variables.

B. OVERVIEW OF THE PROPOSED MODEL
Fig. 1 depicts the overall architecture of the proposed model,
which comprises three main parts: data preprocessing, image
transformation, and CNN-based adversarial learning. First,
the data are normalized and divided into fixed-size win-
dow sequences. Each window sequence is then transformed
into an image, which is a variable containing temporal
information; the window sequence is converted into a three-
dimensional (3D) collection of these images. The image
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FIGURE 1. Overall architecture of the proposed time-series to image-transformed adversarial autoencoder (T2IAE), which comprises three main parts:
data preprocessing, image transformation, and CNN-based adversarial learning.

collection is trained in two stages using one encoder and two
decoders. The first stage focuses on training the model to
accurately reconstruct the original input, whereas the second
stage trains the model to distinguish between the original
input and the output of the first stage. These training tech-
niques enable the identification of temporal associations,
interactions, and causal relationships between variables.
Finally, the reconstruction error between the original input
and final output is calculated and used as an anomaly score
for detection.

C. DATA PREPROCESSING
In the case of multivariate time-series data, machine learning
models learn by extracting features from variables. Variables
with different measurement scales could exhibit a dispropor-
tionate influence on the analysis, potentially introducing bias;
this can be addressed using normalization. Normalization
transforms the numerical variables into a common scale while
maintaining their relative importance. This ensures that each
variable exhibits an equal impact on the learning process.
Normalization can lead to a more stable and efficient learning
process for themodels, resulting in better performance. In this
study, we used the min–max normalization, which scales
variables using their minimum and maximum values. All
variables were transformed within a range of 0 to 1, where the
minimum andmaximum values of each variable were 0 and 1,
respectively [36]. Normalization can be implemented using

x̃i =
(xi − min (X))

max (X) − min (X)
, (2)

where xi ∈ RT denotes the time series of the i-th value in a
variable X ; and x̃i denotes the normalized xi.
Anomalies in the time-series data are highly correlated

with neighboring time points [23]. Therefore, identifying
local anomalies in the entire dataset can be difficult.

To address this issue, the normalized data are divided into
fixed-length window sequences using the sliding window
algorithm [38]. A window sequence Wt of size k at time t
can be defined as

W t={x̃t−k+1, . . . , x̃t−1,x̃t}. (3)

The normalized data can be transformed into a window
W = {W1, W2, . . . , WT }.

D. IMAGE TRANSFORMATION
We transformed the time-based window sequences gen-
erated during data preprocessing into images. Converting
time-series data into images can highlight, capture, and com-
press local features that are dispersed over time [39].

Fig. 2 illustrates the process of transforming a single
window sequence into images. A single window sequence
comprises m variables over k consecutive time points. Each
variable is transformed into an image of size k×k , resulting
in the transformation of a single window sequence into an
image group of m images.

FIGURE 2. Image transformation of a single window sequence.

We performed a comparison by applying three image
transformation techniques to the time-series data: Gramian
angular field (GAF) [40], Markov transition field (MTF)
[40], and Recurrence plot (RP) [41]. The GAF algorithm
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uses polar coordinates to represent temporal correlations
between individual points within a time series. It retains
temporal relationships when transforming time-series data
into a visual image format owing to the incorporation of a
polar coordinate-based matrix. The polar coordinates of the
scaled time series can be calculated as follows:

∅i=arccos (xi) , ∀i ∈ {1, 2, . . . , k}. (4)

The Gramian matrix is then calculated as the cosine of the
sum of the angles, as indicated in (5).

GAF =


cos (∅1, ∅1) cos (∅1, ∅2) · · · cos (∅1, ∅k)
cos (∅2, ∅1) cos (∅2, ∅2) · · · cos (∅2, ∅k)

...
...

. . .
...

cos (∅k , ∅1) cos (∅k , ∅2) · · · cos (∅k , ∅k)

 .

(5)

MTF represents the transition probabilities of discretized
time-series data.MTF is constructed by dividing a time-series
dataset X intoQ intervals based on its values. The time-series
data value xi is then assigned to the corresponding interval qj
(j∈ [1, Q]). A weighted adjacency matrix W of size Q× Q
can be constructed along the time axis using the first-order
Markov chain method, where wi,j represents the frequency
of transitioning from interval qi to interval qj. The Markov
transition matrix is constructed by normalizing the sum of
each column in matrix W to 1. During this process, the distri-
bution of X and the time dependency are eliminated fromW .
To overcome this loss of information in W , MTF is defined
by arranging each probability according to its corresponding
timestep, as follows:

MTF =


wij|x1ϵqi, x1ϵqj · · ·wij|x1ϵqi, xkϵqj
wij|x2ϵqi, x1ϵqj · · · wij|x2ϵqi, xkϵqj

...
. . .

...

wij|xkϵqi, x1ϵqj · · · wij|xkϵqi, xkϵqj

 . (6)

The RP searches for the trajectory of an m-dimensional
phase space by representing the recurrence of data values in
a two-dimensional space. After obtaining the m-dimensional
spatial trajectory of the time-series data, a distance matrix is
constructed using the difference between the m-dimensional
trajectory and the distance over time. The RP matrix refers
to the record of the distance matrix for all combinations. The
RP matrix Ri,j is a vector composed of time pairs i and j, and
can be defined as follows:

Ri,j=θ
(
ε−

∥∥x⃗i − x⃗j
∥∥)

, (7)

where θ denotes the Heaviside function; and ε represents the
threshold value.

Fig. 3 depicts the results of the GAF, MTF, and RP trans-
formations for the same time-series dataset. We observed
that the same data were transformed into different forms of
images depending on each image transformation technique.
We aimed to analyze and compare the contributions of these
three widely used image transformation techniques to multi-
variate time-series data.

FIGURE 3. Image transformation results of the same time-series data.

E. CNN-BASED ADVERSARIAL LEARNING
The transformed 3D images (I ) were fed into two-stage AEs
that performed CNN-based adversarial learning. The two-
stage AE comprised an encoder that condensed the input
data into a latent vector and two decoders that reconstructed
the data into a form similar to that of the original images.
The encoder was designed to be shared between the two
decoders [30]. The combinations of the encoder with the
first and second decoders were referred to as AE1 and AE2,
respectively.

In the first stage, both AE1 and AE2 performed traditional
AE learning. The objective is to minimize the reconstruction
error, which enables the model to generate an output (x ′)
similar to the input (x). Reconstruction loss can be defined
as follows:

LAE1=
∥∥I−AE1(I)

∥∥
2 ;

LAE2=
∥∥I−AE2(I)

∥∥
2 . (8)

As AE-based anomaly detection is trained only on nor-
mal data, it tends to reconstruct anomalous data with a
low reconstruction error when they closely resemble normal
data. Therefore, detecting anomalous data using traditional
AE-basedmodels is difficult. To address this issue, we trained
AE2 to distinguish between the original input and the recon-
structed output from AE1 via adversarial learning in the
second stage. In other words, AE2 was trained to maximize
the reconstruction error based on adversarial learning. The
training objectives for each AE can be indicated as

min
AE1

max
AE2

∥∥I−AE2(AE1(I))
∥∥
2 . (9)

The reconstruction loss for each AE in the second stage can
be defined as

LAE1=+
∥∥I−AE2(AE1 (I) )

∥∥
2;

LAE2=−
∥∥I−AE2(AE1(I))

∥∥
2. (10)

We obtained the overall loss function for the model by
combining (8) and (10) from the two stages, as follows:

LAE1=
1
n

∥∥I − AE1(I)
∥∥
2 +(1−

1
n
)
∥∥I−AE2(AE1 (I) )

∥∥
2
;

LAE2=
1
n

∥∥I − AE2(I)
∥∥
2
−(1−

1
n
)
∥∥I − AE2(AE1(I))

∥∥
2
,

(11)

where n denotes the number of training epochs. By adding
1/n and (1−1/n) to the loss function, the model learned to
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focus on AE learning during the first few iterations of training
and gradually shifted its focus to adversarial learning as the
training progressed.

Based on the two trained AEs, the anomaly score for the
test dataset (Î ) can be defined as

S = α

∥∥∥Î − AE1(Î )
∥∥∥
2
+ β

∥∥∥Î − AE2(AE1(Î ))
∥∥∥
2
, (12)

where the coefficients α and β determine the sensitivity
based on the proportion of reconstruction errors between AE1
and AE2. If the anomaly score exceeded a certain threshold,
we considered the window sequence to be an anomaly. As the
reconstruction error weight of AE1 increased, the sensitivity
of anomaly detection decreased. Consequently, the ratio of
true positives (TPs) to false positives (FPs) decreased. By
contrast, increasing β resulted in the model exhibiting high
anomaly detection sensitivity, thereby increasing the number
of both TPs and FPs. The sum of α and β was 1, and a tradeoff
between FPs and TPs occurred according to the weights of the
coefficients.

Fig. 4 illustrates the CNN-based architecture of the encoder
used for processing the transformed 3D images. The decoders
are structured in the reverse order of the encoder archi-
tecture. In this study, the CNN-based architecture utilized
convolution layers, batch normalization, activation functions,
max pooling, and dropout for image analysis. The arrange-
ment of the layers exhibited a considerable impact on the
accuracy and efficiency of the model. Batch normalization
is a key technique that stabilizes the training process and
improves accuracy. Batch normalization should be performed
immediately after the convolution layer and before the acti-
vation function to achieve optimal results [42]. Max pooling
emphasizes the features within a specific region via down-
sampling [43]. However, applying dropout before batch
normalization can lead to an unstable analysis; therefore,
dropouts should be performed after batch normalization [44].
In this study, we employed three CNNs to extract and analyze
the key features of the images.

IV. EXPERIMENTAL ANALYSIS
A. DATASETS
We used five publicly available multivariate time-series
datasets for our experiments. Table 1 lists the characteristics
of the datasets.

FIGURE 4. Convolutional neural network (CNN)-based architecture of the
encoder for processing three-dimensional (3D) images.

• SWaT:The secure water treatment (SWaT) dataset
is derived from an industrial water treatment plant
testbed managed by Singapore’s Public Utility Board,
which represents a scaled-down version of a real-world
facility [45]. The dataset was collected over 11 con-
secutive days, with seven days captured during normal
operational conditions and four days recorded during
simulated attack scenarios. Data were collected every
second and contained 51 variables.

• WADI: The dataset for the water distribution (WADI)
testbed, which is an extension of the SWaT testbed,
spanned a period of 16 consecutive days, with 14 days
of data collected during normal operation and 2 days
recorded under attack scenarios [46]. Test data were
identified based on an attack scenario. Data were
collected every second and included 123 variables
(excluding null variables).

• SMAP: The soil moisture active passive (SMAP) satel-
lite dataset is a publicly available real-world dataset
labeled by experts from the National Aeronautics and
Space Administration (NASA) [17]. The dataset com-
prises 55 entities, each with 25 variables.

• MSL: The Mars science laboratory (MSL) dataset is
also a real-world dataset collected by NASA [17]. This
dataset comprises 27 entities, each with 55 variables.

• SMD: The server machine dataset (SMD) is a large-
scale, multivariate time-series dataset collected from
a real-world internet company [33]. This dataset com-
prises 28 entities, each with 38 variables.

TABLE 1. Characteristics of the datasets.

B. BASELINE MODELS
The effectiveness of the proposed model was evaluated by
experimentally comparing its performance with the following
state-of-the-art models in terms of multivariate time-series
anomaly detection.

• An AE is a neural network trained to reconstruct its
input. Here, anomaly detection is achieved by identi-
fying data points with reconstruction errors that exceed
a predefined threshold [47].

• The IF model is an ensemble-based technique that uses
multiple decision trees. It continuously splits the trees
and identifies anomalies based on the isolation level of
each data instance [24].

• LSTM-VAE is a reconstruction-based model that
replaces the feedforward network of the existing vari-
able AE with LSTM [29].
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• DAGMM is a deep autoencoding Gaussian model that
uses an AE for dimensionality reduction and a GMM
for density estimation of complex input data [21].

• OmniAnomaly combines gated recurrent units with
VAE and utilizes a stochastic RNN to focus on learning
robust representations by incorporating planar nor-
malizing flow techniques and probabilistic variable
connections [33].

• USAD is an unsupervised method with two AEs that
utilizes adversarial training to maximize the recon-
struction error between normal and abnormal data [30].

• MTAD-GAT is a reconstruction-based model that
learns the representation of each univariate time series
by reconstructing the original input while capturing
both temporal and spatial dependencies via two parallel
GAT layers [32].

• CAE-M is a jointly optimized model that com-
bines a convolutional AE for reconstruction with an
attention-based bidirectional LSTM and an AR model
for prediction [35].

• MAD-GAN is an LSTM-based GAN model that can
capture temporal dependencies in time-series data.
It employs an anomaly score derived from the com-
bined losses of the generator and discriminator to detect
anomalies [34].

• MSCRED is a model that extracts diverse features of
system states by generatingmulti-scale signaturematri-
ces and processing them using a convolutional encoder
and decoder [50].

• GDN is a model that generates a graph representing
the relationships between sensors and extracts features
from that graph using a graph neural network (GNN)
[19].

C. EXPERIMENTAL SETTINGS
We implemented the proposedmodel and the baseline models
in Python 3.8, PyTorch 2.0.1, and CUDA 12.2. The experi-
mental setup utilized a server equipped with an Intel(R) Core
(TM) i7-6700K CPU @ 4.00 GHz and an NVIDIA GeForce
RTX 2080Ti graphics card. We used the Adam optimizer
with a learning rate of 0.0001 and set the batch size to 32.
The model was trained for 50 epochs and implemented early
stopping with a patience value of 10. The input data were
selected as a sequential subset using the sliding window
algorithm with a window size of 12 for SWAT and WADI,
and 6 for SMAP, MSL, and SMD datasets. Each kernel size
of the three convolution layers was 3, the stride was 1, and
the dropout rate for each CNN was 0.2. Table 2 presents the
detailed architecture of the encoder and decoder.

D. EVALUATION METRICS
We used the precision (P), recall (R), and F1 score (F1) to
evaluate the anomaly detection performance of the T2IAE.

P =
TP

TP+ FP
,R =

TP
TP+ FN

,F1 =
2PR
P+ R

, (13)

where TP denotes the correctly identified anomaly, FP indi-
cates the incorrectly identified anomaly as normal, true
negative (TN) represents the correctly identified normal data,
and false negative (FN) denotes the incorrectly identified
abnormal data as normal.

We evaluated the threshold that exhibited the highest
performance for each model and considered the detection
results as anomalies when they exceeded the correspond-
ing threshold. As the inputs of the model were the images
transformed from the window sequences, the evaluation met-
ric was applied to each window sequence. If one or more
anomalies existed in a window sequence, the window was
considered anomalous.

V. RESULTS AND DISCUSSION
A. PRIMARY RESULTS
We evaluated the performance of the proposed T2IAE for
anomaly detection using multivariate time-series data by
comparing it with eleven other models. The proposed model
used three approaches to convert time-series data into images,
namely, GAF, MTF, and RP; the corresponding models were
referred to as T2IAE-GAF, T2IAE-MTF, and T2IAE-RP,
respectively. Table 3 presents the anomaly detection perfor-
mance of T2IAE and the other models compared with respect
to the SWaT, WADI, SMAP, MSL, and SMD datasets. The

TABLE 2. Detailed architecture of the encoder and decoder (v: variables;
w: window size; k: kernel size; s: stride; p: padding; cout: output
channels; d: dropout rate).

VOLUME 12, 2024 119677



J. Kang et al.: Time-Series to Image-Transformed Adversarial Autoencoder for Anomaly Detection

TABLE 3. Anomaly detection results including Precision (P), Recall (R), and F1 score. The best performances are highlighted in bold, and the second-best
performances are underlined.

best F1 score is indicated in bold and the second-best F1
score is underlined for each dataset.We observed that the pro-
posed model exhibited superior performance compared with
most baseline models, thereby validating the effectiveness of
the approach. T2IAE’s performance is only slightly behind
OmniAnomaly in SMD dataset.

The average F1 scores of the T2IAE models for the five
datasets were 0.8186, 0.7814, and 0.7992 for T2IAE-GAF,
T2IAE-RP, and T2IAE-MTF, respectively. These were the
best performance scores compared with the average F1 scores
of the other models. Our models achieved the results by
capturing not only temporal dependencies but also interac-
tions and causal relationships between variables via images
that preserved temporal information. Each variable of the

multivariate time-series data was transformed into an image
that preserved the temporal order, enabling the model to
utilize temporal information. Furthermore, the collection of
these images enabled the model to exploit spatial informa-
tion. The model can identify the causal relationships between
variables by integrating the spatial–temporal information.
IF and DAGMM exhibited the weakest performances owing
to their failure to incorporate the temporal information of the
variables into their anomaly detection mechanisms. USAD
showed limited performance despite employing adversar-
ial learning due to its ignorance for spatial information.
Recently developed models, such as MTAD-GAT (0.7504),
CAE-M (0.7486), MAD-GAN (0.7472), MSCRED (0.7508),
and GDN (0.7539), achieved better performance than other
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baseline models by capturing dependencies within each time
series. However, their performance is approximately 10%
lower than that of our models.

In the proposed models, the model with GAF showed the
highest performance. The performance discrepancies among
image transformation techniques can be attributed to their
distinct methods of preserving temporal dependencies in
time-series data. GAF effectively preserves temporal order by
measuring the changes in the time-series data within a polar
coordinate system. By contrast, MTF calculates the transition
probabilities between discrete time-series data points, which
could lead to some loss of temporal sequence information.
RP measures the time required to return to a previously
visited state, limiting its ability to capture long-term temporal
dependencies.

Next, we compared the computational performance of
T2IAE with these baseline models that showed comparable
performances, we measured the time taken by each dataset
per epoch. For the SMAP, MSL, and SMD datasets, which
contained multiple entities, we used a single entity. Table 4
presents the results of the analysis. The proposed models
require additional time for image transformation of the time-
series data. However, these models exhibited significantly
shorter training times than the other models due to their
simple neural network architectures. In particular, T2IAE-RP
reduced the training time by up to 50 times compared with
MTAD-GAT with respect to the MSL dataset. MAD-GAN
and MSCRED employ more complex LSTM networks com-
pared to basic neural network architectures, while GDN and
MTAD-GAT represent time-series data as intricate graph
structures. Consequently, thesemodels demand a higher com-
putational load. Among image transformation techniques, the
results confirm that RP has lower computational complexity
compared to MTF and GAF.

In addition, we investigated the relationship between neu-
ral network size and model performance. Generally, larger
networks can potentially achieve higher performance accord-
ing to scaling laws, as they can learn more data and express
complex relationships. However, excessively large neural net-
works may suffer from overfitting on a limited amount of
training data [51]. Fig. 5 illustrates the relationship between
the number of trainable parameters and F1 scores for deep

TABLE 4. Training time (in seconds) per epoch with respect to each
dataset.

FIGURE 5. Comparison of the relationship between neural network size
(# of trainable parameters) and performance (F1 score) of deep learning
models in the MSL dataset.

learningmodels excluding IF on theMSL dataset. This simul-
taneously demonstrated the performance improvement with
increasing neural network size and the performance degra-
dation due to overfitting in MTAD-GAT with excessively
large neural network size. Our models achieved superior
performance by effectively capturing time series characteris-
tics through an appropriate increase in neural network size
facilitated by the transformation of time-series data into
images.

B. INTERPRETABLE ANOMALY DETECTION
Although transforming time-series data into images offers
performance advantages, its primary strength lies in its supe-
rior intuitive interpretability compared with raw time-series
data. This interpretability facilitates an in-depth analysis of
the anomaly detection results.

Fig. 6 depicts the reconstruction errors detected for each
variable to determine the anomaly in the SWaT dataset using
the T2IAE-MTFmodel. In the case of normal data, the differ-
ence between the original and restored data is close to zero,
whereas the difference is close to one in the case of anomalous
data. We display 50 of the 51 variables in tabular form, where
values closer to zero are indicated in a darker shade and those
closer to one are denoted in a lighter shade. The name and
number of each equipment (variable) and the 6-stage SWaT
testbed processes are described in [48]. We used the same
number for each piece of equipment as indicated in the figure.

Figs. 6(a) and 6(b) represent the specific time points
for the reconstruction errors of the normal data, and
Figs. 6(c) and 6(d) represent the specific time points for the
reconstruction errors of the abnormal data.1 Although a few
white dots exist in Figs. 6(a) and 6(b), the anomaly score is
sufficiently small and insignificant to avoid exceeding a cer-
tain threshold. By contrast, Figs. 6(c) and 6(d) contain several
bright images, indicating the detection of anomalous data.
We consider the details presented in [49] for the subsequent

1The time points are as follows: (a) 2015-12-28 11:57:20; (b) 2015-12-28
13:44:00; (c) 2015-12-31 02:10:40; (d) 2015-12-31 10:10:40.
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FIGURE 6. Reconstruction errors between original and restored data of the secure water treatment (SWaT) dataset with respect to
variables. (a) and (b) represent the specific time points for the reconstruction errors of the normal data, (c) and (d) represent the specific
time points for the reconstruction errors of the abnormal data.

analysis here. According to [49], this time point is under
a cyber-attack caused by Scenario 28. The attack involves
closing the pump (P302) in the third stage to block the inflow
to the first tank (T401) in the fourth stage. Fig. 6(c) depicts the
state at the beginning of the anomaly, where the restoration
errors of the 9th (FIT201) and 18th (FIT301) variables are
remarkably large. Both variables were measured using flow
meters, likely because the flow rates in stages 2 and 3 changed
rapidly when the pump in stage 3 was closed. Fig. 6(d)
illustrates the situation approximately 8 h after the occur-
rence of the scenario depicted in Fig. 6(c). Several additional
variables exhibit significant restoration errors. In particular,
the restoration errors of the sensors after stage 4 (Nos. 28,
37–42, 46, and 47) increase significantly. These sensors are
flow meters or pressure meters that enable the identification
of equipment malfunctions over time. Therefore, based on the
T2IAE results, the correlation, causality, and other relation-
ships between the variables within the anomalous section can
be intuitively interpreted.

Figs. 7(a) and 7(b) depict the specific time points for the
reconstruction errors of the abnormal data2 in the WADI
dataset. Similar to Fig. 6, the variables with anomalies
are displayed brightly because of the significant difference
between the original and reconstructed data. Fig. 7(a) indi-
cates that when the attack turns off the 6th variable in
the upper-left corner (1_FIT_001), which is a flow indi-
cation transmitter, the reconstruction error of that variable
increases rapidly. This attack causes the chemical dosing
pump to operate. In Fig. 7(b), the first, third, and fourth
variables in the upper-left corner are highlighted. These
variables are derived from sensors that analyze water qual-
ity (1_AIT_001, 1_AIT_003, and 1_AIT_004). Based on
these findings, we inferred that an issue existed with the
water quality. This implies that visualizing and reconstructing

2The time points are as follows: (a) 2017-10-17 10:26:00; (b) 2017-10-
17 10:34:00; where the attack occurred for 9 m and 50 s from 2017-10-17
10:24:10.
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FIGURE 7. Reconstruction errors between original and restored data of the abnormal data in the water distribution (WADI) dataset with respect to
variables.

multivariate time-series data offers a detailed explanation and
enables an intuitive understanding of the detected results.

C. HYPERPARAMETER SENSITIVITY ANALYSIS
We then investigated the effects of varying the T2IAE param-
eters on themodel performance. Experiments were conducted
using the T2IAE-MTF model with the SWaT dataset.

As indicated in (12), more weight is attached to the recon-
struction of AE1 for a larger sensitivity threshold α, and more
weight is attached to AE2 for a larger β value. Increasing
α and decreasing β can reduce the number of FPs while
minimizing the reduction in the number of TPs [30]. To com-
pare the impact of sensitivity threshold variations on the
proposed model, we performed anomaly detection using a
single-trained T2IAE-MTF model while adjusting α and β in
increments of 0.2 without re-training with the SWaT dataset.
As indicated in Table 5, increasing the value of α leads to
an increase in recall (R), and the number of FNs decreases
more than the number of TPs. These findings are consistent
with those of USAD [30]. As β increases, precision (P)
also increases, and the number of TPs increases more than
the number of FPs. This enables data handlers to prioritize
either FN reduction or TP increase by adjusting the sensitivity
according to their preferences.

Subsequently, we examined the performance of the pro-
posed model with changes in the window size. Determining
the optimal window size is crucial because it significantly
affects the model performance. Fig. 8(a) illustrates the results
of seven different window sizes, W∈ [6, 12, 24, 36, 48,
60, 72], indicating that the best F1 score is obtained for
a window size of 12. The F1 score reduced continuously
when the window size exceeded 12, indicating a decline
in model performance. Larger images were created using

a larger window size to train the T2IAE model. Images
with large window sizes tended to capture the correlation
between adjacent time points inadequately because they had
to capture the relationships between distant points within the
image. However, the proposed model using images with a
window size of 12 adequately captured important correlations
between adjacent time points.

Dropout can prevent overfitting and improve performance
by reducing the co-adaptation among pixels in the image
data [52]. Therefore, we evaluated the performance of the
proposed model using different dropout rates. Fig. 8(b)
presents the results for five dropout rates, D ∈ [0%, 20%,
40%, 60%, 80%]. The F1 score was the highest (0.8872)
at a dropout rate of 20%. This indicates that the dropout
layer improved themodel performance. However, excessively
high dropout rates can deteriorate the model performance
to an even worse state than when no dropout layer is used.
Therefore, determining the dropout rate that yields the best
results is crucial because simply implementing a dropout
layer does not ensure an improved performance.

TABLE 5. Results of anomaly detection obtained with different sensitivity
thresholds for the SWaT dataset.
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FIGURE 8. F1 scores with respect to the a) window size, b) dropout rate, and c) training dataset ratio in the secure water treatment (SWaT) dataset.

Finally, we investigated the impact of the training dataset
size on the detection performance. Fig. 8(c) illustrates
the results for five different training dataset ratios, T ∈

[20%, 40%, 60%, 80%, 100%]. Here, 100% of the train-
ing dataset refers to the entire training data existing in
Table 1, whereas 80% represents the dataset that excludes
the final 20% from the entire training dataset. We observed
that the performance of the proposed model improved
steadily as the amount of training data increased. In other
words, the variance and bias decreased with the increase
in the amount of data, thereby improving the model
performance.

VI. CONCLUSION
In this study, we propose a novel time-series to image-
transformed anomaly detection method that adopts three
image transformation techniques and CNN-based adversar-
ial learning. The proposed model facilitates the learning
of correlations between adjacent time-series data variables
by transforming multivariate time-series data into images.
Additionally, adversarial learning performed using two AEs
enables the effective learning of temporal characteristics
in multivariate time-series data. We empirically analyzed
five publicly available real-world datasets to evaluate the
anomaly detection performance of the proposed model
and determined that it outperformed other state-of-the-
art methods. Furthermore, the proposed model enables
humans to intuitively interpret detected results of multi-
variate time-series data, facilitating appropriate explana-
tions of the detection results and enhancing the model’s
usability.

Image transformation for learning is a critical factor affect-
ing both performance and interpretability. Therefore, in the
future, we will seek ways to improve the image transforma-
tion techniques to further enhance the detection performance
of T2IAE. We also aim to enhance our model with an
attention mechanism for input images, thereby creating an
optimized framework for multivariate time series anomaly
detection.
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