
Received 16 August 2024, accepted 23 August 2024, date of publication 27 August 2024, date of current version 6 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3450801

Microsecond-Level Real-Time Ethernet
Deterministic Bus (REDBUS): Architecture
and Motor Control Experiments
GABRIELE BRUGNONI AND LUDOVICO MINATI , (Senior Member, IEEE)
DVE Progettazione Elettronica, 21020 Casciago, Italy

Corresponding authors: Gabriele Brugnoni (info@developembedded.com) and Ludovico Minati (lminati@ieee.org)

The authors contributed in equal measures to this study. L.M. was also with the Tokyo Institute of Technology (Tokyo, Japan), and is now
with the University of Electronic Science and Technology of China (Chengdu, Sichuan, China).

ABSTRACT For decades, real-time digital control systems have enabled countless applications across
industry, transportation, defense, and science. A more recent trend is enhancing their interconnections using
hardware and protocols, delivering timing performance comparable with that of the controllers themselves,
thus enabling considerably more complex forms of real-time coordination over multiple devices, such as
robot axes. Several industry standards have emerged, primarily leveraging existing IEEE802.3 Ethernet
hardware and differing levels of the associated stack. However, these are generally proprietary and involve
complex software libraries, which are desirable in terms of abstraction and multi-vendor interoperability but
are not well-suited for situations where low-cost, small-size, and high-reliability remotization of individual
sensors and actuators are required. In this paper, we introduce a complementary approach known as the
Real-time Ethernet Deterministic Bus (REDBUS), which is characterized by an atypical usage of the
IEEE802.3 physical layer, rewired according to a daisy-chain topology, yielding a sort of token-passing
network. The cascaded devices replace control values with sensor readings on the fly at predetermined frame
locations under a minimalist framework devoid of any software layers. The concepts and implementation
are described in detail, an example code is provided, and representative results on the real-time control of
high-speed stepper and brushless motors are presented. Due to the lack of abstraction, security, scalability,
diagnostics, and multi-protocol integration features, REDBUS cannot replace the existing industrial Ethernet
standards on the factory floor. Rather, it aims to complement them within predetermined designs, such
as individual pieces of equipment that represent closed ecosystems, where complexity, size, and timing
requirements are more pressing and where the entire data flow allocation and timings can be fixed ab initio.
Diverse engineering fields can directly benefit from this simple and unconstrained architecture for meeting
demanding experiment control and data acquisition requirements.

INDEX TERMS Ethernet networks, field programmable gate arrays, IEEE802.3, industrial automation,
real-time control systems.

I. INTRODUCTION
Industrial networks emerged in the 1960s as a way to
automate and control industrial processes, primarily in manu-
facturing and process scenarios. The early industrial networks
mainly consisted of hardwired connections between sensors,

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose .

controllers, and actuators. However, with the advent of
microprocessors and the diffusion of digital technologies,
industrial networks started to evolve rapidly and gradu-
ally merge, in terms of the underlying technologies and
paradigms, with other types of embedded networks facing
similar purposes as requirements, such as in transportation
and defense applications. In the 1970s and 1980s, the
development of programmable logic controllers (PLCs) revo-

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 120273

https://orcid.org/0000-0002-2532-1674
https://orcid.org/0000-0002-2109-7871

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

lutionized industrial automation, as these devices allowed for
far more complex control algorithms, higher flexibility, and
real-time monitoring and control. Importantly, the introduc-
tion of the IEEE802 standard in 1980 also paved the way for
the development of industrial Ethernet, which is now widely
used as the backbone of industrial networks [1], [2], [3], [4].
The 1990s saw the emergence of fieldbus technologies, such
as Profibus, which allowed for more efficient communication
between devices and reduced wiring costs. In more recent
years, a further transition has been taking place from legacy
interconnection standards such as RS-485 to Ethernet, and
this has, to some extent, been mirrored in other fields such
as aerospace, defense and automotive, with ever-increased
integration between, for example, CAN,MIL-STD-1553, and
ARINC standards, and Ethernet [5], [6], [7], [8], [9], [10].

On the other hand, at its inception, Ethernet was initially
devised primarily for office networking applications and
lacked several of the timing and availability features essential
to industrial and other critical applications [1], [2]. In par-
ticular, deterministic real-time operation is a fundamental
prerequisite for machine control, process automation, safety
management, maintenance, and, in general, all applications
wherein fixed physical time constraints are imposed by direct
interaction with a dynamical real-world scenario [11], [12].
To address this challenge, multiple solutions and standards
have been proposed, including proprietary extensions such as
PROFINET, and particularly PROFINET RT and IRT, from
Siemens, other protocols such as Modbus TCP and, more
recently, EtherCAT, developed by Beckhoff Automation in
the early 2000s [5], [6], [7], [8]. To respond systematically
to the ever-increasing usage of Ethernet in real-time appli-
cations, throughout the years 2016-2020, the Time Sensitive
Network (TSN) extensions to the IEEE802.1 standard were
published [9], [10], [13].

Today, developers are offered a range of options to
deploy Ethernet with different levels of timing performance
and determinism in control applications. EtherCAT uses a
master-slave architecture and a distributed clock mechanism
to achieve cycle times of less than 1 ms [8]. PROFINET
supports both real-time and non-real-time communication
and offers a wide range of device profiles [6]. Both were
designed for large-scale interoperability between devices
and vendors and, as such, implement a significant level of
abstraction, resulting in a firmware stack footprint on the
order of 10 KBytes or more, rendering them not well-suited
for low-level hardware implementation [14], [15]. On the
other hand, TSN is an IEEE standard that allows multiple
industrial protocols to share the same network infrastructure,
reducing complexity and cost and enabling different classes
of traffic to coexist on the same media. However, the TSN
extensions require specific hardware-level capabilities that
must be supported by all the devices involved [13].

For completeness, it is worth mentioning that the need
to enhance timing performance and determinism in Ethernet
connectivity has also been encountered in other applica-
tion domains, notably the usage of Ethernet infrastructure

for long-distance, high-aggregation connectivity. The term
carrier-grade Ethernet, reflecting a service-oriented concept
rather than a defined set of specifications, has been intro-
duced to refer to all applications of Ethernet at the urban
level, particularly having the purpose of interconnecting
geographically dispersed buildings and workers. Compared
to regular office-grade Ethernet, the thrust is towards lean,
reduced protocol stacks combined with traffic engineer-
ing and hierarchical planning to attain quality-of-service
comparable to connection-oriented architectures, such as
synchronous optical networks. While industrial networking
and carrier-grade Ethernet share a common pursuit for
deterministic timings and reliability, the requirement profiles
are different in that, typically, industrial networks require
tighter timing margins and leaner software stacks. This is due
to the physical nature of the controlled processes and the fact
that the interconnected equipment primarily consists of large
numbers of resource-constrained embedded devices rather
than high-performance routers. Consequently, the facilities
supporting quality-of-service, security, and fault management
are profoundly different between industrial and carrier-grade
Ethernet [16], [17].
Consequently, there remained a gap between the capa-

bilities of these standards and the need for a high-speed,
low-complexity, low-abstraction, and low-cost solution for
use in interconnecting the sensors and actuators within
fully self-contained and proprietary devices. For example,
EtherCAT and PROFINET RT/IRT are widely used in large
multi-axis machines. However, the cost and complexity of
their implementation make them poorly suited for equipment
such as entry-level robots, small autonomous vehicles, non-
critical equipment such as complex lighting systems, etcetera.
The abstraction and integration of these standards may well
represent an unnecessary burden for such applications. On the
other hand, the majority of off-the-shelf microprocessor and
microcontroller boards available to date do not yet support
the TSN extensions, which, moreover, require a capable
switch [13], [18].

In this paper, we present a new concept, grounded
on an atypical use of mainstream IEEE802.3 Ethernet
physical layer hardware, whereby devices are cascaded by
daisy-chaining their transmit and receive signal pairs so
that the transmitter of the previous device is connected to
the receiver of the next device to form a chain (Fig. 1a).
While unorthodox according to the 100BASE-T specifica-
tions, which prescribe a star-based physical interconnection
architecture using switches (Fig. 1b), this topology is viable
and proves to have numerous advantages, realizing in effect a
sort of token-passing system wherein the Ethernet frame sent
by the controller can traverse all peripheral nodes and return
to it [4], [19].
Each peripheral replaces the intended control data on the

fly with sensor readings and other returned information.
This architecture has been named the Real-time Ethernet
Deterministic BUS (REDBUS). As visible in Fig. 2, the
highly elementary nature of the architecture required to

120274 VOLUME 12, 2024

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 1. Comparison between the REDBUS and conventional
IEEE802.3 standard physical interconnection topology.

implement each node, not requiring any software stack,
renders it well-suited for hardware-level implementation.
It simply consists of a first-in, first-out (FIFO) buffer that
repeats the received data, replacing part of the content
when necessary, with additional logic adjusting the Ethernet
frame fields to retain compliance with the physical and link
layers of the IEEE 802.3 standard. For the avoidance of
doubt, it is underlined that, unlike other industrial Ethernet
standards, REDBUS cannot coexist with other Ethernet-
based protocols. Due to the lack of abstraction, security, scal-
ability, diagnostics, and multi-protocol integration features,
REDBUS cannot replace the existing industrial Ethernet
standards on the factory floor. Instead, it aims to complement
them within predetermined designs where complexity, size,
and timing requirements in the remotization of one or more
sensors and actuators are more pressing and where the
entire data flow allocation and timings can be fixed ab
initio.

FIGURE 2. REDBUS peripheral node architecture. Data is extracted from
the Ethernet payload, used to drive the actuators, and replaced on the fly
with incoming information from sensors or generic inputs.

II. SYSTEM ARCHITECTURE AND PERFORMANCE
A. OVERVIEW
As said, the REDBUS architecture comprises a controller and
one or more peripheral nodes, interconnected by leveraging
standard IEEE802.3 Ethernet physical layers in an atypical
topology forming a ring, comprising a chain of devices
and closed by a controller [4], [19]. As said, the key
distinguishing feature is that no switch is required, allowing
the latency to be precisely predetermined and minimized
and the throughput to be maximized without requiring any
dedicated protocol extensions or dedicated hardware. As will
be shown below, while the proposed interconnections deviate
from the standard Ethernet implementation, they are readily
accepted by all existing, commercially available physical
layer network devices (PHYs). Moreover, it is possible
to realize the controller utilizing standard media access
controllers (MACs) without necessitating any dedicated
infrastructure, thus substantially simplifying the deployment
to existing programmable logic controllers (PLCs) and other
embedded devices. Peripherals, on the other hand, comprise
two fundamental components: a standard Ethernet PHY and
a dedicated, special MAC capable of handling the uncommon
chain topology, configured at the hardware level for the target
application and typically realized using a field-programmable
gate array (FPGA) device [4], [19].
A peculiarity of the proposed architecture is that the PHYs

of the peripheral devices use unidirectional communication
towards the PHYs of the adjacent devices along the chain.
Unlike the classic topology of modern Ethernet networks
wherein each PHY is connected to a counterpart through
both receive and transmit signals, in the REDBUS topology,
only one signal pair is wired from one PHY to the next:
the signal emitted by the transmit port of one device enters
the receive port of the next device, and so on, until a ring
including the controller itself is formed [4], [19]. In other

VOLUME 12, 2024 120275

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 3. Comparison between the REDBUS and standard
IEEE802.3 Media Access Controller (MAC) internal architectures.

words, as shown in Fig. 1a, according to this particular
interconnection scheme, the head of the chain of peripherals
will have its receive port left open, while the tail of the
chain will have its transmit port left open. These two ports
are then connected to the controller and seen by the same
indistinguishably as if they represented a conventional point-
to-point link between two Ethernet PHYs and MACs. The
extended nature of the chain is effectively concealed.

As detailed below, compared with the existing industrial
Ethernet standards described above, the proposed archi-

FIGURE 4. Representative PHY RMII digital loopback timings derived
from RTL simulations.

tecture is logically simpler and, especially, features lower
latency. A European patent covers usage of the REDBUS
architecture in commercial products, however, unlimited
permission for use in realizing the system disclosed herein
towards academic research by not-for-profit institutions is
granted under all the terms of the GNU General Public
License version 3; besides, the underlying concepts are
universal and can be straightforwardly applied by anyone to
develop other architectures not subject of the patent [20].

B. MEDIA ACCESS CONTROLLER (MAC) DESIGN
The REDBUS MAC has an uncomplicated architecture
and can preferably be realized using register transfer level
(RTL) logic specified using the VHDL or Verilog languages
and integrated into FPGA or application-specific integrated
circuit (ASIC) components. Due to the peculiar nature of
the network topology, standard MACs are poorly suited for
implementing REDBUS peripheral connections [4], [19].
The REDBUS MAC is considerably simpler and has a
datapath architecture different from the standard Ethernet
MAC. As shown in Fig. 3a, its distinctive feature is the
presence of a FIFO and multiplexer (MUX) for rapid frame
forwarding with hardware-level on-the-fly data replacement,
connected to a processor interface feeding data extraction
and injection submodules. By contrast, the standard Ethernet
MAC, visible in Fig. 3b, being general-purpose, possesses
two independent media interfaces with entirely separate
buffering and clocking. Consequently, it is unable to perform
on-the-fly frame forwarding and data replacement which
need to be implemented at a higher level, resulting in longer
latency [4].

The primary task of the REDBUS peripheral MAC is
to repeat the Ethernet frame content received from the
physical receive channel to its transmit channel, passing it
on to the next device along the chain. Data can be received
by the MAC in groups of two or four bits, depending
on the type of connection with the Ethernet PHY; media-
independent interfaces (MII, four bits at a time), or reduced
MII interfaces (RMII, two bits at a time) are prevalently used.
The existing RTL implementation of the REDBUS MAC
comprises a total of ≈ 2000 lines of VHDL code, defining
9 entities. Behavioral-level simulation using the ModelSim
environment (Lattice FPGAEdition 2020.3,Mentor Graphics
Inc., Wilsonville OR) allows demonstrating that the bits are
forwarded by the PHYs nearly instantaneously, with the
typical latency introduced by each device being on the order
of 60 ns (interface clock at 50 MHz), as visible in Fig. 4.

The basis of the REDBUS protocol is that the data
contained within the Ethernet payload are divided into
predetermined and dedicated slots, each of which has a
target address, meaning a fixed device along the chain that
it is intended for. When each MAC intercepts a frame,
the bits flowing through it corresponding to its address
are instantaneously replaced with the data to be sent back
from the peripheral to the controller without introducing

120276 VOLUME 12, 2024

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 5. Example of REDBUS frame retransmission and multiplexer (MUX) selection.

FIGURE 6. Payload data organization into addressed slots. Each slot contains one byte for each device in the same address group. (a) Layout of the slots
within the payload. (b) REDBUS MAC SPI data exchange example involving the device with subaddress 7 within a group of eight devices per address.
In the first slot of eight bytes, each byte is assigned to a device.

any additional software-related latency. As the experiments
reported below demonstrate, a typical example involves a
motor interface peripheral receiving current set-points and
returning corresponding instantaneous current and voltage
readings.

Notably, the first peripheral device along the chain replaces
the source MAC coming from the controller with its
unique REDBUS MAC address (an internally defined magic
number), and, as the destination address, it inserts either
the one corresponding to the source MAC, or the broadcast
address, depending on a configuration setting. At the end
of the transmission, since some bytes in the Ethernet frame
have been changed, the frame check sequence (FCS) field is
replaced with the checksum computed on the fly during the
flow of data transit. Owing to this arrangement, the outgoing
Ethernet frame from the last device contains a destination
MAC address such that the controller that has sent or is still
transmitting the original frame, recognizes it as valid. The
mechanism is diagrammed in Fig. 5.

Depending on the application, a REDBUS MAC may be
realized and deployed as a stand-alone integrated circuit,
or combined with other functions. On the one hand, an FPGA
or ASIC can be interfaced directly with external analog-to-
digital and digital-to-analog (ADC, DAC) converters or logic

signals. On the other hand, real-time communication with a
microcontroller, microprocessor, or other target device can be
conveniently attained through a synchronous serial interface
(SSI or SPI) [11], [21]. A minimalist implementation of
the MAC is based on external data exchange using an
SPI-type interface and can be, for instance, deployed in
the smallest MACHXO2 type FPGA (Lattice Semiconductor
Inc., Portland OR, USA), resulting in an occupancy of
194 registers, 125 slices and 248 look-up tables (LUT4) [22].

C. PHYSICAL LAYER (PHY) INTERFACE AND LATENCY
Interfacing between a REDBUS MAC and an Ethernet PHY
can be accomplished through any of the specialized interfaces
specified by the IEEE802.3 standard and its updates [4].
However, it should be borne in mind that the nature of the
topology is suitable for realization using 100BASE-T media
and its variants [19] but not, for example, using 1000BASE-T,
since the presence of two fully separate transmit and receive
twisted pairs is a fundamental prerequisite. For this reason,
only implementations based on the MII and RMII local
interfaces can be considered.

The MII interface provisions two separate clocks for
transmission and reception. The data stream received by the
PHY originates from an external clock domain, which the

VOLUME 12, 2024 120277

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 7. RTL-level behavioral simulation of an Ethernet frame flowing
through 16 cascaded devices, assuming type KSZ8081 physical layers (see
Table 2). The CRS_DV signals, output by the PHY devices and asserted in
the presence of valid Ethernet frames, and the SPI_SCLK signals, namely
the clocks synchronous with the data sent through SPI, are shown. In this
example, three bytes are exchanged per device.

PHY reconstructs from the carrier signal and provides to
the MAC. On the other hand, the local application clock of
the MAC is used for transmission. By contrast, the RMII
interface uses the same clock to provide received data to
the MAC and transmit data from the MAC so that all
signals between the PHY and MAC are synchronous in a
unified clock domain. This requires the PHY to include a
dedicated FIFO buffer to absorb small frequency differences
and jitter between the remote and local clock domains,
which introduces some latency. Following initial analyses
about the typical requirements for motor control, in the
current REDBUS implementation, the RMII interface was
chosen to minimize logic occupancy at the expense of a
slightly higher latency [23], [24]. Future work will include
transitioning fully to the MII interface while implementing
dynamic clock-shifting techniques within the MAC to
ensure that timing requirements are met while avoiding the
additional latency associated with a FIFO buffer. Mainstream
implementations of Ethernet connectivity do not place as
much emphasis on latency as REDBUS, therefore, this
approach to latency minimization remains to be developed.

To date, a wide variety of off-the-shelf PHY devices with
RMII interfaces are available on the market. While largely

functionally equivalent, as detailed in Table 1, these devices
feature substantial variation in latency performance, stem-
ming from internal circuit architectural and manufacturing
process differences. For instance, the PHY type TLK105
provides a balanced latency < 180 ns in both directions,
whereas the type TJA1100 may incur almost an order of
magnitude longer delay in data propagation. It follows that,
for applications such as REDBUS, careful analysis of PHY
timings is necessary to drive optimal decisions.

TABLE 1. Manufacturer-declared latencies of representative commercial
PHY devices equipped with the RMII interface. The MDI to RMII value
denotes the latency between the analog signal on the media-dependent
(MDI) input and the first edge of the RMII clock accompanied by the
assertion of the RX_DV signal. Vice-versa for the transmitter. The
parameters reported with the same value in the min and max
columns must be understood as typical. Devices without known
parameters were omitted.

D. REDBUS TO SYNCHRONOUS SERIAL CONVERTER
This subsection describes some design considerations con-
cerning the realization of a complete bridge between
REDBUS and a synchronous serial interface such as SPI.
It should, at first, be noted that except for multi-lane versions
geared at some specific applications, serial interfaces such
as SPI have significantly lower data transfer rates compared
to the Ethernet interface, on the order of 10 Mbps vs. 100
Mbps [21]. As the REDBUS protocol was conceived to
interconnect a plurality of devices, it is nevertheless possible
and appropriate to group data belonging to several peripherals
into each Ethernet frame. In other words, device-specific data
can be exchanged with the external processor or other devices
at a lower speed, while at the same time, information destined
for other devices travels in the sameEthernet frame at a higher
speed.

Using a prescaler, the raw Ethernet data bitrate
of 100 Mbps can be divided to reduce the serialization
clock on the synchronous serial interface. For instance,
three suitable different division factors are 32, 16, and 8,
which yield endpoint bitrates of 3.125 Mbps, 6.25 Mbps,
and 12.5 Mbps. Let us consider the lowest bitrate: while
data is serialized at a rate 32 times lower, the Ethernet data
continues to advance through each MAC device. As long
as the data in the Ethernet frame payload are organized so
that each byte becomes available as soon as the previous
one has completed the serialization on the SPI interface, it is
easy to understand that the various bytes of data must be
spaced by at least 32 bytes. Since the Ethernet payload is
intended to carry data for multiple devices, the required bytes

120278 VOLUME 12, 2024

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 8. Key performance figures. bf(a) Minimum achievable cycle times at a bandwidth of 100 Mbps for EtherCAT, PROFINET IRT, and REDBUS
(assuming PHY type DP83826I, as per Table 1) on a chain network with 16 bytes payload per device, as a function of the number of devices. (b) Frame
rate vs. payload size for different numbers of peripheral devices in the loop.

FIGURE 9. Representative implementation of a system for synchronously controlling multiple stepper motors. (a) Block diagram of the motor driver board.
The REDBUS MAC is implemented within an FPGA, attached to the Ethernet PHY via the RMII interface, and to the host microcontroller by means of I2C
and SPI interfaces, respectively, for configuration and data exchange. (b) Block diagram of a controller board arranged to control 32 stepper motor drivers.

of minimum spacing can be filled with data intended for
other devices. Assuming, without loss of generality, to have
exactly 32 REDBUS devices connected in the chain, the data
in the payload will be organized as represented in Table 2.
While the first device is serializing the data, the following
devices can begin serialization almost simultaneously. The
Ethernet flow that travels through a device is affected by a
propagation delay, therefore, additional improvements in the
overall serialization latency could be obtained by inverting
the device data order (not shown).

Considering the data in Table 2, each row represents a slot,
and each slot is characterized by a header that defines the
properties of the slot. One important property is the address.
In the Ethernet-to-SPI MAC, each slot contains one byte for
each of the destination devices. The slot has a single-address

TABLE 2. Data arrangement in the Ethernet frame payload for
serialization towards an SPI interface. Each row in the table is
inserted into the payload in succession after the previous one.

property, so each device whose data is included should have
the same address. For this reason, the Ethernet-to-SPI MAC
is provided with both address and sub-address properties.
The sub-address range depends on the clock division ratio
of the SPI: if divided by 32, then the sub-address will range
from 0 to 31, if divided by 8, the sub-address will range
from 0 to 7. Depending on the serial port clock rate, the device

VOLUME 12, 2024 120279

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 10. Hardware verification system comprising 32 driver boards, each connected to a stepper motor. The interlocking propellers successfully
rotate synchronously at 5500 RPM under real-time open-loop control via REDBUS.

FIGURE 11. Experimentally-measured round-trip latency of 32.6 µs
between the transmission of the Ethernet frame by the controller (yellow
trace rising edge) and its reception back by the same (cyan). Magenta
traces (top to bottom): RMII data available and SPI clock on the driver
boards number 1, 2, and 32.

chain will comprise multiple device groups, each owning the
same address and an incremental sub-address. The address
field is an 8-bit value, with the values 0 and 255 considered
reserved. The group size determines the overall number of
devices addressable, as reported in Table 3.

Fig. 6a shows an example of data organization for
12.5 MHz serialization over eight devices, and Fig. 6b
illustrates the data exchange mechanism for the device with
address 1 and sub-address 7. The MAC collects the two-bit
pairs incoming from the PHY device signals RXD1 and RXD0
until a full byte has been received. Next, the MAC starts
to serialize each bit of the received byte on the SPI port,
connected to an external processor.

TABLE 3. Number of addressable devices, data size, and sub-address size
versus SPI clock frequency.

The SPI interface provides a bidirectional method to
exchange data. On each rising edge of the SPI clock, the
MAC outputs a bit to an external processor and receives
another from it. After serializing the byte from the Ethernet
payload, a byte from the processor becomes available to the
MAC. This byte, highlighted in green in Fig. 6b, is placed
into the next available slot of the transmitted Ethernet frame.
Each byte in the received frame is substituted with the data
coming from the external processor. It should be noted that
the first byte cannot be replaced by data coming from SPI
because the serialization is not yet complete. Consequently,
a MAC status byte is instead inserted as the first byte, and
the reply is shorter by one byte compared to the received data
length.

The response data provided by the first device enters the
second device and is repeated without modification, then
enters the third device and is repeated without modification,
and so on, until the last device sends it to the controller that
initiated the communication. In this way, each device ‘‘fills’’
its boxes by replacing (overwriting) the original content, and
the collected data returns to the main processor after having
traveled through all the devices along the chain. A timing
diagram example of data exchange through 16 devices is
visible in Fig. 7.

120280 VOLUME 12, 2024

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 12. Representative current recordings from the stepper motor experiment. (a) Real-time current for all 32 motors, captured after fast rotation
direction reversal. In the Ia plot, all the currents present the same phase. In the Ib plot, the currents have a phase shift of 180◦ depending on the motor
direction (odd-numbered motors: counter-clockwise, even-numbered motors: clockwise). (b) Overlapping waveforms confirm the excellent phase
synchronization level between the digitized winding currents and read back from nodes.

E. TIMING COMPARISON WITH EtherCAT AND PROFINET
IRT
In this section, the timing performance and scalability of
REDBUS and two other standards built upon IEEE802.3 Eth-
ernet, namely EtherCAT and PROFINET IRT, are compared
according to the following simplifier model, adapted from
Ref. [7]. It must be underlined that there are profound
functional differences, because REDBUS is, by design,
devoid of the abstraction, security, scalability, diagnostics,
and versatility provided by the other two standards. The
comparison of timings, therefore, has a practical value
only with reference to scenarios where both REDBUS and
the other preexisting standards could be used, such as
predesigned equipment that only requires sensor and actuator
remotization, without the other high-level features required
for factory-level integration.

The attainable cycle time tcycle was expressed as

tcycle = toverhead + tpayload + tpropagation, (1)

where toverhead denotes the overhead time for transmitting the
required number of Ethernet frames, tpayload represents the
actual payload transmission time, and tpropagation is the time
necessary for the Ethernet frames to propagate through all the
devices on the bus.

Assuming that each device requires a fixed amount of
actuation and sensing data dnode to be carried, the total
payload size in bytes dpayload was calculated as

dpayload = nnodesdnode. (2)

Consequently, the required number of Ethernet frames nframes
was obtained as

nframes = ⌈dpayload/dmax⌉, (3)

where dmax denotes the maximum number of payload bytes
per Ethernet frame according to each standard. In turn,

toverhead = nframestframe, (4)

where tframe denotes the minimum time required to send a
frame, given by

tframe = dfixedtbyte, (5)

where dfixed is the fixed number of bytes, comprising the
preamble, header, and check fields of all encapsulation layers,
as well as the inter-frame gap, and tbyte is the time needed to
transmit a byte. Similarly, for the payload,

tpayload = dpayloadtbyte. (6)

Finally, the time necessary for the Ethernet frames to
propagate through all the devices was given by

tpropagation = nnodestforward, (7)

where tforward denotes the time needed for a node to receive,
process and forward an Ethernet frame (determined, among
other factors, by FIFO buffers, firmware processing, etc.). For
clarity, this parameter could be further decomposed as

tforward = tPHY + telectrical + tinternal, (8)

where tPHY denotes the maximum latency introduced by the
Ethernet PHY in use (Tx+Rx time), telectrical represents the
electrical propagation time (group delay of the channel), and

VOLUME 12, 2024 120281

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 13. Control schemes and their possible mapping over multiple
REDBUS nodes. (a) A typical brushless motor driver based on
field-oriented control (FOC). (b) A set of PI controllers used for FOC are
executed in the main controller processor. The driving vectors output data
Vd and Vq are organized inside the Ethernet frame and sent to the driver
device. The current values Id and Iq and the encoder data θ and ω are
returned back after the frame has passed through the driver and encoder
devices. (c) The inverter device receives real-time data from the REDBUS
node and returns back information about position, speed, and winding
currents. See text for description. ENC: Encoder. PMSM: Permanent
Magnet Synchronous Motor.

tinternal represents the internal latency due to buffering and
processing.

To compare the three standards, the attainable cycle time
tcycle was charted as a function of the number of nodes
on the bus nnodes, assuming the appropriate constant values
according to the specifications of each standard [7].

Across the three standards, the fixed amount of actuation
and sensing data per node was set to dnode = 16 byte, the
time needed to transmit a byte was assumed to be tbyte =

80 ns according to 100BASE-T signaling, and the electrical
propagation time was taken as telectrical = 10 ns. Following
the differences in implementation indicated above and Ref.
[7], the maximum latency introduced by the Ethernet PHY
was assumed to be tPHY = 960 ns for EtherCAT and
PROFINET IRT, and tPHY = 370 ns for REDBUS. The
internal forwarding latency was taken as tinternal = 80 ns
for EtherCAT and tinternal = 60 ns for PROFINET IRT and
REDBUS. Based on these parameters alone, it could be seen
that the node forwarding time was considerably larger for
EtherCAT and PROFINET IRT, namely, tforward = 1 µs, than
for REDBUS, namely, tforward = 0.44 µs.
Due to the different packet formatting, the maximum

number of payload bytes per Ethernet framewas considerably
larger for EtherCAT and REDBUS, respectively dmax =

1488 byte and dmax = 1500 byte, than PROFINET IRT,
namely dmax = 16 byte. The fixed number of bytes per
frame was, in order, dfixed = 50 byte, dfixed = 38 byte and
dfixed = 55 byte.
Fig. 8a provides a comparison between the cycle times

characteristics of REDBUS, EtherCAT, and PROFINET IRT.
It can be seen that the cycle time scales considerably
more favorably for REDBUS than for both EtherCAT and
PROFINET IRT, owing to both the higher payload-carrying
capability and lower forwarding latency. The frame rate
across various application scenarios, namely, the number of
peripheral nodes, has also been charted in Fig. 8b.

As revealed by these figures, from an architectural
and performance perspective, EtherCAT and REDBUS are
considerably more similar to each other than PROFINET
IRT. Both operate at the data link level of Ethernet frames
without requiring higher stack layers, and both are grounded
on inserting (or replacing) process data on the fly. The

FIGURE 14. Experimental setup for testing the brushless DC (BLDC) motor
control system. Left: controller board, Center: motor and driver board
attached to it, Right: encoder board. Green/white twisted pair: controller
to driver board, blue/white pair: driver to encoder board, orange/white
pair: encoder board back to controller.

120282 VOLUME 12, 2024

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

fundamental difference is the topology, since EtherCAT also
supports line, tree, and star networks, with a pass-through
approach that is compliant with the standard wiring of
IEEE802.3 Ethernet connections, thus necessitating two
PHYs per node, whereas the key notion behind REDBUS is
that of rewiring the nodes into a ring, reducing the number of
PHYs per node to one [5], [7], [8], [14], [15]. REDBUS thus
reduces the latency at the price of flexibility. Furthermore,
it is devoid of the higher-level standardization layers offered
by EtherCAT, thus only being suitable for ad-hoc applications
and not multi-vendor integration. PROFINET, including
PROFINET RT and IRT, is substantially different in that
it operates at the application layer of the OSI stack and
is, therefore, built upon TCP and UDP packet protocols.
It thus incurs a considerably higher level of software
complexity and latency while having important advantages in
terms of integration with other and preexisting information
technology systems [6], [7]. It should also be noted that
EtherCAT can leverage TSN extensions and, therefore,
deliver excellent timing performance. At the same time,
interconnections are realized using switches instead of point-
to-point, and PROFINET, too, can be implemented over
TSN networks [9], [13], [18]. Moreover, both EtherCAT
and PROFINET networks can be created using 1000BASE-T
hardware, whereas the atypical daisy-chaining of the twisted
pairs confines REDBUS to 100BASE-T. Overall, the three
standards have different and complementary profiles in terms
of performance and complexity [4], [19].

It is also essential to remember the fundamental difference
between EtherCAT, PROFINET, and REDBUS: while the
former two can share the same physical network as other
Ethernet protocols, the latter cannot. One of the defining
features of modern industrial Ethernet standards is the
ability to deliver consistent timing performance while
coexisting with other non-time-sensitive protocols. Due to the
interconnection topology, this is inherently impossible with
REDBUS, and its timing performance, therefore, exclusively
depends on hardware factors.

III. EXPERIMENTAL CONFIRMATION
A. OPEN-LOOP DRIVING A STEPPER MOTOR ENSEMBLE
Owing to its highly deterministic nature, minimal overhead,
and suitability for hardware-level peripheral implementation,
REDBUS is well-adapted for applications in remote motor
control, wherein a central processor calculates in real-time
the currents through a multitude of motors in tight synchrony.
To demonstrate these applications, as shown in Fig. 9a,
a dedicated peripheral board was designed, including a
Cortex-M3 microcontroller (type STM32F301K, 72 MHz
clock; STMicroelectronics SpA, Agrate Brianza, Italy) also
implementing pulse-width modulation (PWM) signal gener-
ation and current readout, an FPGA (type LCMXO2-256HC-
4; Lattice Semiconductor Inc., Hillsboro OR) realizing the
REDBUSMAC and interfaced via SPI to the microcontroller,
a standard Ethernet PHY (type KSZ8081RNB; Microchip

Technology Inc., Chandler AZ), and bridge driver (type
L6206Q; STMicroelectronics SpA) connected to power
MOSFETs capable of handling up to 3 A of winding current.

As visible in Fig. 10, a mechanical assembly presenting
particularly severe synchronization challenges was purpos-
edly designed in the form of a 4 × 8 array of actuators,
each one comprising a stepper motor directly attached to a
propeller-like blade. In the past, arrangements of this kind
were considered for naval propulsion. However, they were
rapidly abandoned due to the catastrophic consequences of
even transient loss of synchronization between the propeller
blades [31]. The motors (type 16HS0014; Shanghai Moons
Electric Co. Ltd., China) had 50 magnetic pole pairs,
measured 39 × 39 × 26 mm, were rated for 0.65 A and 5 V,
and had a step angle of 1.8◦. The array pitch was 50×68 mm,
and the blade length was 74 mm, consequently achieving a
tight interlock that allowed a maximum angle error on the
order of ±20◦. The 3D blade design files are provided as
Supplementary Material. Due to the interlocking design, any
deviation from perfect synchronization results in a domino
effect of collisions, readily appreciable to the operator. The
corresponding interconnection topology, shown in Fig. 9b,
involved the frame traveling through all the actuators, each
motor being provisioned with a fully separate driver board
in the form of a REDBUS peripheral, physically attached
behind it.

The data were distributed to the 32 driver boards through
a single Ethernet frame. Each node replicated the incoming
frame while replacing the position information content
with the real-time measures of winding currents and other
diagnostic information. The overall size of the data for each
driver board was 18 bytes. More specifically, the controller
sent to each driver board 2 bytes encoding real-time com-
mands, 2 bytes encoding non-real-time commands, 4 bytes
representing the angle increment 1θ , and 2 bytes of CRC
code. Each driver board returned 1 byte for identification,
1 byte for a tick counter, 2+2 bytes representing the absolute
angle θ used for sine-cosine generation and its estimation
based on the currents, plus 2 bytes for the modulus of each of
the currents Id and Iq based on the estimated angle, alongside
the voltages Vd and Vq, followed by a 2 bytes CRC code, and
2 bytes padding. Following the arrangement scheme detailed
in Section II-D, each byte was carried in a slot having a
size of 32 bytes (one per peripheral node) plus a header of
2 bytes. To the resulting 612 bytes, a debug field of 10 bytes,
26 bytes for the preamble and check field, and 2 bytes padding
had to be added, bringing the total to 650 bytes. The entire
frame consequently took 52 µs to be transferred. Each driver
board and the PHY of the controller itself introduced about
≈ 1 µs of delay, so the frame started to be received back
after ≈ 30 µs.

The speed at which data were interchanged between the
controller and peripherals made it possible to minimize
the amount of computation taking place on the driver
boards. To exemplify the level of centralization that can be
attained using REDBUS, the calculation of position data

VOLUME 12, 2024 120283

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 15. Timing diagrams of the data exchange and processor tasks. The RMII signals TX_EN and CRS_DV are, respectively, asserted high during
transmission and reception of an Ethernet frame by the PHY.

and motion trajectories for all 32 motors was therefore
carried out centrally by a single Cortex-M7 processor
(type STM32H723Z, 550 MHz clock; STMicroelectronics
SpA). Importantly, the controller does not require any
specific hardware for managing the REDBUS network;
consequently, it was possible to employ an off-the-shelf
processor evaluation board containing a standard Ethernet
MAC and PHY.

On the controller board, a custom firmware developed
under the FreeRTOS operating system (v. 10.2.1) was run,
and a hardware timer triggered the generation of an Ethernet
frame every 100 µs, with jitter on the order of 10 ns. On the
peripheral boards, a custom firmware peripheral ran directly
on the hardware without an operating system.

To achieve adequate synchronization among the 32 motors
and avoid propeller collisions, it turned out to be necessary
to individually synchronize their PWM cycles so that
each new position would be processed after each PWM
cycle in a fully synchronous manner over all the devices.
The average deviation due to the propagation delays was
negligible compared to the cycle period, which was fixed
at a frequency of 20 kHz, corresponding to 50 µs. The
driver board firmware compared the precise time of the
start of reception of the Ethernet frames to a local counter
register used for PWM signal generation, and, for each frame,
the value of this register was adjusted to ensure continued
synchronization. In this way, all driver boards could generate
PWM signals at a frequency exactly in unison with all the
others. The position information was fed into the Ethernet
frame so that all the positions of the 32 motors would
be contained within a single frame and updated exactly
every two PWM cycles synchronously over all the driver
boards.

This experiment, devoid of closed-loop control, was
designed primarily to allow measuring, under realistic
circumstances, the propagation latencies of the Ethernet
data frame along a large chain of peripherals. The data
exchange between the MAC and the processor occurred
almost simultaneously over all the peripherals, the time lag
between one device and the next being consistently < 1 µs,
as visible in Fig. 11. The setup could be operated at up
to 5500 RPM, limited by the stepper motor electromechanical
characteristics, without any collision or mechanical conflicts
ever being observed, even after several hours of continuous
rotation.

During each PWM cycle, each driver board measured
the current through the motor windings, and the collected
measurements were fed back into the Ethernet frame
overwriting the received position information, and then
sent to the controller board, which was used to implement
continuous logging. An excellent level of synchronization
stability could be appreciated among the measured currents:
in Fig. 12a, they appeared superimposed to the point of being
essentially indistinguishable from a single signal, whereas in
Fig. 12b, magnifying a very short time interval, they could
be distinguished. A quantitative analysis of the level of phase
synchronization is given below, and a video recording of the
experiment is provided as Supplementary Material.

B. FIELD-ORIENTED CONTROL
To further demonstrate the capabilities of REDBUS in a
more complex scenario wherein the feedback information is
used in real-time, we next considered the closed-loop control
of a brushless DC (BLDC) motor. Typically, field-oriented
control (FOC) of these motors requires the usage of multiple
calculations to maintain the vectors of the driving currents

120284 VOLUME 12, 2024

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

in quadrature against the magnetic flux of the rotor. For
example, a proportional-integral (PI)-based approach may
be used to estimate the driving current and, from it, the
torque to maintain the motor at a given speed set-point.
The driving current Iq derived from the first PI controller,
is then compared to the calculated Iqm, derived from a set
of winding current measures, to generate the driving voltage
vector module Vq. The Iqm value is derived from the two
Clarke and Park calculations. Another PI is used to determine
the Vd voltage vector modulus, comparing the calculated Id
from the measurements. The two voltage vector modules
are transformed to modulation pulses with another set of
calculations [23], [24], [32], [33], [34]. A block diagram
implementing this algorithm is visible in Fig. 13a.

FIGURE 16. Spin-up of the stepper motor driven with field-oriented
control (FOC).

The maximum cycle time acceptable for FOC algorithms
depends on the modulation frequency of the inverter. Here,
the same setting as above, namely 20 kHz, was maintained.
The control calculations were distributed over several proces-
sors interconnected via a REDBUS network and controlled
by a single unit to demonstrate the possibility of dividing
the workload of algorithmic composition. Namely, the FOC
block algorithm represented in Fig. 13a was split into two
main blocks, the first, visible in Fig. 13b executed on the
controller side, while the drive and sense portions of the
second block were executed over two peripheral devices,
visible in Fig. 13c.

The same Cortex-M7 processor indicated above was
used to realize the controller and implement in fixed-point
arithmetic the PI controllers determining the Vd, Vq, and
Iq vector modules for up to eight motors. The control data
were exchanged every 50 µs, corresponding to one period
used in the modulation PWM by the inverters that drive the
motors, as opposed to two periods in the previous section.

FIGURE 17. Sudden rotation direction reversal for the stepper motor
driven with field-oriented control (FOC).

The driver boards were also the same as used in the previous
subsection. However, in this case, as visible in Fig. 14,
an additional board was used to interface an analog encoder
(type ADA4570; Analog Devices Inc., Norwood MA) based
on a magnetic ring and magnetoresistive sensors that convert
the magnetic field into analog sine-cosine signals. Excerpts
of the microcontroller source codes running on three nodes
are provided for reference as Supplementary Materials.

FIGURE 18. Winding currents, shown after applying the Clarke transform,
immediately following direction reversal of the brushless DC (BLDC)
motor and during spin-up to 4000 RPM.

The motor driver board received from the controller the
Vd, Vq driving parameters, and the θ angle, derived from the

VOLUME 12, 2024 120285

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

tracking filter running on the encoder board, such that the
subsequent PWM cycle would be updated based on the new
values of these parameters. The driver board returned to the
controller the Id and Iq currents after computing the Clarke
and Park transforms to convert the three measured stationary
currents into two orthogonal vectors in the rotating reference
frame. In turn, the encoder board received the commanding
current Iq, which was used by the tracking filter to predict
the next position, corrected by the measured angle θ . The
filtered angle θ and the angular speed ω were sent back to
the controller. The data from the driver board and the encoder
board were used by the PI controllers running in the controller
to compute the subsequent values of Vd and Vq. The task
timing diagrams are shown in Fig. 15.
To demonstrate the versatility of this control approach and

its robustness in the implementation based on REDBUS,
two types of motors were driven: the same stepper motor
described above, used as a brushless motor with 50 magnetic
pole pairs, and an actual brushless motor having 4 pairs
of magnetic poles. These two types of permanent magnet
synchronous motors are structurally similar, and stepper
motors are, in effect, specialized brushless motors. They can
be controlled either in an open or closed loop. A typical
stepper motor presents 50 magnetic pole pairs, and each pole
has an angle of 7.2 degrees. Using a magnetic ring with the
same number of radial poles, measuring the flux angle for
each ‘‘step’’ of the motor is possible. Here, a special magnet
with radial poles was been used to measure the flux angle.
The magnet was directly clamped onto the motor shaft. The
number of poles was the same as the poles of the motor so
that the magnetic flux angle of the rotor could be precisely
measured.

The FOC scheme used was conceptually the same.
By measuring the magnetic flux angle of the rotor, it aimed to
constantly keep the winding current vector 90 degrees ahead
of the magnetic flux vector, maximizing the output torque
in this way. The brushless motor had three phases and was
controlled using space-vector-modulation, which generated
three driving signals directly from Vα and Vβ . Two-phase
stepper motors can be controlled in a similar mode, with the
exception that the Clarke transform is not needed, as the Ia
and Ib measure are already orthogonal, thus they coincide
with Iα and Iβ. Moreover, the Vα and Vβ values are used
directly to modulate the two PWM signals for the two phases
without the need for space-vector-modulation. The current
measures were taken by the driver board and sent to the
controller, as said, every 50 µs.

The encoder board inserted the magnetic flux angle
measure within each Ethernet frame. It furthermore provided
a speed value based on a tracking filter that estimated the
angle based on the driving Iq current and corrected it with
the measured one. For controlling the stepper motor, the PI
coefficients were Kp = 8 and Ki = 0.2 for Vd and Vq, and
Kp = 0.007 and Ki = 0.00001 for the speed.
When changing the target speed from 0 to a positive value,

the PI reacted quickly, with Iq growing almost instantly,

as visible in Fig. 16. As could be seen, the PIs of the
FOC algorithm successfully processed the Vd and Vq driving
voltages so as to keep Id to a null value and Iq to the
target value. The motor torque had the maximum efficiency,
and the target speed was reached in ≈ 0.02 s, implying an
acceleration of ≈ 19000 RPM/s. When the target speed was
instantaneously inverted in sign, as shown in Fig. 17, the
system immediately reacted, and in a very short time, the
motor reversed its rotating direction and reached the new
target speed with minimal overshoot. A high Iq value was
used for braking the rotating load and quickly reaching the
new target value. The motor took ≈ 23.5 ms to reverse
direction, implying an acceleration of about≈ 34100 RPM/s.

The brushless motor (type QBL4208-41-04-006; Trinamic
AG, Hamburg, Germany) had 4 magnetic pole pairs,
3 phases, and was rated for 1.8 A and 24 V, maximum
speed 4000 RPM. It was driven following the same scheme,
however, replacing the ring with one containing 4 poles as
the motor itself. For this experiment, the PI coefficients were
Kp = 0.3 and Ki = 0.012 for Vd and Vq, and Kp = 0.4 and
Ki = 0.0005 for the speed. The stability of the currents
is shown in Fig. 18 at the nominal spinning rate. Stable
operation could be attained up to twice this rate.

C. LEVEL OF TIMING DETERMINISM
To confirm the level of determinism attained in these realistic
experimental scenarios, some oscilloscope measurements
were taken on the test systems visible in Fig. 10 and Fig. 14.
The frame synchronization signals were probed on the one
side, at the PHY of the controller (type LAN8742A, Ref.
[35]) and on the other side, at the PHY of a selected
peripheral (type KSZ8081RNB, Ref. [36]). As reported in
Table 4, the propagation latency between adjacent devices
was consistently under 1µs and, accordingly, the turn-around
time over the 32 peripherals was ≈ 32 µs. Corresponding
representative waveforms are shown in Fig. 11 and Fig. 19.
As discussed above, given the low-level nature of REDBUS,
all timings are predetermined by design, there are no load
fluctuations possible nor external influences by other traffic,
so the amount of jitter is purely determined by hardware
factors, primarily the PHY performance as exemplified in
Table 4. Due to the daisy-chaining architecture, jitter scales
summatively with the number of nodes on the bus.

TABLE 4. Experimentally measured latencies between PHY devices,
representing the time-delay from the RMII_TXEN signal rising edge on
the source PHY to the RMII_CRS/DV rising edge on a target PHY. The
‘‘span’’ column represents the number of peripherals between
source and destination.

Further confirmation of the attained level of timing
stability was obtained by analyzing the raw motor current

120286 VOLUME 12, 2024

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

FIGURE 19. Jitter measurement in the REDBUS interconnection topology.
Infinite-persistence capture, triggered on the transmission of the frame
by the controller, depicting the fluctuation in the arrival time of the same.
After traversing all 32 devices, the accumulated jitter is ≈ 0.4 µs.

waveforms, as directly sampled by the analog-to-digital
converters and returned in the Ethernet frames. In particular,
phase synchronization, a measure commonly used for
analyzing the temporal dynamics of non-linear systems, was
calculated. After removal of the average, each current Ik (t),
with k = 1 . . .N where N is the number of signals, was
turned into the corresponding analytic signal with

ψk (t) = Ik (t) + jĨk (t) = Ak (t)ejθk (t), (9)

where j =
√

−1, ũ(t) denotes the Hilbert transform of u(t)

ũ(t) =
1
π
p.v.

[∫
∞

−∞

u(τ)
t − τ

dτ
]
, (10)

with p.v. signifying the Cauchy principal value of the
integral, and Ak (t) and θk (t) denote, finally, the instantaneous
amplitude and phase. As detailed in Ref. [37], from the
latter, the phase synchronization value, ranging between 0 for
complete asynchrony to 1 for perfect synchronization, can be
calculated between two signals i and k , with

ri,k = |⟨ej(θi−θk)⟩t |. (11)

For the experiment involving the ensemble of N =

32 stepper motors driven in an open loop configuration, the
instantaneous phase θk (t) was calculated for each motor,
and a 32 × 32 matrix R of phase synchronization values
was obtained. Excluding the diagonal elements, the average
and standard deviation were, respectively, 0.991 and 0.007,
while the minimum was 0.964. For the experiments with
field-oriented control, the r value was calculated only once,
between the A and B phase currents of the motor. The
corresponding phase synchronization values were 0.993 and
0.989, confirming a near-perfect entrainment attained and
maintained over the Ethernet-based control medium.

D. COMPARISON TO CONVENTIONAL ARCHITECTURE
Finally, an additional experiment was performed to provide
a representative baseline of the performance of standard
IEEE802.3 Ethernet under the same situation. It involved
one controller exchanging frames with 8 peripheral nodes,
not according to the REDBUS daisy-chain configuration
but to the standard star-based physical interconnection
architecture according to the 100BASE-T specifications,
as visible in Fig. 1b. The same hardware (type STM32H723Z
Cortex-M7 processor with PHY type LAN8742A) was
retained for all the devices (controller and peripherals),
and a high-end 1000BASE-T capable switch (type GO-
SW-16G; D-Link Corporation, Taipei) operating in store-
and-forward mode was selected. For this additional exper-
iment, only 8 peripheral nodes were used instead of
32, as in Section III-A (as detailed below, even with a
lower number of peripherals, the gap in performance was
well-evident).

To enable a fair comparison, the controller transmitted its
frame in broadcast mode simultaneously to all the peripheral
nodes in this experiment. The size of this frame was kept
equal to 650 bytes, that is, the same as in Section III-A.
Oscilloscope-based timing measurements of the frame syn-
chronization signals between the controller and the peripheral
nodes readily demonstrated that, as a consequence of its
internal architecture, the switch introduced a strikingly longer
lag compared to the propagation latency between adjacent
REDBUS devices. First, each frame had to be completely
received before it could be forwarded, incurring a delay
corresponding to its transmission time, in this case, ≈

52 µs. Second, an internal processing time of ≈ 10 µs
had to be added. Since these measurements pertained only
to the frame from the controller to the peripheral nodes,
which was broadcast to all, they were inherently unaffected
by the number of peripheral nodes actually present. The
resulting measured forwarding time,≈ 62µs, was, therefore,
drastically longer not only compared to the propagation
latency between adjacent REDBUS devices, namely < 1 µs,
but even compared to the entire REDBUS chain of 32 devices,
namely ≈ 32 µs.
Each peripheral node responded with the same amount of

payload data, namely 18 bytes, considered in Section III-A.
However, in this case, each response had to be encapsulated
individually: considering the requirement of a minimum pay-
load size of 64 bytes set by the IEEE802.3 standard and the
preamble and check field for a total of 26 bytes, this resulted
in a frame size of 90 bytes. Therefore, the total amount of data
returned to the controller, namely 720 bytes, was eventually
larger, even though only 8 instead of 32 peripheral nodes were
present. According to oscilloscope-based measurements of
the frame synchronization signals, the first response started
to be received by the controller on average after ≈ 139 µs,
denoting a latency over 4 times longer than that observed
using the REDBUS topology. The time lag until complete
reception of the response from all peripheral nodes, which
was ≈ 84 µs for REDBUS using 32 nodes, was elevated

VOLUME 12, 2024 120287

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

to ≈ 196 µs for 8 nodes, and would have been ≈ 367 µs
for 32 nodes.

Not less importantly, as shown in Fig. 20, the accumulated
jitter considering the time of starting to receive the first
response from the peripheral nodes was ≈ 2.9 µs, that
is, more than 7 times what was observed using the
REDBUS topology. Furthermore, the order of reception of
the peripheral node responses, albeit not fully random owing
to the internal arbitration system of the switch, exhibited
considerable stochasticity. For example, the first reply to be
received belonged 38%, 24%, 22%, 13%, 1%, 2%, <1%, and
<1% of the times to the peripheral nodes attached at ports
1 through 8, respectively.

Therefore, using the standard topology in Fig. 1b compared
to REDBUS as in Fig. 1a, resulting not only in considerably
worse overall timing performance but also in a severely
degraded level of determinism.

To date, store-and-forward Ethernet switching is vastly
predominant, owing to its advantages in terms of error
checking and prevention of error propagation, and the
majority of industrial Ethernet switches operate in this
mode (e.g., Ref. [38] for an example of a contemporary
high-end series of industrial Ethernet switches). However,
for completeness, it should be mentioned that cut-through
switching is also possible, whereby the switch initiates
frame forwarding immediately after receiving the destination
MAC address, thus drastically reducing the latency. Such a
mode, however, remains primarily confined to data centers
and high-performance computing systems and, owing to the
reliability issues, is not used in industrial scenarios [39], [40].
Other techniques to improve the forwarding performance,
such as frame preemption, are also available but rely
on specific TSN extensions of the IEEE802.1 standard
that, as discussed above, incur considerable additional

FIGURE 20. Jitter measurement in the standard IEEE802.3 Ethernet
star-based physical interconnection. Infinite-persistence capture,
triggered on the transmission of the frame by the controller, depicting the
fluctuation in the arrival time of the same. After traversing the switch
twice and one peripheral device, the accumulated jitter is ≈ 2.9 µs.

complexity [9], [18], [41]. For these reasons, the comparison
was conducted using a conventional switch representative of
current commercial and industrial devices, thus operating in
store-and-forward mode.

IV. DISCUSSION
This work has demonstrated the possibility of obtaining
compelling real-time remote control performance under a
minimalist configuration, whereby the drive and sense signals
are directly embedded in Ethernet frames, which flow
through a chain topology, closed by a controller device,
thus forming a ring. While the present experiments only
provide a proof of concept, the timing performance recorded
in realistic experiments on multi-axis and multi-sensor motor
control was, in principle, compatible with the requirements
of the most demanding scenarios encountered in the design
of industrial machinery and high-speed vehicles [11], [12].
At the same time, the implementation could be accom-
plished using low-cost, off-the-shelf hardware consisting of
broad-market Ethernet PHY integrated circuits alongside
some of the smallest FPGAs available commercially [9],
[22], [36]. These two aspects hallmark the key advantages of
the proposed architecture, which were further underlined by
experimental comparison with the performance of standard
IEEE802.3 star-based physical interconnection.

It appears, in particular, worthwhile to highlight three
aspects and consider their impact on scaling. First, when
using the standard IEEE802.3 topology, there is a timing
penalty with respect to REDBUS because the entire frame
must be received before it can start to be retransmitted. This
penalty scales linearly with the frame size. Second, in the case
of typical store-and-forward architectures, additional latency
is introduced by the internal buffering, resulting in a lag that
increases linearly with the number of switches that need to
be transversed. Third, each Ethernet frame requires a fixed
number of bytes as preamble and check fields and imposes
a minimum payload size, implying a data overhead that
increases with the number of peripheral devices, potentially
in a steep manner if the actual number of payload bytes to be
returned is small. Crucially, the REDBUS architecture avoids
all these three penalties since retransmission occurs on the
fly, no switches are required, and a single Ethernet frame,
in principle, carries the payload for all devices, thus sharing
the associated overhead and typically consuming all of the
minimum number of payload bytes.

It needs to be noted that the above comes at the price
of versatility since the architecture implies that the bus
timings are homogeneous across all nodes, as reflected in
the two experiments presented in this study. While the
presence of manifold sensors and actuators of the same
type is common within individual equipment, for example,
in multi-axis robots, the inability to handle heterogeneous
timing requirements underlines the differences between
REDBUS and proper fieldbus protocols such as EtherCAT
and PROFINET. In summary, the scalability profile of
REDBUS is primarily driven by the required frame rate

120288 VOLUME 12, 2024

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

and latency, which are straightforwardly determined by the
number of devices on the chain and the associated amount of
data. The jitter is dominated by hardware factors, each node
introducing a relatively fixed amount. Given its small entity,
jitter is likely to have less impact on most applications, but it
should also be considered when determining the maximum
number of nodes for a hypothetical application. Given the
low-level nature of REDBUS and its intended use, it appears
implausible that instances with more than a few tens of nodes
would be practically relevant.

The logical notion underlying REDBUS is closely related
to that of token-passing, which was the basis of media access
negotiation in some early generations of computer networks,
such as the IEEE 802.5 Token Ring and ANSI 3T9.5 Fiber
Distributed Data Interface (FDDI) standards [42], [43].
However, REDBUS realizes this scheme using contemporary,
widely available IEEE 802.3 Ethernet hardware, wired in
an atypical manner such that, instead of being distributed
through a switch, frames flow along a chain connection [4],
[19]. In this paper, it was shown that the media sensing and
other PHY-level features of this standard perfectly support
such an interconnection scheme, the only changes being
required at the MAC level to realize in an optimal way the
required interchange and addressing operations. Crucially,
the chain of peripherals appears to the controller as fully
indistinguishable from an individual device, hallmarking one
advantage of this scheme, that is, the possibility to attach the
chain to any network card based on a standard MAC.

Conceptually, it is worth noting that REDBUS and
EtherCAT, through inserting (or replacing) process data on
the fly at fixed locations in an Ethernet frame, essentially
implement a form of time-domain multiplexing, though the
timing of the frame generation is not isochronous. Time-
domain multiplexing, originally introduced in isochronous
telecommunications, of which synchronous optical networks
are an example, finds applications in countless standards and
contexts [44]. For instance, in the IEEE 802.15.4 wireless
standard, superframes are used as a means of efficiently
pacing the transmission of data from multiple sensors while
avoiding contention, and the aggregation of multiple frames
has been proposed as a means of increasing the throughput
for critical monitoring applications [45], [46]. In IEEE
802.3 Ethernet, the usage of jumbo frames to enhance
bandwidth efficiency is a possibility [4].
Unlike complex standards such as PROFINET and Ether-

CAT, and to a lesser extent also Modbus TCP, REDBUS
is entirely devoid of features related to device abstraction,
identification, interoperability, and security [5], [6]. As such,
and due to its topology, it is inherently unsuitable for use
as a large-scale fieldbus, and is not intended for such uses.
Rather than a disadvantage, this should be viewed as the dis-
tinguishing feature of this protocol, which is complementary
rather than adversarial to them. Owing to its architecture,
REDBUS has low flexibility and requires the entire system,
the related signals, and their encapsulation to be defined

a priori and embedded in the configuration of the MAC of
each peripheral. At the same, its complexity and cost of
implementation are drastically lower. For example, REDBUS
could be conveniently utilized as a processor bus extension
within a multi-board system, which is, in turn, attached to
the rest of an industrial network through a regular large-scale
field bus. It is noteworthy that the highly deterministic
timings together with the implementation simplicity of an
archaic network standard based on token passing, ARCNet,
running at 2.5 Mbps, support its continued popularity in
industrial automation, particularly in Japan [47].

From the standpoint of security, REDBUS, being a low-
level bus, is entirely devoid of authentication, encryption,
and trust management features. It should be noted that its
security profile has favorable aspects because, unlike other
Ethernet-based protocols, REDBUS at the basis prevents the
use of other Ethernet-based protocols, due to the atypical and
hardwired topology and the hardly predetermined payload
structure. Moreover, using a tailored MAC handling the data
formatting in hardware renders it impossible to attack the
processor by crafting malformed frames. As such, it appears
ill-suited as a means of propagating an attack. Insofar as
peripheral nodes are expected to be fully self-contained
microcontrollers or FPGAs devoid of other interconnection
means, the security of the REDBUS chains depends on the
integrity of the controller. Man-in-the-middle type attacks
with malicious on-the-fly data replacement are possible but
would require physical access and the addition of a node in
place with the equipment where the bus is installed. While
the data integrity profile appears comparable with other low-
level protocols, including mainstream implementations of
CAN, Modbus, and custom links over RS232 and RS485,
formal modeling of the security aspects is always necessary
for critical applications [48], [49].

Two fundamental aspects of any control system are safety
and reliability [11], [12], [50]. On the one hand, REDBUS
is a very low-level communication scheme and, therefore,
does not implement specific functional safety functions in
itself. On the other hand, it should be compared, at least at
the physical level, to existing standards in terms of reliability.
The chain/ring topology inherently introduces a vulnerability
since the failure of any node leads to the entire network
becoming inoperable.While star topologies aremore resilient
to node failure except for the hub, similar situations arise, for
example, in chains of EtherCAT devices. As indicated above,
REDBUS is inherently unsuitable for factory-floor integra-
tion level but primarily intended to integrate homogeneous
sensors and actuators within predesigned equipment. In most
such scenarios, failure of a single node, for example, loss of
control of one axis in a robot, inherently leads to machine
downtime. Therefore, the reliability penalty introduced by the
interconnection topology is limited. Moreover, while there is
no recovery mechanism in case a frame is lost, the fast update
rate inherently mitigates the consequences. In situations
where the probability of node failure or frame loss cannot

VOLUME 12, 2024 120289

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

be sufficiently lowered, two possible mitigation strategies
are available. One involves having an automatic shunting
mechanism directly shorting the transmit and receive pairs
to bypass a failed node, recalling what has been implemented
for other standards such as FDDI [51], [52]. Another requires
having two PHY devices per node so that direct connectivity
is established with both first and second neighbors along the
chain, analogously to dual-port EtherCAT nodes [5], [15].
In mission-critical applications, the reliability impact of the
interconnection topology needs to be formally modeled and
mitigated.

In summary, REDBUS offers properties and advantages
that are complementary to the existing Ethernet standards
currently in use in the industrial and associated fields.
The ease of its implementation also renders it well-suited
for control and sensing applications in the realization of
research equipment. More generally, the demonstration that
daisy-chaining Ethernet PHYs delivers highly deterministic
communication performance should inspire further research
and the development of new standards in this area.

ACKNOWLEDGMENT
The authors would like to thank Gianluca Mariani (Lattice
Semiconductor Srl, Assago, Italy) for helpful discussions
and Roberto Zinna (Elettroprogetti SAS, Rho, Italy) for
helpful discussions and assistance in hardware design and
realization. Parts of the architecture and code described
herein are covered by European patent EP2930896 and
its national filings and the Italian patent IT0001423488:
permission for use in realizing the system disclosed herein
toward academic research by not-for-profit institutions is
granted under all the terms of the GNU General Public
License version 3. Ludovico Minati contributed to this
work during the period from March 2020 to May 2023,
while intermittently collaborating with DVE Progettazione
Elettronica as an Independent Researcher and an External
Advisor and in part also collaborating with a subsidiary of
Lattice Semiconductor Inc.

REFERENCES
[1] P. Marshall and J. Rinaldi, Industrial Ethernet: How to Plan, Install

and Maintain TCP/IP Ethernet Networks, the Basic Reference Guide for
Automation and Process Control Engineers, 2nd ed., Pittsburgh PA, USA:
International Society of Automation, 2005.

[2] J.-D. Decotignie, ‘‘The many faces of industrial Ethernet [past and
present,’’ IEEE Ind. Electron. Mag., vol. 3, no. 1, pp. 8–19, Mar. 2009.

[3] J. A. Kay, R. A. Entzminger, and D. C. Mazur, ‘‘Industrial Ethernet-
overview and best practices,’’ in Proc. Conf. Rec. Annu. Pulp Paper Ind.
Tech. Conf., Jun. 2014, pp. 18–27.

[4] IEEE Standard for Ethernet, Standard 802.3-2022 (Revision of IEEE Std
802.3-2018), 2022, pp. 1–7025.

[5] D. Jansen and H. Buttner, ‘‘Real-time Ethernet: The EtherCAT solution,’’
Comput. Control Eng., vol. 15, no. 1, pp. 16–21, Feb. 2004.

[6] J. Jasperneite and J. Feld, ‘‘PROFINET: An integration platform for
heterogeneous industrial communication systems,’’ in Proc. IEEE Conf.
Emerg. Technol. Factory Autom., vol. 1, Catania, Italy, Sep. 2005,
pp. 815–822.

[7] G. Prytz, ‘‘A performance analysis of EtherCAT and PROFINET IRT,’’
in Proc. IEEE Int. Conf. Emerg. Technol. Factory Autom., Hamburg,
Germany, Sep. 2008, pp. 408–415.

[8] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino,
‘‘Evaluation of EtherCAT distributed clock performance,’’ IEEE Trans.
Ind. Informat., vol. 8, no. 1, pp. 20–29, Feb. 2012.

[9] Y. Seol, D. Hyeon, J. Min, M. Kim, and J. Paek, ‘‘Timely survey of time-
sensitive networking: Past and future directions,’’ IEEE Access, vol. 9,
pp. 142506–142527, 2021.

[10] Z. Satka, M. Ashjaei, H. Fotouhi, M. Daneshtalab, M. Sjödin, and
S. Mubeen, ‘‘A comprehensive systematic review of integration of time
sensitive networking and 5G communication,’’ J. Syst. Archit., vol. 138,
May 2023, Art. no. 102852.

[11] P. Marwedel, Embedded System Design: Foundations of Cyber-Physical
Systems, and the Internet of Things. Cham, Switzerland: Springer, 2021.

[12] M. Maggio, ‘‘Real-time implementation of control systems,’’ in Cyber-
Physical Systems: A Reference. Berlin, Germany: Springer, 2013.

[13] IEEE Standard for Local and Metropolitan Area Networks-Timing and
Synchronization for Time-Sensitive Applications, Standard 802.1AS-2020
(Revision of IEEE Std 802.1AS-2011, 2020, pp. 1–421.

[14] Microchip Technology Inc. EtherCAT Software Framework User’s
Guide (DS50003044A). Microchip Technol. Inc. Accessed: Aug. 16,
2024. [Online]. Available: https://ww1.microchip.com/downloads/en/
DeviceDoc/EtherCATSoftware-Framework-Users-Guide-50003044A.pdf

[15] Beckhoff Automation GmbH. Application Note ET9300 (EtherCAT
Slave Stack Code). [Online]. Available: https://download.beckhoff.
com/download/Document/io/ethercatdevelopment-products/an_
et9300_v1i10.pdf

[16] R. Sanchez, L. Raptis, and K. Vaxevanakis, ‘‘Ethernet as a carrier
grade technology: Developments and innovations,’’ IEEE Commun. Mag.,
vol. 46, no. 9, pp. 88–94, Sep. 2008.

[17] K. Fouli and M. Maier, ‘‘The road to carrier-grade Ethernet,’’ IEEE
Commun. Mag., vol. 47, no. 3, pp. S30–S38, Mar. 2009.

[18] N. Finn, ‘‘Introduction to time-sensitive networking,’’ IEEE Commun.
Standards Mag., vol. 2, no. 2, pp. 22–28, Jun. 2018.

[19] IEEE Standards for Local and Metropolitan Area Networks: Supplement-
Media Access Control (MAC) Parameters, Physical Layer, Medium
Attachment Units, and Repeater for 100 Mb/s Operation, Type 100BASE-T
(Clauses 21-30), Standard 802.3u-1995 (Supplement to ISO/IEC 8802-3:
1993; ANSI/IEEE Std 802.3, 1995, pp. 1–415.

[20] G. Brugnoni, ‘‘Ethernet network device and local Ethernet network,’’
European Patent Patent EP 2 930 896, Oct. 1, 2015.

[21] Analog Devices Inc. ADI-SPI Technical Specification—Serial Control
Interface Standard. Analog Devices Inc. Accessed: Aug. 16, 2024.
[Online]. Available: https://wiki.analog.com/_media/resources/
technical-guides/adispi_rev_1p0_customer.pdf

[22] Lattice Semiconductor. MachXO2 Family Data Sheet (FPGA-DS-
02056-4.1). Accessed: Aug. 16, 2024. [Online]. Available: https://www.
latticesemi.com/-/media/LatticeSemi/Documents/DataSheets/MachXO23/
FPGA-DS-02056-4-1-MachXO2-Family-Data-Sheet.ashx

[23] R. Marino, P. Tomei, and C. M. Verrelli, Induction Motor Control Design.
London, U.K.: Springer, 2010.

[24] Texas Instruments Inc. Field Orientated Control of 3-Phase AC-
Motors. Texas Instrum. Inc. [Online]. Available: https://www.ti.
com/lit/an/bpra073/bpra073.pdf

[25] NXP Semiconductors Inc. TJA1100 PHY Datasheet. Accessed:
Aug. 16, 2024. [Online]. Available: https://www.nxp.com/docs/en/data-
sheet/TJA1100.pdf

[26] Texas Instruments Inc. DP83620 PHY Datasheet. Texas Instrum. Inc.
Accessed: Aug. 16, 2024. [Online]. Available: https://www.ti.com/lit/
ds/symlink/dp83620.pdf

[27] Texas Instruments Inc. DP83826 Deterministic, Low-Latency, Low-
Power, 10/100 Mbps, Industrial Ethernet PHY. Texas Instrum. Inc.
Accessed: Aug. 16, 2024. [Online]. Available: https://www.ti.com/lit/ds/
symlink/dp83826i.pdf

[28] Texas Instruments Inc. TLK10xL PHY Datasheet. Texas Instrum. Inc.
Accessed: Aug. 16, 2024. [Online]. Available: https://www.ti.com/lit/ds/
symlink/tlk106l.pdf

[29] Analog Devices Inc. ADIN1130 PHY Datasheet. Analog Devices Inc.
Accessed: Aug. 16, 2024. [Online]. Available: https://www.analog.com/
media/en/technical-documentation/

[30] STMicroelectronics SpA. STE101P PHY Datasheet. Accessed:
Aug. 16, 2024. [Online]. Available: https://www.st.com/resource/en/
datasheet/ste101p.pdf

[31] T. Munk, ‘‘Tests with interlocking and overlapping propellers,’’ Maritime
Archive TUDelft Library, Delft, TheNetherlands, Tech. Rep. Hy-12, 1969.

120290 VOLUME 12, 2024

G. Brugnoni, L. Minati: Microsecond-Level REDBUS: Architecture and Motor Control Experiments

[32] O. Barambones and P. Alkorta, ‘‘A robust vector control for induction
motor drives with an adaptive sliding-mode control law,’’ J. Franklin Inst.,
vol. 348, no. 2, pp. 300–314, Mar. 2011.

[33] P. Ramesh and R. Prathyusha, ‘‘Field oriented control of permanent magnet
synchronous motor,’’ Int. J. Comput. Sci. Mobile Comput., vol. 3, no. 3,
pp. 269–275, Mar. 2014.

[34] D. Wilson. Motor Control Compendium. Accessed: Aug. 16,
2024. [Online]. Available: https://www.ti.com/download/trng/docs/
c2000/TI_MotorControlCompendium_2010.pdf

[35] Microchip Technology Inc. LAN8742A PHY Datasheet. Microchip
Technol. Inc. Accessed: Aug. 16, 2024. [Online]. Available:
https://www.microchip.com/en-us/product/LAN8742A

[36] Microchip Technology Inc. KSZ8081RNB PHY Datasheet. Microchip
Technol. Inc. Accessed: Aug. 16, 2024. [Online]. Available: https://ww1.
microchip.com/downloads/en/devicedoc/ksz8081mnx-rnb.pdf

[37] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou,
‘‘The synchronization of chaotic systems,’’ Phys. Rep., vol. 366,
nos. 1–2, pp. 1–101, Aug. 2002.

[38] Cisco Systems Inc. Data Sheet, Cisco Catalyst IE3400 Rugged
Series. Cisco Syst. Inc. [Online]. Available: https://www.cisco.com/c/
en/us/products/collateral/switches/catalyst-ie3400-heavy-duty-
series/datasheet-c78-742313.html

[39] H. Ahmadi and W. E. Denzel, ‘‘A survey of modern high-performance
switching techniques,’’ IEEE J. Sel. Areas Commun., vol. 7, no. 7,
pp. 1091–1103, Sep. 1989.

[40] N. Zilberman, L. Dudziak,M. Jadczak, T. Parks, A. Rietmann, V. Safronov,
and D. Zuo, ‘‘Cut-through network switches: Architecture, design and
implementation,’’ Univ. Cambridge Computer Lab., Cambridge, U.K.,
Tech. Rep. UCAM-CL-TR-928, 2018.

[41] M. Ashjaei, M. Sjödin, and S. Mubeen, ‘‘A novel frame preemption model
in TSN networks,’’ J. Syst. Archit., vol. 116, Jun. 2021, Art. no. 102037.

[42] N. C. Strole, ‘‘The IBM token-ring network—A functional overview,’’
IEEE Netw., vol. 1, no. 1, pp. 23–30, Jan. 1987.

[43] D. Chen, V. C. S. Lee, and E. Chan, ‘‘On the ability of the FDDI-M protocol
to support real-time traffic,’’ in Proc. 5th Int. Conf. Real-Time Comput.
Syst. Appl., Hiroshima, Japan, 1998, pp. 51–57.

[44] D. Zheng and E. F. Y. Young, ‘‘An integrated circuit partitioning and TDM
assignment optimization framework for multi-FPGA systems,’’ in Proc.
28th Asia South Pacific Design Autom. Conf. (ASP-DAC), Tokyo, Japan,
Jan. 2023, pp. 522–526.

[45] M. Akbar, H. Yu, and S. Cang, ‘‘IEEE 802.15.4 frame aggregation
enhancement to provide high performance in life-critical patient monitor-
ing systems,’’ Sensors, vol. 17, no. 2, p. 241, Jan. 2017.

[46] H. Amirinia and R. Liscano, ‘‘Optimization of the IEEE 802.15.4
superframe for clustered WSNs using differential evolution,’’ in Proc.
IEEE 32nd Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.
(PIMRC), Helsinki, Finland, Sep. 2021, pp. 1316–1322.

[47] G. Thomas, ‘‘ARCNET never received enough credit [history],’’ IEEE Ind.
Appl. Mag., vol. 23, no. 5, pp. 7–13, Sep. 2017.

[48] F. D. Fagundes and M. J. da Cunha, ‘‘Industrial network security,’’ J.
Control, Autom. Elect. Syst., vol. 33, pp. 1177–1187, Aug. 2022.

[49] A. Alfardus and D. B. Rawat, ‘‘Evaluation of CAN bus security
vulnerabilities and potential solutions,’’ inProc. 6th Int. Conf. WomenData
Sci. Prince Sultan Univ. (WiDS PSU), Riyadh, Saudi Arabia, Mar. 2023,
pp. 90–97.

[50] G. Peserico, A. Morato, F. Tramarin, and S. Vitturi, ‘‘Functional safety
networks and protocols in the industrial Internet of Things era,’’ Sensors,
vol. 21, no. 18, p. 6073, Sep. 2021.

[51] S. F. Ralph, O. J. Ukrainsky, R. H. Schellack, and L. Weinberg, ‘‘Alternate
path FDDI topology,’’ inProc. 17th Conf. Local Comput. Netw., Nov. 1992,
pp. 168–177.

[52] B. Chen, S. Kamat, andW. Zhao, ‘‘Fault-tolerant real-time communication
in FDDI-based networks,’’ in Proc. 16th IEEE Real-Time Syst. Symp., Pisa,
Italy, Dec. 1995, pp. 141–150.

GABRIELE BRUGNONI completed state tech-
nical training in electrotechnics and industrial
electronics, in 1988, and then established DVE
Progettazione Elettronica, in 2000. He has pro-
vided technical consulting and development ser-
vices for multiple clients in Italy and Europe,
specializing in highly multi-axis motor control
systems, particularly for electro-optic applications
and real-time control and high-reliability embed-
ded systems using field-programmable gate array

(FPGA) technology from multiple vendors. His current research interest
includes FPGA-based systems for real-time control applications in critical
applications.

LUDOVICO MINATI (Senior Member, IEEE)
received the Ph.D. degree in neuroscience from
the Brighton and Sussex Medical School, Falmer,
U.K., in 2012, the D.Sc. (Doktor Habilitowany)
degree in physics from the Institute of Nuclear
Physics, Polish Academy of Sciences, Kraków,
Poland, in 2017, and the M.B.A. degree in tech-
nology management from The Open University,
Milton Keynes, U.K., in 2021. Until 2023, he was
a Specially Appointed Associate Professor with

the Institute of Innovative Research, Tokyo Institute of Technology,
Tokyo, an Affiliate Research Fellow with the Center for Mind/Brain
Sciences, University of Trento, Trento, Italy, and a Freelance Research
and Development Consultant. He is currently a Professor, an Outstanding
Young Talent, and the Director of the Interdisciplinary Nonlinear Dynamics
Laboratory, School of Life Science and Technology, University of Electronic
Science and Technology of China, Sichuan, China. He has authored
more than 160 articles and several patents. His research interests include
nonlinear dynamical systems, chaotic oscillators, reconfigurable analog
and digital computing, analog integrated circuits, advanced techniques for
biosignal analysis, brain-machine/computer interfaces, and robotics. He is an
European Engineer (Eur. Ing.), a Chartered Engineer (C.Eng.), and amember
of the Institution of Engineering and Technology, U.K. He is also a member
of the Institute of Electronics, Information, and Communication Engineers
(IEICE) and the Institute of Electrical Engineers (IEE) of Japan.

VOLUME 12, 2024 120291

