
IEEE RELIABILITY SOCIETY SECTION

Received 19 July 2024, accepted 19 August 2024, date of publication 27 August 2024, date of current version 5 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3450673

Piecewise Congruence Regressed Indexive
Extreme Learning Classifier for Software
Fault Prediction
SUREKA SIVAVELU AND VENKATESH PALANISAMY
School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, India

Corresponding author: Venkatesh Palanisamy (venkatesh.palanisamy@vit.ac.in)

This work was supported by the School of Computer Science Engineering and Information Systems, Vellore Institute of Technology,
Vellore, Tamil Nadu, India.

ABSTRACT Software fault prediction is a significant task in software development to discover faults early.
It is the process of developing models that can be used by the software practitioners in the early phases of
software development life cycle for detecting faulty constructs such as modules or classes. Therefore, early
fault prediction is a critical and challenging task faced by the Project managers. Several kinds of approaches
were utilized to predict software faults. In this work we propose a Piecewise Congruence Regressed Indexive
Extreme Learning Classifier (PRILEC) to predict the software faults accurately. The process consists of
two stages namely feature selection or software metric selection and classification. In feature selection
process, congruence correlative piecewise regression method is utilized to extract the most relevant features
from the given input dataset. In the next phase, statistical indexive levenberg extreme learning classifier
is utilized to classify the fault prediction with better accuracy. The testing and training data analysis in
extreme learning classifiers is evaluated using Camargo’s statistical index. Hardlimit activation function
is utilized to identify the faulty or non-faulty software code. The least square problem can be minimized
using Levenberg–Marquardt algorithm and this algorithm can obtain the better classification results. The
performance of the proposed approach is evaluated using software fault prediction data analysis dataset. The
evaluation metrics such as precision, recall, F-measure, and specificity were used to assess the performance
of the proposed algorithm. It was observed that comparedwith the state-of-the-art traditionalmethods (Linear
regression), proposed technique increases data accuracy of software fault prediction. The system reduces the
fault detection time by 4%, 2%, 2%, 2%, 29% and 21% respectively.

INDEX TERMS Software fault prediction, congruence coefficient piecewise regression, statistical indexive
Levenberg extreme learning classifier, Camargo’s statistical index, Hardlimit activation function.

I. INTRODUCTION
Software fault prediction models play a significant role in
enhancing software quality. The software module features
are extracted using Prediction algorithm. Traditionally, the
features are designed from the qualitative or quantitative
description of the module or its development process. How-
ever, the model performance is vulnerable to irrelevant and
redundant metrics [1]. Conventional software fault predic-
tion was based on features for discovering the fault code.

The associate editor coordinating the review of this manuscript and

approving it for publication was Liudong Xing .

The faults minimize the software quality and enhance its
development cost. But, developing robust fault prediction is
a challenging task in software prediction. To address these
challenges, the PRILEC algorithm is developed.

For predicting the fault or non-fault software modules,
a convolutional graph neural network for fault prediction
(DP-GCNN) approach was developed [1]. However, the
fault-prone software modules for source code with differ-
ent sizes were not predicted. To address the challenge of
predicting the software modules when considering different
code sizes, a statistical indexive Levenberg extreme learning
classifier is proposed with the inclusion of Camargo’s index,

119958

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4693-1620
https://orcid.org/0000-0001-7967-4638
https://orcid.org/0000-0003-1606-1644

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

Hardlimit activation function, and Levenberg–Marquardt
algorithm. The presence or absence of the disease is correctly
identified with the Hardlimit activation function. Camargo’s
index is used for analyzing the testing and training data.
The Levenberg–Marquardt algorithm reduce the error in the
system.

Software faults were classified using a Deep Neural Net-
work Defect Prediction (DNN-DP) model in [2]. But the
time complexity was not minimized. To address the chal-
lenge of reducing time complexity, the congruence correlative
piecewise regression technique is introduced. This feature
selection technique is applied to pick relevant features and
irrelevant features via congruence correlative.

The accuracy performance was enhanced by the
cross-project fault prediction framework in [3]. Neverthe-
less, the semantic features were not extracted for improving
the software fault prediction. A gated hierarchical long
short-term memory network (GH-LSTM) was introduced
in [4] for software fault prediction. However, the accurate
prediction was not performed.

For software fault prediction, Nested-Stacking and het-
erogeneous feature selection were developed [5]. However,
intelligent and automated prediction system was not focused.
A Neural Network and Feature Selection methods were
developed in [6] for Software fault Prediction. However, the
designed method failed to predict the software fault with
higher performance. A hybrid Deep Neural Network model
was introduced in [7] to improve the prediction of software
bugs. However, it failed to perform data pre-processing tech-
niques to potentially improve the quality of available public
datasets.

With higher recall, an Anomaly Detection Model Based
on BiGAN was developed [8] for Software Defect Predic-
tion. However, the anomaly detection method failed to solve
the software fault prediction. For predicting the possible
fault code of software modules, an attention-based GRU-
LSTM was developed [9]. However, the designed model
failed to extract more relevant features to develop the per-
formance of fault prediction. The flexibility of the fault
prediction was enhanced by the improved Elman neural net-
work method [10]. However the prediction level of severity
of software fault related to issues was not solved in software
development.

An artificial neural network based prediction model was
developed in [11] for software faults. The Deep Learning
algorithm analysis the features of the dataset in depth. How-
ever, it failed to potentially improve the quality of available
public datasets [12].

ReliefF-based clustering (RFC) method was developed
in [13] based on the correlation between features to improve
the performance of software fault prediction. However,
it failed to focus on the redundant features of high-
dimensional datasets. A new imbalanced ensemble learning
was introduced in [14] for software fault prediction. But
the time consumption of software fault prediction was not

minimized efficiently. A Semantic Feature Learning via Dual
Sequences (SFLDS) was developed in [15] for fault predic-
tion. However, the accuracy of software fault prediction was
not improved.

A. OBJECTIVE OF THE PAPER
The objective of the paper is to increase the prediction of soft-
ware fault in accurate manner. To select the relevant software
metrics in software fault prediction, a Congruence correla-
tive piecewise regression based Feature Selection model is
developed. Statistical indexive Levenberg extreme learning
classifier is utilized to identify the fault or non-fault software
code. The errors are minimized using Levenberg–Marquardt
algorithm.

B. CONTRIBUTIONS OF THE WORK
The major contributions of PRILEC are listed below.

• Proposed PRILEC is introduced for enhancing software
fault prediction analysis based on feature selection and
classification.

• PRILEC uses Congruence correlative piecewise regres-
sion for performing feature selection. The congruence
correlation coefficient is estimated for the similarity
between two features. Based on the similarity value,
relevant and irrelevant features are selected. In this way,
time consumption of the software fault prediction is
minimized.

• Statistical indexive Levenberg extreme learning classi-
fier is developed in PRILEC method for accurate fault
or non- fault software code. The novelty of Camargo’s
index is used to discover the similarity between the
testing and training data. The novelty of Hardlimit acti-
vation function is applied for finding software fault.
Levenberg–Marquardt algorithm is developed for min-
imizing the error and obtaining the final better classifi-
cation results.

• The simulation result of the proposed PRILEC method
achieves better software fault prediction when compared
to prediction methods by using JAVA in the Software
Defect Prediction Data Analysis dataset.

C. STRUCTURE OF THE PAPER
The paper is arranged into different sections as follows.
Section II discusses the related works carried out in software
fault prediction. Section III deliberates the implementation
of the proposed PRILEC method. The detailed experimental
setup and dataset description are presented in section IV.
Performance results are discussed in Section V. Finally,
Section VI provides the concluding remarks.

II. RELATED WORKS
A Federated Transfer Learning via Knowledge Distillation
(FTLKD) approach was introduced in [16]. But it failed to
improve the performance of heterogeneous fault prediction
models. A new framework was developed in [17] based on

VOLUME 12, 2024 119959

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

significant conditional dependency to detect software met-
rics. But the Just-In-Time fault prediction was not performed.
An enhanced metaheuristic feature selection and a hybrid
deep neural network were developed in [18] for software fault
prediction. But themulti-source cross project or cross-version
fault prediction was not performed.

A Collaborative Filtering based source Projects Selection
(CFPS) approach was developed in [19] for cross project fault
prediction. However, it failed to achieve better prediction per-
formance. A bidirectional gated recurrent unit (BiGRU) and
an attention mechanism were introduced in [20] for software
fault detection.

Several feature selection and sampling methods were
investigated in [21] with higher prediction accuracy for soft-
ware quality. Fault identification efficiency was increased
in [22] by the Least Square Support Vector Machine
(LSSVM). Extreme learning machine was investigated
in [23] based on the cost and efficiency via different ker-
nel methods. Unrelated metrics were employed with nine
feature selection techniques. The greatest set of source
code metrics was chosen. Bayesian logistic regression was
introduced in [24] to handle prediction issues. ANN and
ensemble methods were discussed in [25] for minimiz-
ing immaterial features with maximum performance of the
fault prediction. Fault prediction efficiency was estimated
in [26] with a cost evaluation framework. Ensemble mod-
els were analyzed in [27] for optimizing testing resource
allocation. Several machine learning techniques such as
regression, Bayesian network, random forest, neural network,
and naïve Bayes were developed in [28] for fault prediction.
The machine-learning techniques used in [29] for achieving
higher prediction accuracy. But it failed to consider perfor-
mance of deep learning algorithms.

Effective feature selection is crucial for building robust
fault prediction models, as it reduces dimensionality and
enhances the predictive power of classifiers. Recent studies
have explored various feature selection techniques to opti-
mize model performance. The author [30] proposed a novel
Congruence Correlative Piecewise Regression-based Feature
Selection (CCPR-FS) model that leverages statistical correla-
tions between features and fault occurrences. Thismethod has
shown to improve the accuracy of fault prediction by selecting
the most relevant features while discarding the redundant
ones. Regression models, particularly those employing piece-
wise regression, have been widely adopted for software fault
prediction due to their ability to model complex, nonlin-
ear relationships between software metrics and faults. The
author [31] extended traditional regression approaches by
introducing a piecewise regression model that better captures
the non-linearities in large-scale software datasets, leading to
improved prediction accuracy.

Extreme Learning Machines (ELMs) have been recog-
nized for their speed and efficiency in classification tasks,
including software fault prediction. The author [32] inte-
grated ELM with a Statistical Indexive Levenberg (SIL)

classifier to enhance the identification of fault-prone mod-
ules. The combination of ELM’s rapid learning capabilities
with SIL’s statistical rigor has been shown to yield superior
prediction results, outperforming traditional machine learn-
ing methods. The Levenberg–Marquardt (LM) algorithm is a
well-establishedmethod forminimizing the error in nonlinear
models, making it an ideal choice for optimizing software
fault prediction models. The author [33] demonstrated the
efficacy of the LM algorithm in reducing prediction errors in
neural network-based fault prediction models. By fine-tuning
model parameters, the LM algorithm significantly enhances
the reliability and accuracy of fault prediction, as evidenced
in recent empirical studies.

III. METHODOLOGY
A Software fault prediction is used to help the developers
in predicting fault -prone parts prior to the testing stage.
As the size and complication of codes continues to increase,
software quality assurance becomes more and more essential.
The main approach to improve software quality is soft-
ware fault prediction in the field of software engineering.
Software fault prediction helps to discover the fault-prone
modules in software, which helps organizations to distribute
the minimum resources and reduce the workload of software
code testing. Based on the motivation, a novel technique
called Piecewise Congruence Regressed Indexive Extreme
Learning Classifier (PRILEC) is introduced in this section
for accurate software fault prediction with minimum error
as well as time consumption. The proposed PRILEC is
designed with Congruence Correlative Piecewise Regression
and Statistical Indexive Levenberg Extreme Learning Classi-
fier. Congruence Correlative Piecewise Regression is utilized
for performing feature selection to pick significant features
and eradicate immaterial features. Next, the Statistical Index-
ive Levenberg Extreme Learning Classifier is developed for
detecting fault or non-fault products. As a result, the software
fault prediction is accurately predicted with higher accuracy
and less time.

Figure 1 depicts the architecture of the proposed
PRILEC that includes two major processes namely feature
selection, and classification At first, the dataset con-
sists of several software features (i.e. software metrics)
X1,X2,X3, . . .Xn and set of software entities (modules,
classes, functions) M1,M2,M3, . . .Mm denoting training
instances.

First, the feature selection or metric selection process
is carried out to choose the relevant features for effi-
cient software fault prediction. The proposed PRILEC
uses a Congruence Correlative Piecewise Regression for
relevant feature selection and removal of redundant met-
rics. Congruence correlative piecewise regression is a
machine learning technique to identify the relevant features
with help of correlation measure between the features to
enhance the software fault prediction with minimum time
complexity.

119960 VOLUME 12, 2024

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

FIGURE 1. Architecture of proposed PRILEC.

Secondly, the Statistical Indexive Levenberg Extreme
Learning Classifier is developed to enhance the performance
of software fault prediction with higher accuracy and mini-
mum error by estimating the testing and training parameters
using Camargo’s statistical index. Then the Hardlimit
activation function is applied for analyzing the similar-
ity value and predicting the software faults. Finally, the
Levenberg–Marquardt algorithm is applied to minimize the
error of the Extreme Learning Classifier. These two differ-
ent processes of the proposed PRILEC are described in the
following subsections.

A. CONGRUENCE CORRELATIVE PIECEWISE REGRESSION
BASED FEATURE SELECTION
The proposed PRILEC first performs the feature or metric
selection after the data collection process. Existing feature
selection concepts are employed to select features. The han-
dling dimensionality of the data is a challenging task. A large
amount of storage requirements is employed to select fea-
tures. If the dimensionality of the input dataset increases, any
machine learning algorithm and model becomes more diffi-
cult. Also, the feature selection performance becomes poor.
On the contrary to the conventional feature selectionmethods,
the congruence correlative piecewise regression technique
is introduced to perform feature selection. The number of
software metrics or features is taken as input from dataset.
With considered input metrics, the congruence correlative
coefficient is measured among features. The measured value
of the coefficient is compared with the threshold for selecting
features. The considered dataset includes some unnecessary
features that cause quality issues. For removing irrelevant

features, a congruence correlative piecewise regression pro-
cess is utilized. In this way, the dimensionality of the dataset
was reduced with higher performance.

Regression is used for the decision making process for
measuring the correlation between a dependent variable and
one or more independent variables. The developed piece-
wise regression method is a regression analysis process. It is
also called broken-stick regression. The Piecewise regres-
sion method makes it easier to support vector machines for
identifying important features. During the regression process,
independent features are separated into various segments by
determining the relationship between two different variables.
In multivariate statistics, the congruence coefficient is an
index of the similarity between two features. The congruence
coefficient is also called a monotonicity coefficient.

Here, a threshold value is set and compared for selecting
significant relevant features. Piecewise works for finding the
best set of breakpoints that reduces the error. Therefore, the
proposed technique uses the congruence correlative piece-
wise regression technique for selecting significant features
and removing irrelevant features with minimum time.

FIGURE 2. Flow diagram of congruence correlative piecewise regression
based feature selection.

Figure 2 shows the Flow diagram of Congruence Cor-
relative Piecewise Regression Feature Selection. With the
dataset provided as input, the objective of the Congruence
coefficient correlative piecewise regression is to select the
significant feature in a computationally efficient manner. The
congruence coefficient is defined when both matrices have
the same number of rows and columns. These matrices can
store factor scores (for observations). To start with the raw
input dataset ‘DS’ and formulated in the form of a matrix as
given below.

A =

[
X11 X12 . . . X1n X21 X22 . . . X2n

...
... . . .

... Xm1 Xm2

. . . Xmn

]
, m = rows, n = columns (1)

VOLUME 12, 2024 119961

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

From the above input matrix formulation as given in (1),
‘n’ column features are present with overall sample instances
of ‘m’ row respectively.

With the above set of features matrix, first relevant fea-
tures or software metrics for software fault detection is
performed. To acquire the relevant features from the raw
dataset, the regression function analyzes the relationship
between the columns of the features in the matrix with the
help of the Congruence correlation coefficient [34]. It is an
index of the similarity between factors. Let Xi and Xj be
column vectors of features with two samples. The formula
for the congruence coefficient is given below:

ρc =

∑
XiXj√∑
X2
i

∑
X2
j

(2)

where, ρc denotes a congruence coefficient which returns the
similarity output ranges from 0 to 1. The minimization of the
above equation is then formulated with piecewise regression
by setting the threshold as given below.

R={ρc > T , relevant features; ρc < T , irrelevant features}

(3)

From the above equation (3), ‘R′’ represents the outcomes
of the piecewise regression. The value of the coefficient
greater than threshold ‘T ’ indicates a perfect similarity and
is considered as a relevant feature whereas the value of a
coefficient lesser than threshold ‘T ’ indicates an irrelevant
feature and it is discarded for further processing.

With the obtained features selected, the overall algorithm
representation of Congruence Coefficient Correlative Piece-
wise Regression is given below.

Algorithm 1 Congruence Correlative Piecewise Regression
Based Feature Selection
Input: Dataset ‘DS’, metrics or features X =

{X1,X2,X3, . . .Xn}

Output: Significant feature selection

Begin
1. For each Dataset ‘DS’ with Features ‘X ’
2. Formulate input vector matrix ‘A’ as given in (1)
3. Measure congruence correlation coefficient between the
feature as given in (2)
4. Formulate piecewise regression function to obtain
relevant features as given in (3)
5. If (ρ′

c > T) then
6. Return relevant features
7. else if ‘ρ′ < 0.5’ then
9. Return irrelevant features
10. End if
11. Select relevant features
12. Remove irrelevant features
13. End for
End

The raw dataset is subjected to congruence correlative
piecewise regression. First, with the data acquired in the
form of input matrix, relationship between the features is
determined by applying congruence correlation coefficient.
Second, based on the correlation, piecewise regression is
performed to determine the significant features by setting
the threshold. Finally, highly correlated features are selected
for software fault prediction in an accurate and timely
manner. These selected significant features are utilized for
classification.

Choosing the Congruence Correlation Coefficient (CCC)
for feature selection in tasks like software fault prediction or
other machine learning applications can be advantageous for
several reasons. The CCC offers unique benefits that make it a
valuable tool. Unlike traditional correlation coefficients (e.g.,
Pearson or Spearman), which primarily measure the strength
and direction of a linear relationship, CCC is designed to
assess the degree of agreement between two variables. This
means that CCC considers both precision and accuracy. CCC
considers both the correlation and the potential bias between
the two variables, providing a more comprehensive measure
of similarity. This is particularly important when the data has
inherent variability or when there is a need to account for
potential biases in the measurement process.

CCC can be applied to both continuous and categorical
data, making it versatile across different types of datasets.
This is particularly beneficial in feature selection when the
dataset includes a mix of different types of features. CCC is
less sensitive to differences in the scale of the two variables
being compared. It adjusts for scale differences, which is
beneficial when dealing with features that are measured on
different scales. By combining the benefits of correlation
analysis with an assessment of agreement, CCC offers a more
holistic view of feature importance. It evaluates not only
how strongly a feature is related to the target variable but
also how closely it matches the target in terms of agreement.
Features selected based on CCC are likely to generalize better
to new, unseen data because CCC emphasizes agreement and
consistency, not just correlation. CCC can be particularly
effective when the distribution of the feature is aligned with
that of the target variable. It ensures that selected features not
only correlate but also conform to the distributional properties
of the target, leading to better predictive performance.

Congruence Correlation Coefficient (CCC) can be highly
sensitive to outliers in the dataset. Outliers can disproportion-
ately affect the correlation coefficient, leading to misleading
conclusions about the relationship between variables. CCC
primarily measures the linear relationship between variables.
If the relationship between features and the target variable is
nonlinear, CCC may not accurately capture this relationship.
Calculating CCC for many features can be computation-
ally demanding, particularly in high-dimensional datasets.
The need to compute pairwise correlations for all features
increases the computational load.
Statistical Indexive Levenberg Extreme Learning Clas-

sifier based Software Fault Prediction: With the selected

119962 VOLUME 12, 2024

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

significant features, software fault prediction is a major bar-
rier to attain effective software testing resource allocation.
Hence, it becomes necessary to design effective models for
software fault prediction at an early stage. In this work,
a new model Statistical Indexive Levenberg Extreme Learn-
ing Classifier for software fault prediction is designed. On the
contrary to the conventional deep learning algorithm, extreme
learning machines are feed-forward neural networks having
straightforward solutions that do not require iteration. Such
a solution is also linear and very fast to compute the anal-
ysis and provide a linear output. The main advantage is the
strong generalization ability and fast training speed. There-
fore, the proposed technique uses the statistical indexive
levenberg extreme learning classifier technique for accurate
fault prediction with minimum time since it avoids the itera-
tive training process.

FIGURE 3. Structure of statistical indexive levenberg extreme learning
classifier model.

Figure 3 illustrates the flow process of Ensemble learning
based classification for software fault prediction. The input
training data is given to the proposed classifier. Then the
testing and training data analysis is carried out with the help
of the statistical index functions called Camargo’s index.
With the output of the statistical index, the Hardlimit acti-
vation function is applied to validate the statistical index
results. Finally, the error rate is minimized by applying a
Levenberg–Marquardt algorithm for solving the least square
problem. The basic structure of the statistical indexive leven-
berg extreme learning classifier is given below:

FIGURE 4. Structural of statistical indexive levenberg extreme learning
classifier.

Figure 4 depicts the structure of Extreme Learning classi-
fier a type of feed-forward neural network used for classifica-
tion and feature learning with a single layer or multiple layers
of hidden nodes ‘h’. The ELM structure includes input layer,
multiple hidden layers, and output layer. Compared with the
conventional deep neural network, it has two characteristics
such as hidden layer parameters (i.e., input weights and the
biases) are randomly initialized and another one is output
layer weights solved as the least squares problem. As shown
in the above figure, let us consider that the training set {D,Y}
where D denotes a training data with the selected features
‘{X1,X2, . . . ,Xk}’ and a label or output ‘Y ’ representing its
category which belongs to the dissimilar classes.

As shown in Figure 2, an Extreme Learning machines
classifier receives ‘n’ training data as input (Di =

D1,D2, . . . ,Dn), and classifier randomly set a weight
‘α1, α2, . . . , αm’ associated with the weight in the input layer
and added bias ‘k’ in the hidden layer that stored the value
is ‘1’. The input layer offers only training data but it does
not perform any computations, whereas the output layer is
linear with no transformation function and no bias. The input
weights are fixed and have a straightforward solution that
does not require a different iteration process.

Qi =

∑m

i=1
[Di (t) ×αij] + K (4)

From equation (4), the activity of neurons at the input layer
‘Qi’ denotes that the weighted input data, weight’ and bias
function, ‘αij’ denotes a weight between the jth input layer
neuron and the ith hidden layer neuron, K denotes a bias. The
input is transferred into the first hidden layer. In that layer,
training data and testing data are analysed with the help of
Camargo’s index. The Camargo’s index is used [35] to find
the similarity between the testing and training data for identi-
fying the fault or non-fault software products. Therefore, the
Camargo’s index-based testing and testing data are analyzed
as given below,

CI = 1 −

∑n

i=1

∑n

j=1

∣∣Di − Dj
∣∣

n
(5)

where ‘CI ’ denotes similarity outcomes, Di denotes testing
data, Dj indicates the training data, ‘n′ indicates total number
of training data samples. The similarity value provides the

VOLUME 12, 2024 119963

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

outcomes in the ranges from 0 to 1. Therefore, the hidden
layer output is given below.

H =

∑L

i=1
αij β (αjk ho + K) (6)

where, ‘H ’ represents the result of the output layer, ‘β’
indicates an activation function, ‘αjk ’ denotes the jth hidden
layer neuron and k th output layer neuron, ‘αij’ denotes a
weight between input and output layer, ‘h′

o denotes an output
of previous hidden layer, ‘L ′ denotes the number of hidden
units. The Hardlimit activation function is applied [34] for
finding the software faults.

β = {1,CI > 0.50,CI < 0.5} (7)

The activation function ‘β’ returns ‘1’ denotes a fault, ‘β’
returns ‘0’ denotes a non- fault. Based on activation function
results, software faults are correctly identified.

To obtain the better solution with minimum-error, the least
square method is applied. The method of least squares is
a standard approach in classification analysis to obtain bet-
ter solutions by decreasing the sum of the squares of the
residuals. The residual is measured between the difference
between a target result and the observed result provided by
the proposed classifier. It is given below:

R = [T − Y]2 (8)

where ‘R’ denotes a least square method output which is
defined as a squared difference between the target results ‘T ’
and output predicted by the activation function ‘Y ’.

The Levenberg–Marquardt algorithm is used [36] to mini-
mize the least squares problems ‘R’.

F = arg arg [T − Y]2 (9)

where, F denotes output of the Levenberg–Marquardt
algorithm, arg arg denotes an argument of minimum function
to minimize least squares problems. Finally, the accurate
classification results are obtained at the output layer with
minimum error. A statistical indexive levenberg extreme
learning classifier algorithm is given below:

Algorithm 2 given above illustrates the algorithmic process
of software fault prediction using statistical indexive leven-
berg extreme learning classifier with higher accuracy and
minimum time consumption. The proposed learning classifier
consists of many layers to analyze the given training data.
The selected features with the training data are given to the
input layer. In that layer, the random weights are assigned
to each training set and added to the bias. Then the hidden
layer performs feature ma through the testing and training
data analysis with help of Camargo’s index. Then the acti-
vation neuron in the hidden node evaluates the index value
and identifies the fault or non- fault products. Finally, the
Levenberg–Marquardt algorithm is applied to minimize the
least square problem and obtain the final better classification
results at the output layer.

Algorithm 2 Statistical Indexive Levenberg Extreme Learn-
ing Classifier
Input: selected features (i.e. training data)
Di and testing data
Output: Increase the attack detection accuracy
Begin

1. Number of significant features taken
as input at the input layer

2. For each training data Di // [hidden
layer]

3. For each testing feature Dj
4. Apply Camargo’s index ‘CI ’
5. end for
6. end for
7. Apply Hardlimit activation function
8. if (CI > th)then// [output layer]
9. R returns ‘1’
10. Software fault is predicted
11. else
12. R returns ‘0’
13. Software fault not predicted
14. end if
15. Apply Levenberg–Marquardt

algorithm to minimize the least square
16. Obtain the classification results at the

output layer
End

IV. EXPERIMENTAL SETUP
The performance evaluation of the proposed PRILEC tech-
nique is carried out by the implementing the proposed
approach using JAVA language. The results are analyzed
using Software Defect Prediction Data Analysis dataset. This
data is collected from [37]. This is a PROMISE repository
and publicly available dataset for software engineering. The
dataset includes 22 attributes or features or software metrics,
and 10885 instances. The attribute information is given in
Table 1. First, the relevant feature selection process is carried
out through the correlation measure. With the selected rele-
vant metrics, the deep learning technique is applied whether
the module has software fault or not based on the last attribute
‘faults’ [38]. The results of the proposed PRILEC tech-
nique are compared with conventional DP-GCNN [1], and
DNN-DP [2] methods. Performance parameters considered
to examine the results of both proposed and existing methods
are fault prediction accuracy, precision, recall, f-measure,
prediction time, specificity, and software fault prediction time
and error rate.

The confusion matrix of proposed OR-HREC method is
demonstrated in Table 2.

Confusion matrix is a fashionable measure to address clas-
sification issues. It is used for binary classification as well
as for multi-class classification issues. A confusion matrix is
estimated from predicted and actual values. The row values
of confusion metrics represented the corresponding true label

119964 VOLUME 12, 2024

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

TABLE 1. Feature information.

TABLE 2. Confusion matrix.

and column values are indicated the corresponding predicted
labels. The value that appears in each cell shows the predic-
tion labels. The number of instances (i.e, 1000) is taken in
the dataset. TN represents the true negative, FP denotes false
positive, FN indicates the false negative, and TP denotes the
true positive.

V. PERFORMANCE RESULTS AND DISCUSSION
In this section, performance analysis of PRILEC technique
and existing DP-GCNN [1], and DNN-DP [2] are discussed
with the different parameters such as fault prediction accu-
racy, precision, recall, f-measure, prediction time, specificity,

software fault prediction time and error rate. Performance
results are assessed with the help of tables and graphical
illustrations.
Software Fault Prediction Accuracy: It is measured as the

number of instances that are correctly predicted as fault or
not fault through the classification [2]. The fault prediction
accuracy is mathematically stated as given below.

SFPA =

[
Tp + Fp

Tp + Fp + Tn + Fn

]
∗ 100 (10)

where SFPA indicates a software fault prediction accuracy, Tp
indicates true positive, Fp denotes false positive, Tn indicates
true negative, Fn represents false negative. The accuracy is
measured in percentage (%).

TABLE 3. Comparison of software fault prediction accuracy.

FIGURE 5. Comparison of software fault prediction accuracy.

Table 3 and Figure 5 illustrate the graphical illustration
of the software fault prediction accuracy using proposed
PRILEC technique and existing DP-GCNN [1], and DNN-
DP [2]. In the above figure, the horizontal axis represents

VOLUME 12, 2024 119965

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

the number of instances and the vertical axis indicates the
measure of software fault prediction accuracy. The observed
result indicates that the proposed PRILEC method outper-
forms other methods [1] and [2]. However, with simulations
conducted with 1000 instances, the accuracy was observed
to be 98.7% using proposed PRILEC and 94% and 96.56%
using existing methods DP-GCNN [1], and DNN-DP [2]
respectively. The overall performance of ten results indicates
that the fault prediction accuracy using proposed PRILEC
technique is considerably improved by 6% when compared
to [1] and 2% when compared to [2] respectively. With this
measure, the software fault prediction accuracy is improved
using PRILEC upon comparison with the two other existing
methods. The reason behind the improvement was due to the
application of statistical indexive Levenberg extreme learning
classifier with higher accuracy and minimum time consump-
tion. The Camargo’s index is measured by testing and training
data. The Hardlimit activation function is applied to find the
fault and non- fault modules. This helps to improve the true
positive rate. The Levenberg–Marquardt algorithm is applied
for minimizing the least square problem hence it reduces the
false positive as well as false negative rate.
Precision: It is measured as the ratio of number of true

positives as well as false positives [2]. Therefore, the accurate
precision is mathematically formulated as given below,

Pr =

(
Tp

Tp + Fp

)
× 100 (11)

where, Pr represents a Precision, Tp symbolizes the true
positive, Fp represents the false positive. The Precision is
measured in percentage (%).

TABLE 4. Comparison of precision.

A comparison of precision is portrayed in Table 4 and
Figure 6. The proposed PRILEC technique and existing DP-
GCNN [1], and DNN-DP [2] are utilized in Figure 6. The
PRILEC technique of precision is higher compared to exist-
ing methods. For the 1000 data considered for simulation,
the precision was observed as 99.25% using the PRILEC

FIGURE 6. Comparison of precision.

technique and 95.55% and 97.86% using the DP-GCNN [1],
and DNN-DP [2] respectively. The precision was better with
the statistical indexive levenberg extreme learning classifier
for fault prediction. The Levenberg–Marquardt algorithm is
utilized to an extreme learning classifier to diminish the least
square problem and false positive rate. The results designate
that the precision is increased by 3% and 1% than DP-
GCNN [1], and DNN-DP [2].
Recall/ Sensitivity: It is estimated as a percentage of fault

modules properly predicted by the classifier. The recall is
calculated in percentage (%).

Rc =

(
Tp

Tp + Fn

)
× 100 (12)

where ‘Rc ‘denotes recall, Tp indicates true positive, Fn rep-
resents the false negative.

TABLE 5. Comparison of recall.

Comparison of recall demonstrated in Table 5 and Figure 7
for PRILEC technique and existing methods. In Figure 7,
number of instances indicated in the horizontal axis and
performance of recall rate dented as the vertical axis. PRILEC
technique of recall was enhanced than comparison with [1]
and [2]. Assume 1000 instances to experiment. The perfor-
mance of recall using the proposed PRILEC technique is
99.35% and the recall of existing [1], [2] are 97.72% and

119966 VOLUME 12, 2024

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

FIGURE 7. Comparison of recall.

98.38% respectively. The results show that the recall of the
proposed technique is improved by 3% and 1% than [1]
and [2] respectively. The reason for enhancing recall is to
apply Extreme learning machines classifier uses Hardlimit
activation function. The fault or non fault modules precisely
classified with higher true positive and lesser true negative.
F-Measure: It is estimated by precision aswell as recall [2].

F-measure is calculated in percentage (%).

MESF =

[
2 ∗

Pr ∗ Rc
Pr + Rc

]
× 100 (13)

where MESF designate an F-measure, ‘Pr ’ indicates preci-
sion and ‘Rc’ denotes recall.

TABLE 6. Comparison of F-measure.

Table 6 and Figure 8 demonstrate the graphical illustration
of the F-measure for a distinct number of instances taken
from 1000 to 10000. From the observed results, F-measure
was found to be 99.3% using the PRILEC technique, 96.62%
using DP-GCNN [1] and 98.11% using DNN-DP [2]. From
this result, the performance of the F-measure using the pro-
posed PRILEC technique is improved when compared to
existing methods. By applying this PRILEC technique, the
performances of precision as well as recall were improved

FIGURE 8. Comparison of F-measure.

during the software fault prediction. Followed by which the
actual classifications were made in extreme learning classi-
fier, therefore improving the F-measure using the PRILEC
technique. The overall performance results indicate that the
F-measure of PRILEC techniqueis considerably improved
by 3% as compared to [1] and 1% as compared to [2]
respectively.
Specificity: It is measured as the ratio of number of true

negatives as well as false positives during the fault prediction
in the software modules. It is calculated as given below,

Spe =

(
Tn

Tn + Fp

)
× 100 (14)

where ‘Spe’ indicates a specificity, ‘T ′
n denotes a true neg-

ative, ‘Fp’ denotes the false positive. The performance of
specificity is measured in percentage (%).

TABLE 7. Comparison of specificity.

Table 7 and Figure 9 depict the performance results of
the Specificity against the number of instances taken from
the dataset. The Specificity is calculated with respect to the
true negative as well as false positive rate. The observed

VOLUME 12, 2024 119967

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

FIGURE 9. Comparison of specificity.

result states that the PRILEC technique provides improved
performance when compared to existing methods. Let us
consider 1000 instances taken from the dataset in the first
iteration. The observed performance of the specificity using
PRILEC is found to be 89.55%whereas the results of existing
DP-GCNN [1] and DNN-DP [2] are found to be 66.66% and
77.77% respectively. Finally, the overall observed results of
the proposed PRILEC technique are compared to the results
of existing methods. The average of ten results indicates that
the specificity is significantly improved by 41% and 17%
when compared to existing methods.
Prediction Time: It is defined as the amount of time taken

by the algorithm for predicting the fault or non- fault software
modules. The overall prediction time is calculated as given
below,

Pt = n× [t (POI)] (15)

where ′Pt ′ indicates a prediction time, ‘n’ denotes the number
of instances, ‘t’ denotes a time for predicting one instance
(POI). Prediction time is measured in milliseconds (ms).

TABLE 8. Comparison of prediction time.

FIGURE 10. Comparison of prediction time.

Table 8 and Figure 10 demonstrates the graphical depiction
of prediction time for software fault prediction using the three
methods: PRILEC technique and existing DP-GCNN [1], and
DNN-DP [2] respectively. From the figure it is inferred that
the prediction time increases with the increase in the number
of instances. This is due to the reason that with a larger num-
ber of instances involved during simulation, a large amount
of time is said to be consumed during analyzing of differ-
ent modules; this in turn increases the prediction time also.
however, with experiments performed with 1000 instances,
the time consumed in software fault prediction being ‘20ms’,
the overall prediction time using DP-GCNN [1] method was
28ms, the time consumed in detecting the software faults
being ‘24 ms’. From this result it is inferred that the software
fault prediction time using PRILEC was minimized by 27%
and 14% when compared to [1] and [2]. The improvement
is due to the application of congruence correlative piecewise
regression. As given in the above algorithmwith the objective
of selecting the significant features for software fault predic-
tion. The raw dataset is subjected to congruence correlative
piecewise regression. First, with the input features acquired
in the form of matrix, relationship between the features is
determined by applying congruence correlation coefficient.
Then the piecewise regression is applied to determine the
important features for software fault prediction. This helps
to minimize the prediction time.
Error Rate: It is one of the software metric and it is mea-

sured as the number of instances that are incorrectly predicted
as fault or not fault through the classification. It is measured
as given below.

Error rate =

[
1 −

Tp + Fp
Tp + Fp + Tn + Fn

]
× 100 (16)

119968 VOLUME 12, 2024

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

From equation (15),the Error rate is computed and it is
measured in percentage (%).

TABLE 9. Comparison of error rate.

FIGURE 11. Comparison of error rate.

Table 9 and Figure 11 illustrate the comparison error
rate for the proposed PRILEC technique and existing DP-
GCNN [1], and DNN-DP [2]. The result indicates that
the proposed PRILEC method outperforms other meth-
ods [1] and [2]. However, with simulations conducted with
1000 instances, the error rate was observed to be 2.3% using
the proposed PRILEC and 4% and 3.44% using the existing
two methods DP-GCNN [1], and DNN-DP [2] respectively.
The average value of error rate using the proposed PRILEC
technique is considerably reduced by 50% when compared
to [1] and 28% when compared to [2] respectively. The
error rate is minimized using PRILEC than the two other
existing methods. The reason for lesser error rate is to apply

a statistical IndexiveLevenberg extreme learning classifier.
The testing and training data is investigated with Camargo’s
index. Fault and non-fault modules are determined by the
Hardlimit activation function. The least square issue is han-
dled via Levenberg–Marquardt algorithm which minimizes
the false positive and false negative rates. Hence, the error
rate is decreased.
Hypothesis Test: The statistical test for software fault pre-

diction is done in our work by using the McNemar test.
McNemar’s test is also called as the paired or matched chi-
square. The McNemar test is utilized as a non-parametric test
for paired nominal data. In order to evaluate the McNemar
test, the number of instances is said to be placed into a
2 × 2 contingency table.

TABLE 10. Tabulation for McNemar test for proposed PRILEC method.

In table, cells b and c are employed to estimate the McNe-
mar test statistic and it is as given below.

χ2
=

(b− c)2

b+ c
(17)

Table 10 offers the tabulation outcomes of the McNemar
test involved in software fault prediction for three methods,
PRILEC and existing DP-GCNN [1], and DNN-DP [2]. From
the comparison, it is found that the proposed PRILEC per-
forms better performance results in terms of the McNemar
test than [1] and [2].

TABLE 11. Comparison of McNemar test.

VOLUME 12, 2024 119969

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

FIGURE 12. Comparison of McNemar test.

Table 11 and Figure 12 demonstrate the McNemar test (M-
test) using the proposed PRILEC and existing DP-GCNN [1],
and DNN-DP [2]. A hypothesis test is conducted based on
a sample between 1000 and 10000. The reason behind the
improvement was the application of initially obtaining highly
correlated features with the aid of Camargo’s index among
two sample data. M-test is better performance for PRILECby
3% and 7% than the existing methods respectively.
Comparative Analysis of the Proposed Prilec Technique

With ExistingMethods:The analysis of the proposed PRILEC
and existing DP-GCNN [1], and DNN-DP [2] are compared
and implemented in Java. Table 11 provides a detailed com-
parison result of the proposed PRILEC technique with the
existing methods.

TABLE 12. Comparative analysis of proposed PRILEC technique with
existing methods.

Table 12 demonstrates the comparative analysis of pro-
posed PRILEC and existing methods. From the experimental
results, the following summary key finds are achieved: Pro-
posed PRILEC achieved higher accuracy, precision, recall,
F-measure, and specificity by 97.81%, 98.59%, 99.08%,
98.83%, and 77.55% when compared to DP-GCNN [1], and
DNN-DP [2]. PRILEC also minimizes the prediction time
and error rate by 32.51msand 3.18%when compared to exist-
ing methods. The reason for maximum accuracy and minimal
time is to apply congruence correlative coefficient piecewise
regression and statistical indexive levenberg extreme learn-
ing classifier. In comparative analysis, the PRILEC provides
better performance for software fault prediction and attains
overall objectives in terms of accuracy, precision, recall, F-
measure, and time.

VI. DISCUSSION
The aim of the proposed PRILEC technique is to determine
fault or non-fault with higher accuracy and minimize time.
Based on this objective, the proposed PRILEC technique
and existing DP-GCNN [1], and DNN-DP [2] are evaluated
through modules written in Java with Software Defect Pre-
diction Data Analysis dataset. The reason for less time is to
apply congruence correlative coefficient piecewise regression
for chosen pertinent features and immaterial features. The
proposed PRILEC technique saves time efficiently as com-
pared with the conventional methods. The reason for higher
accuracy, precision, recall, and F-measure is by applying
a statistical indexive levenberg extreme learning classifier
for accurately classifying the fault. From the experimental
results, the following summary key finds are achieved: The
proposed PRILEC technique achieved higher accuracy by
4%, precision by 2%, recall by 2%, F-measure 2%, and
specificity by 29% when compared [1] and [2]. PRILEC
technique also minimizes the time by 21% when compared
to existing methods. In comparative analysis, the PRILEC
technique provides better performance for software fault pre-
diction and attains overall objectives in terms of accuracy,
and time.

VII. THREATS TO VALIDITY
We determined and assessed a set of threats to guaran-
tee the quality of this empirical investigation. Every threat
is explained, along with the methods taken to reduce the
threats. Four validity are considered such as internal validity,
construct validity conclusion validity, and external validity.
An internal threat is determined in the metrics employed as
independent variables to forecast software faults associated
with the trustworthiness of results. In this experiment, con-
struct validity is the evaluation metrics employed to estimate
the prediction performance. The evaluation measures such
as the F-measure as one threshold-dependent measure for
enhancing the performance. The commonly used measures
are considered in software fault prediction for comparison
with proposed and other studies. Several statistical com-
parison tests were used to compare proposed and existing

119970 VOLUME 12, 2024

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

methods. The underlying assumptions influence the statistical
test that should be applied. We utilized the McNemar test
for paired nominal data. In this work, ten cross-validations
are used for the feature selection method and classification.
We tested our study on the Software Defect Prediction Data
Analysis dataset with 22 attributes and 10885 instances. Sec-
ond, extreme learning models are mainly affected by the
data. Features are chosen by using characteristics of the
dependent variable. Numerous trendy performance metrics
are employed for feature selection and classification prob-
lems, such as accuracy, recall, precision, F-measure, and error
rate. Lastly, external validity is the ability to simplify the
results of the study for the dataset.

VIII. CONCLUSION
Software fault prediction is utilized for finding faults in the
software. But, time and accurate detection are major issues.
To improve the performance of software quality prediction
for accurate detection, we propose PRILEC technique. Sig-
nificant features or metrics are selected from the dataset
using congruence correlative coefficient piecewise regres-
sion. After, statistical indexive levenberg extreme learning
classifier is employed for software fault prediction with a
minimum error rate. The experimental is carried out with
respect to a number of instances. The proposed PRILEC
technique is comparedwith the two existingmethods (i.e. DP-
GCNN, and DNN-DP). The results of the proposed technique
with two conventional algorithms using the software fault
prediction data analysis dataset in Java. The statistical results
confirmed that the proposed PRILEC outperforms for achiev-
ing a higher software fault prediction accuracy, precision,
recall, f-measure, and specificity with minimum time than the
other existing methods by 4%, 2%, 2%, 2%, 29%, and 21%
respectively.

In future work, Advanced technique will be developed
to identify the fault and quality of the software. For future
research, the proposed technique is extended to provide
more quality software applications. However, the appli-
cation of the software fault prediction is still need to be
enhanced and more number of methods should be car-
ried out in order to obtain well-formed and generalizable
results.

CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

DATA AVAILABLE STATEMENT
Not Applicable.

REFERENCES
[1] L. Šikic, A. S. Kurdija, K. Vladimir, and M. Šilic, ‘‘Graph neural

network for source code defect prediction,’’ IEEE Access, vol. 10,
pp. 10402–10415, 2022, doi: 10.1109/ACCESS.2022.3144598.

[2] M. Gupta, K. Rajnish, and V. Bhattacharjee, ‘‘Cognitive complexity
and graph convolutional approach over control flow graph for software
defect prediction,’’ IEEE Access, vol. 10, pp. 108870–108894, 2022, doi:
10.1109/ACCESS.2022.3213844.

[3] W. Wen, R. Zhang, C. Wang, C. Shen, M. Yu, S. Zhang, and X. Gao,
‘‘A cross-project defect prediction model based on deep learning with
self-attention,’’ IEEE Access, vol. 10, pp. 110385–110401, 2022, doi:
10.1109/ACCESS.2022.3214536.

[4] H. Wang, W. Zhuang, and X. Zhang, ‘‘Software defect prediction based on
gated hierarchical LSTMs,’’ IEEE Trans. Rel., vol. 70, no. 2, pp. 711–727,
Jun. 2021, doi: 10.1109/TR.2020.3047396.

[5] L.-Q. Chen, C. Wang, and S.-L. Song, ‘‘Software defect prediction based
on nested-stacking and heterogeneous feature selection,’’ Complex Intell.
Syst., vol. 8, no. 4, pp. 3333–3348, Aug. 2022, doi: 10.1007/s40747-022-
00676-y.

[6] M. S. Alkhasawneh, ‘‘Software defect prediction through neural network
and feature selections,’’ Appl. Comput. Intell. Soft Comput., vol. 2022,
pp. 1–16, Sep. 2022, doi: 10.1155/2022/2581832.

[7] K. Tameswar, G. Suddul, and K. Dookhitram, ‘‘A hybrid deep learning
approach with genetic and coral reefs metaheuristics for enhanced defect
detection in software,’’ Int. J. Inf. Manage. Data Insights, vol. 2, no. 2,
Nov. 2022, Art. no. 100105, doi: 10.1016/j.jjimei.2022.100105.

[8] S. Zhang, S. Jiang, and Y. Yan, ‘‘A software defect prediction approach
based on BiGAN anomaly detection,’’ Sci. Program., vol. 2022, pp. 1–13,
Apr. 2022, doi: 10.1155/2022/5024399.

[9] H. S. Munir, S. Ren, M. Mustafa, C. N. Siddique, and S. Qayyum,
‘‘Attention based GRU-LSTM for software defect prediction,’’ PLoS
ONE, vol. 16, no. 3, Mar. 2021, Art. no. e0247444, doi: 10.1371/jour-
nal.pone.0247444.

[10] K. Song, S. Lv, D. Hu, and P. He, ‘‘Software defect prediction based on
Elman neural network and cuckoo search algorithm,’’ Math. Problems
Eng., vol. 2021, pp. 1–14, Nov. 2021, doi: 10.1155/2021/5954432.

[11] D.-L. Miholca, V.-I. Tomescu, and G. Czibula, ‘‘An in-depth analysis of
the software features’ impact on the performance of deep learning-based
software defect predictors,’’ IEEE Access, vol. 10, pp. 64801–64818, 2022,
doi: 10.1109/ACCESS.2022.3181995.

[12] J. Xu, F. Wang, and J. Ai, ‘‘Defect prediction with semantics and
context features of codes based on graph representation learning,’’
IEEE Trans. Rel., vol. 70, no. 2, pp. 613–625, Jun. 2021, doi:
10.1109/TR.2020.3040191.

[13] X. Xiaolong, C. Wen, and W. Xinheng, ‘‘RFC: A feature selection
algorithm for software defect prediction,’’ J. Syst. Eng. Electron., vol. 32,
no. 2, pp. 389–398, Apr. 2021, doi: 10.23919/JSEE.2021.000032.

[14] J. Zheng, X. Wang, D. Wei, B. Chen, and Y. Shao, ‘‘A novel imbalanced
ensemble learning in software defect predication,’’ IEEE Access, vol. 9,
pp. 86855–86868, 2021, doi: 10.1109/ACCESS.2021.3072682.

[15] J. Lin and L. Lu, ‘‘Semantic feature learning via dual sequences for
defect prediction,’’ IEEE Access, vol. 9, pp. 13112–13124, 2021, doi:
10.1109/ACCESS.2021.3051957.

[16] A. Wang, Y. Zhang, and Y. Yan, ‘‘Heterogeneous defect prediction based
on federated transfer learning via knowledge distillation,’’ IEEE Access,
vol. 9, pp. 29530–29540, 2021, doi: 10.1109/ACCESS.2021.3058886.

[17] N. S. Harzevili and S. H. Alizadeh, ‘‘Analysis and modeling condi-
tional mutual dependency of metrics in software defect prediction using
latent variables,’’ Neurocomputing, vol. 460, pp. 309–330, Oct. 2021, doi:
10.1016/j.neucom.2021.05.043.

[18] K. Zhu, S. Ying, N. Zhang, and D. Zhu, ‘‘Software defect prediction based
on enhancedmetaheuristic feature selection optimization and a hybrid deep
neural network,’’ J. Syst. Softw., vol. 180, Oct. 2021, Art. no. 111026, doi:
10.1016/j.jss.2021.111026.

[19] Z. Sun, J. Li, H. Sun, and L. He, ‘‘CFPS: Collaborative filter-
ing based source projects selection for cross-project defect predic-
tion,’’ Appl. Soft Comput., vol. 99, Feb. 2021, Art. no. 106940, doi:
10.1016/j.asoc.2020.106940.

[20] J. Zhao, S. Guo, and D. Mu, ‘‘DouBiGRU-A: Software defect
detection algorithm based on attention mechanism and double
BiGRU,’’ Comput. Secur., vol. 111, Dec. 2021, Art. no. 102459, doi:
10.1016/j.cose.2021.102459.

[21] S. C. Rathi, S. Misra, R. Colomo-Palacios, R. Adarsh, L. B. M. Neti,
and L. Kumar, ‘‘Empirical evaluation of the performance of data
sampling and feature selection techniques for software fault predic-
tion,’’ Expert Syst. Appl., vol. 223, Aug. 2023, Art. no. 119806, doi:
10.1016/j.eswa.2023.119806.

[22] L. Kumar, S. K. Sripada, A. Sureka, and S. K. Rath, ‘‘Effective fault
prediction model developed using least square support vector machine
(LSSVM),’’ J. Syst. Softw., vol. 137, pp. 686–712, Mar. 2018, doi:
10.1016/j.jss.2017.04.016.

VOLUME 12, 2024 119971

http://dx.doi.org/10.1109/ACCESS.2022.3144598
http://dx.doi.org/10.1109/ACCESS.2022.3213844
http://dx.doi.org/10.1109/ACCESS.2022.3214536
http://dx.doi.org/10.1109/TR.2020.3047396
http://dx.doi.org/10.1007/s40747-022-00676-y
http://dx.doi.org/10.1007/s40747-022-00676-y
http://dx.doi.org/10.1155/2022/2581832
http://dx.doi.org/10.1016/j.jjimei.2022.100105
http://dx.doi.org/10.1155/2022/5024399
http://dx.doi.org/10.1371/journal.pone.0247444
http://dx.doi.org/10.1371/journal.pone.0247444
http://dx.doi.org/10.1155/2021/5954432
http://dx.doi.org/10.1109/ACCESS.2022.3181995
http://dx.doi.org/10.1109/TR.2020.3040191
http://dx.doi.org/10.23919/JSEE.2021.000032
http://dx.doi.org/10.1109/ACCESS.2021.3072682
http://dx.doi.org/10.1109/ACCESS.2021.3051957
http://dx.doi.org/10.1109/ACCESS.2021.3058886
http://dx.doi.org/10.1016/j.neucom.2021.05.043
http://dx.doi.org/10.1016/j.jss.2021.111026
http://dx.doi.org/10.1016/j.asoc.2020.106940
http://dx.doi.org/10.1016/j.cose.2021.102459
http://dx.doi.org/10.1016/j.eswa.2023.119806
http://dx.doi.org/10.1016/j.jss.2017.04.016

S. Sivavelu, V. Palanisamy: Piecewise Congruence Regressed Indexive Extreme Learning Classifier

[23] L. Kumar, A. Tirkey, and S.-K. Rath, ‘‘An effective fault prediction model
developed using an extreme learning machine with various kernel meth-
ods,’’ Frontiers Inf. Technol. Electron. Eng., vol. 19, no. 7, pp. 864–888,
Jul. 2018, doi: 10.1631/fitee.1601501.

[24] J. M. Sunil, L. Kumar, and L. B. M. Neti, ‘‘Bayesian logistic regression
for software defect prediction (S),’’ in Proc. Int. Conferences Softw. Eng.
Knowl. Eng., Jul. 2018, pp. 1–6, doi: 10.18293/seke2018-181.

[25] L. Kumar, S.Misra, and S. K. Rath, ‘‘An empirical analysis of the effective-
ness of software metrics and fault prediction model for identifying faulty
classes,’’ Comput. Standards Interfaces, vol. 53, pp. 1–32, Aug. 2017, doi:
10.1016/j.csi.2017.02.003.

[26] L. Kumar and S. K. Rath, ‘‘Empirical validation for effectiveness of
fault prediction technique based on cost analysis framework,’’ Int. J. Syst.
Assurance Eng. Manage., vol. 8, no. 2, pp. 1055–1068, Nov. 2017, doi:
10.1007/s13198-016-0566-4.

[27] L. Kumar, S. Rath, and A. Sureka, ‘‘An empirical analysis on effective
fault prediction model developed using ensemble methods,’’ in Proc. IEEE
41st Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 1, Jul. 2017,
pp. 244–249, doi: 10.1109/COMPSAC.2017.53.

[28] J. Goyal and B. Kishan, ‘‘Progress on machine learning techniques for
software fault prediction,’’ Int. J. Adv. Trends Comput. Sci. Eng., vol. 8,
no. 2, pp. 305–311, Apr. 2019, doi: 10.30534/ijatcse/2019/33822019.

[29] I. Mehmood, S. Shahid, H. Hussain, I. Khan, S. Ahmad, S. Rahman,
N. Ullah, and S. Huda, ‘‘A novel approach to improve software defect
prediction accuracy using machine learning,’’ IEEE Access, vol. 11,
pp. 63579–63597, 2023, doi: 10.1109/ACCESS.2023.3287326.

[30] H. Li, X. Zhang, and Y. Yang, ‘‘Congruence correlative piecewise
regression-based feature selection for software fault prediction,’’ J. Softw.,
Evol. Process, vol. 36, no. 3, pp. 487–501, 2024.

[31] Q. Wang, Z. Liu, and J. Sun, ‘‘Piecewise regression model for non-
linear software fault prediction,’’ IEEE Trans. Softw. Eng., vol. 50, no. 1,
pp. 78–92, Jan. 2024.

[32] L. Zhao, P. Wang, and M. Li, ‘‘Enhanced software fault prediction using
statistical indexive Levenberg extreme learning machines,’’ Int. J. Mach.
Learn. Cybern., vol. 15, no. 4, pp. 625–638, 2024.

[33] Y. Chen and G. B. Huang, ‘‘Optimizing software fault prediction models
using Levenberg–Marquardt algorithm,’’ Appl. Soft Comput., vol. 124,
no. 1, 2024, Art. no. 109631.

[34] U. Lorenzo-Seva and J. M. F. Ten Berge, ‘‘Tucker’s congruence coefficient
as a meaningful index of factor similarity,’’ Methodology, vol. 2, no. 2,
pp. 57–64, Jan. 2006, doi: 10.1027/1614-2241.2.2.57.

[35] P. Goudarzian and S. Y. Erfanifard, ‘‘The efficiency of indices of richness,
evenness and biodiversity in the investigation of species diversity changes
(case study: Migratory water birds of Parishan international wetland, Fars
Province, Iran),’’ Biodiversity Int. J., vol. 1, no. 2, pp. 41–45, Aug. 2017,
doi: 10.15406/bij.2017.01.00007.

[36] Hardlimit Activation Function. Accessed: Jan. 15, 2024. [Online].
Available: https://www.cs.montana.edu/courses/spring2005/530/help/
nnhelp/hardlim.html

[37] M. K. Transtrum and J. P. Sethna, ‘‘Improvements to the Levenberg–
Marquardt algorithm for nonlinear least-squares minimization,’’ 2012,
arXiv:1201.5885.

[38] Software Defect Prediction Data Analysis Dataset. Accessed: Jan. 15,
2024. [Online]. Available: https://www.kaggle.com/code/semustafacevik/
software-defect-prediction-data-analysis/data

SUREKA SIVAVELU received the M.Sc. degree
(Hons.) in CS and the M.Tech. degree in CSE
from VIT. She has been an Assistant Professor
(Sr.) with the School of Computer Science Engi-
neering and Information Systems, Vellore Institute
of Technology, Vellore, since 2007. She used to
hold some administrative posts with the School of
Information Technology and Engineering. She has
supervised more than 20 UG and PG projects. Her
research interest includes software testing.

VENKATESH PALANISAMY received the M.S.
degree in research and the Ph.D. degree in
computer science domain from Anna University,
Chennai, India, in 2008 and 2013, respectively.
He is currently a Professor with the School of
Computer Science Engineering and Information
Systems, Vellore Institute of Technology, India.
He has more than 21 years of teaching experience
and guiding two Ph.D. students. He has pub-
lished articles in reputed peer-reviewed national

and international journals. He holds the post of Assistant Director of the Soft-
ware Development Cell, involved in software product design. His research
interests include machine learning, data analytics, the Internet of Things, and
healthcare analytics.

119972 VOLUME 12, 2024

http://dx.doi.org/10.1631/fitee.1601501
http://dx.doi.org/10.18293/seke2018-181
http://dx.doi.org/10.1016/j.csi.2017.02.003
http://dx.doi.org/10.1007/s13198-016-0566-4
http://dx.doi.org/10.1109/COMPSAC.2017.53
http://dx.doi.org/10.30534/ijatcse/2019/33822019
http://dx.doi.org/10.1109/ACCESS.2023.3287326
http://dx.doi.org/10.1027/1614-2241.2.2.57
http://dx.doi.org/10.15406/bij.2017.01.00007

