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ABSTRACT Integrating Internet of Things (IoTs) devices with secure smart home networks assisted by
the cloud signifies a cutting-edge and potent tool for contemporary home automation. This allows various
appliances and devices in a home remotely controlled by the internet to communicate and share data.
The typical smart home system depends on the cloud service or centralized server, which makes them
further vulnerable to potential security breaches and single points of failure. As a decentralized nature,
Blockchain (BC) distributes the control and storage of data across the network, preventing unauthorized
attacks. Integrating BC technology into the protected smart home network boosts the system’s dependability,
safety, and privacy. In addition, machine learning (ML) and analytics offer behaviour analysis and predictive
maintenance for optimized energy consumption. Finally, combining IoT with cloud-assisted security trans-
forms homes into smart, connected ecosystems, offering convenience without integrating confidentiality or
dependability. Accordingly, this study presents a BC-based Deep Learning in the Secure Smart Home
Network (BPDL-SSHN)methodology in the IoT-cloud platform. In the BPDL-SSHNmethodology, BC tech-
nology permits secret proficient data from the smart home network. Furthermore, the BPDL-SSHN method
follows a series of processes to detect malicious activities such as Binary Fox Optimization Algorithm
(BFOA) based feature selection, Attention-based Long Short-TermMemory (ALSTM)-based classification,
and Harbor Seal Whiskers Optimization (HSWO)-based hyperparameter tuning. The HSWO method’s
design helps better the hyperparameter choice of the ALSTM method, significantly enhancing the recog-
nition performance. The comparative outcome of the BPDL-SSHN methodology reported the proficient
solution of the smart home network to detect and monitor malicious or harmful activities. The experimental
outcome implied that the BPDL-SSHN methodology accomplishes a maximum accuracy performance
of 98.91% over other approaches.

INDEX TERMS Internet of Things, blockchain, hyperparameter tuning, deep learning, binary fox optimiza-
tion algorithm.

I. INTRODUCTION
The modern world arises with smart technologies that can
function in smart homes to improve the quality of life [1].
Smart appliances are linked to sharing information, where
the Smart devices are connected through the IoT. The aver-
age development rate of smart residences and their tools
was over 30%, from 500 to 700 million uses annually
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from 2018 to 2022. Five significant features are connected
to smart home safety and confidentiality to enhance the con-
sistency of smart device data removal [2]. Authentication is
the first one, which aids in validating the communication
format. Authorization is the second one that confirms the
access rights. Confidentiality that preserves the data privacy
by permitting access to the certified consumer [3]. Integration
is the fourth one, which assists in reducing data damage
and upholding the data in a precise way. Availability is the
last one that offers obtainable access to certified consumers
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who are secure from dangers. Therefore, a smart home net-
work is complex to safety attacks due to the many related
devices. In these circumstances, a supervised technique for
data analysis produced by the IoT network could be moder-
ately beneficial [4].

BC-type methods and united cloud-like computing sys-
tems are utilized to resolve these issues. BC design contains
a sequence of blocks connected and organized by easy cryp-
tography. BC models are primarily characterized by three
key concepts: decentralization, transparency, and immutabil-
ity [5]. The three parts are effectual, revealing them to various
digital currency techniques like embedded systems, mobile
transports, and phones. Whereas the BC platform is safe
and mysterious, there are a few problems with its current
execution. For instance, Sybil’s assaults by groups of wrong
identities to deploy the group have become difficult [6]. Since
regular techniques only aspect at the signs and do not function
on examining for numerous precise forms, robust intrusion
detection systems (IDSs) have been vital to scrutinize the con-
ditions. RTS-DELM is an ML model employed to evaluate
data. This ML platform uses an automatic data flow structure
to define data flow and discover attack and intrusion forms.
Generating significant and valuable systems to control the
frequently developing smart BC-based uses is substantial [7].
ML is a technique that contains computers that demon-

strate themselves utilizing an intelligent system. Based on
a unique argument, ML is the primary use circumstance
of artificial intelligence (AI). The central concept of ML
is to resolve challenges without being automated [8] and
enhance a genuine method that will obtain data from an
input estimate and vary the outputs by utilizing arithmeti-
cal analysis. By using ML, one can develop a vast number
of data and reach a decision based on realities. Integrating
robust security and confidentiality factors in smart home
networks is to address the convolutional security threats pre-
sented by interrelated devices within the IoT ecosystem [9].
Authorization, integration, authentication, availability, and
confidentiality ensure privacy, accessibility, and data integrity
for authorized users, which is significant for safeguarding
against potential safety challenges and ensuring the reliable
operation of smart home environments. By employing BC
technology, characterized by transparency, decentralization,
and immutability, these threats can be effectually reduced,
improving safety measures against outbreaks such as Sybil’s
assaults and confirming trustworthy data management across
several digital platforms [10].

This study presents a BC-based Deep Learning in the
Secure Smart Home Network (BPDL-SSHN) methodology
in the IoT-cloud platform. In the BPDL-SSHN methodol-
ogy, BC technology permits secret proficient data from the
smart home network. Furthermore, the BPDL-SSHN method
follows a series of processes to detect malicious activities
such as Binary Fox Optimization Algorithm (BFOA) based
feature selection, Attention-based Long Short-TermMemory
(ALSTM)-based classification, and Harbor Seal Whiskers
Optimization (HSWO)-based hyperparameter tuning. The

HSWO method’s design helps better the hyperparameter
choice of the ALSTM method, significantly enhancing the
recognition performance. The comparative outcome of the
BPDL-SSHN methodology reported the proficient solution
of the smart home network to detect and monitor malicious
or harmful activities. The contribution of the BPDL-SSHN
method is listed below:

• The proposed BPDL-SSHN technique employs the
BFOA model for feature selection, which contributes
to the method’s capacity to detect the most relevant
features. This paves the way for enhanced classification
accuracy and mitigated computational complexity.

• The ALSTM-based classification model improves the
accuracy of the technique by utilizing attention mecha-
nisms, enabling the approach to concentrate on the most
informative features and make accurate classifications,
enhancing the overall accomplishment.

• The integration of the HSWO model for hyperparam-
eter tuning contributes to the efficient optimization
of method parameters, paving the way to improved
robustness and generalization. This enhances the tech-
nique’s adaptability to diverse datasets and overall
accomplishment.

• The novelty of the BPDL-SSHN method is in its
novel incorporation of the BFOA for feature selection,
ALSTM for classification, and HSWO for hyperparam-
eter tuning. This overall model not only addresses the
threats of feature selection, hyperparameter optimiza-
tion, and classification accuracy but also portrays the
adaptability of the technique and robustness in handling
various datasets. The novel utilization of nature-inspired
optimization models for several phases of the method
sets it apart as an overall and efficient outcome for
pattern detection and classification tasks, underscoring
its potential for wide-ranging ML and data evaluation
applications.

II. LITERATURE REVIEW
Almuqren et al. [11] developed a BC-based Secure Smart
Home Network employing Gradient-Based Optimization
with a Hybrid DL (BSSHN-GBOHDL) technique. This
method utilizes BC technology. This model uses data prepro-
cessing, GBO-based hyperparameter tuning, and hybrid DL
(HDL) based classification. In [12], a BC-based DL method
was introduced by employing smart contract-based improved
proof of words (PoWs). Subsequently, a DL model with a
Variational Autoencoder (VAE) method for privacy and BiL-
STM in intrusion detection was developed. Nguyen et al. [13]
examined the security and computational offloading issues
concurrently in amulti-userMECCOmodel with BC. Primar-
ily, a reliable access control method was presented employing
BC. Secondarily, the model develops computational offload-
ing issues by collectively improving the offloading solutions,
utilizing innovative contracts, and distributing radio band-
width and computational resources.
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In [14], a robust architecture was introduced by employing
an isolation forest (IF) method. Afterwards, the database
was used for training categorization methods: quadratic
discriminant analysis (QDA), KNN, SVM, and linear
discriminate analysis (LDA). Additionally, an interplane-
tary file system (IPFS) was employed for classification.
Jadav et al. [15] designed a BC and onion routing (OR)
based reliable and protective architecture. An LSTM network
is applied for classification. In [16], a trivial authentica-
tion method was developed. A particular server queuing
architecture and authentication method is also employed.
Badshah et al. [17] intended to combine IoT with BC by
presenting an intermediate layer of the IoT. Consequently,
an intelligent BC-assisted IoT (BIoT) architecture was devel-
oped. Additionally, numerous real-time BIoT-specific cases
were emphasized and relatively analyzed.

In [18], the honeypot and BC-based intrusion detection
and prevention (HB-IDP) technique is developed. Firstly,
three-fold authentication was executed using the camel-
lia encrypted algorithm (CEA), which offers secret keys.
Signature-based intrusion detection was achieved through
the improved IF (IIF) method. Ensemble learning systems,
comprising lightweight-CNN (LCNN), general adversarial
network (GAN), and multi-layer perceptron (MLP), are
implemented for classification. Doe et al. [19] employed
an incentive mechanism contract-theoretic approach is pro-
posed. This technique also suggests a discrete incentive
customized to the user’s revenue-generating capability and
contributions to funding network incentives. Reference [20]
suggests a BC-based security method comprising gathering
discrete datasets and establishing active and redundantminers
to collect these sets. The Mayfly Optimizer (MO) method
determines the miner count. Afraz et al. [21] present a model
using BC-based solutions and selecting an appropriate BC
platform. Dansana et al. [22] suggest a multi-step model com-
prising deep CNN (dCNN). The approach also implemented
a Proof-of-Trust (PoT) consensus mechanism and Genetic
Algorithm (GA) model-based sidechaining technique.

III. THE PROPOSED MODEL
This study presents a new BPDL-SSHN technique in the
IoT-cloud environment. In the BPDL-SSHN technique,
BC technology is applied, which enables the data to be
collected confidentially in the smart home network. Addition-
ally, the BPDL-SSHN method follows a series of processes
to detect malicious activities, such as BFOA-based fea-
ture selection, ALSTM-based classification, and HSWO
method-based hyperparameter tuning. Fig. 1 depicts the
entire process of the BPDL-SSHN method.

A. BC TECHNOLOGY
In the BPDL-SSHN technique, BC technology is applied,
which enables the data to be collected confidentially in the
smart home network. BC technology allows users to keep
records of transaction details and update them once there is

FIGURE 1. The overall procedure of the BPDL-SSHN method.

a new transaction to ensure consistency [23]. BC provides
high accountability and guarantees the transaction authority
by keeping a register on the nodes that authenticate the trans-
action and distributing that register to the overall network.
Due to the advances in encryption and internet technologies,
it becomes possible for the user to validate the responsibil-
ity of the transaction, such that a single point of failure is
removed and dependency on an authorized third party can
be resolved. The advantage of constructing an intelligent
machine is that it can operate and communicate over the BC.

Permanent records can be tracked as data once the data
transaction occurs through multiple networks managed and
owned by various organizations. Inherently, the BC record is
transparent. Through network access, anyone can analyze and
track each activity. Furthermore, the functionality of ‘‘smart
contract’’ given by some BC networks, viz., Ethereum,
enables the creation of a contract that runs when the condition
is met. It provides the control back to the user and is no
longer necessary for the strong central authority. Promising
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technologies such as IoT and BC are widely adopted in the
public and industry sectors. The stimulating aspect of BC is
that information is entirely decentralized and not stored in a
single central point. In addition, BC provides the benefits of
cost-effectiveness and traceability for supply chain manage-
ment. It tracks the movement of quantity, origin, goods, etc.

The network validates that the new transaction is authori-
tative to guarantee that a legitimate transaction is added to the
BC and further prevents the invalidation of prior transactions.
When the networked computer has obtained agreement on the
authority of the transaction, a new data block is added to BC.
The blocks are placed permanently once they are added to
the ledger, and transactions included in the block are verified
and accessed by each user on the network. Like distributed
data, the BC is the structured list that stores information.
It is easy to handle as the participant in the network stores
and verifies BC. The body part contains transactions. The
indexing technique was employed to retrieve the block data.
The header comprises the hash value of the prior and present
block, a timestamp, and a nonce.

B. FEATURE SELECTION
BFOA can apply the BPDL-SSHN technique for the fea-
ture selection process. The hunting performance of foxes
stimulates the FOX optimizer procedure [24]. It contains
approaches for evaluating the space between the fox and its
victim, allowing effective jumps in the optimizer procedure.
The method computes a novel location for the fox depending
on factors like direction range, jump value, and space to the
target. The system mimics the red fox’s plan of arbitrarily
examining victims in snow climate situations by trusting
its capability to get the ultrasound released by the target.
By reviewing the sound, the fox guesses the distance to the
victim and computes the exact jump wanted to arrest it. The
FOX procedure sets a populace of search agents signified by
thematrix and estimates their fitness using a benchmark func-
tion. It stables exploitation and exploration stages employing
a random parameter, and optimum fitness and location values
are defined during the iteration. It slowly reduces the search
performance depending upon the finest location, allowing
the actual exploration and initiation of dissimilar stages. The
FOX-optimizer method is applied for the range of significant
feature selection.

Eight dissimilar two variations of the FOXoptimizermodel
have been developed and applied to optimize the cost function
value for FS. It is intended by employing Eq. (1).

CF= −(a× Acc+ b×F1 + c× AS − d×(CSF/FSD).

(1)

Here, CF is said to be a cost function estimated by con-
straint specified in Eq. (2), Where asa, b, c, and d denote the
weights hyperparameter for the cost function.

a+ b+ c+ d = 1. (2)

The search procedure consequences in novel locations for
the red fox are in nonstop form. But the nonstop position

wants to be changed into dual values. This can be attained by
using V - and S-shaped transfer functions to all dimensions.
It directs the red fox to transfer to two places. Four sig-
moidal (S-shaped) transfer functions are employed to adapt
the fundamental ethics of the fox location into prospect values
ranging from zero to one.

S1 → T
(
X ki (u)

)
=

1

1 + e−2X ki (u)
(3)

S2 → T
(
X ki (u)

)
=

1

1 + e−X
k
i (u)

(4)

S3 → T
(
X ki (u)

)
= 1/(1+e(−X

k
i (u)/2)) (5)

S4 → T
(
X ki (u)

)
= 1/(1+e(−X

k
i (u)/3)) (6)

Here, X ki designates the location of ith red-fox with
uth iteration at k th variable. The constant values are trans-
formed into dual forms depending upon the state in Eq. (7).
rand is an arbitrary integer within (0,1).

X ki (u+ 1) =

 1 : rand ≥ T
(
X ki (u)

)
0 : rand < T

(
X ki (u)

) (7)

Likewise, four V -shaped transfer functions are provided
below.

V1 → T
(
X ki (u)

)
=

∣∣∣erf (√π/2X ki (u))
∣∣∣ (8)

V2 → T
(
X ki (u)

)
=

∣∣∣tanh (
X ki (u)

)∣∣∣ (9)

V3 → T
(
X ki (u)

)
=

∣∣∣∣X ki (u)/√1 + X ki (u)

∣∣∣∣ (10)

V4 → T
(
X ki (u)

)
=

∣∣∣∣∣∣∣∣
2

(
arctan

(
πX ki (u)

2

))
π

∣∣∣∣∣∣∣∣ (11)

If the rand value is less, all binary values in the location
vector are reversed; otherwise, the fox location does not alter
from the latter iteration.

X ki (u+ 1) =

X ki : rand ≥ T
(
X ki (u)

)
(X ki )

−1
: rand < T

(
X ki (u)

) (12)

C. CLASSIFICATION USING ALSTM
At this stage, the ALSLTM-based classification process is
utilized. As a specific architecture of RNN, LSTM networks
have gained popularity for predicting time-series data [25].
This is indispensable for the LSTM to selectively transfer
information, addressing problems like exploding and vanish-
ing gradients during backpropagation. The forget, input and
output gates are the three significant gates of LSTM.

At first, the forget gate defines which information must be
discarded in the cell state.

ft = σ
(
Wf × [ht−1, xt ] + bf

)
(13)
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In Eq. (13), the prior hidden layer output is represented
as ht−1,W , and b are the weight matrix and bias, correspond-
ingly, and xt refers to the existing input, with σ sigmoid
activation.

FIGURE 2. Structure of ALSTM.

Then, the input gate adopts the data maintained in the cell
state:

it = σ (Wi × [ht−1, xt ] + bi) (14)

C̃t = tanh (WC × [ht−1, xt ] + bC ) (15)

The existing state of a neuron is derived:

Ct = ft−1Ct−1 + it−1C̃t (16)

The output gate determines the last output. The sigmoid
function assesses that part of the cell layer to allocate to the
output:

ot = σ (Wo × [ht−1, xt ] + bo) (17)

ht = ot × tanh (C) (18)

The LSTM can detect the pattern over time, which makes
it especially valuable for seizure detection in a biomedi-
cal context. This model exploits an LSTM layer containing
128 units. The model is fine-tuned for better performance
with the categorical-cross entropy loss function and ‘‘Adam’’
optimizer, which is suitable for multi-class classification.

The attention mechanism (AM) is a good idea for upgrad-
ing the significance of vital data stimulated by the human
visual method [26]. When human vision perceives whatever
is in the atmosphere, it does not regularly see an act from
start to finish but somewhat concentrates on an exact part
as required. Depending upon this, the AM selectively con-
centrates on some of the most significant data, dismisses
unwanted data, and increases necessary information. AM is
usually employed in earthquake prediction, machine transla-
tion, and image captioning. AM performs depend upon the
weight allocation, defining the effectual data by allocating
greater weights. As an outcome, it has a positive optimizer
effect on the traditional techniques. The calculating attention
contains three phases. Fig. 2 represents the infrastructure of
ALSTM. Initially, the resemblance or association between the
Query and every Key is intended as follows:

st= tanh (Whht + bh) (19)

where st denotes the score of attention. bh and Wh refer to
the bias and weight of AM, respectively. ht represents an
input vector. During the next phase, the score acquired from
the first phase is regularized, and the softmax function is
used to transform the score of attention as assumed in the
formulation:

at =
exp (st)∑
t exp (st)

(20)

As regards the weight constant, the last attention value has
been attained by the weighted total value as presented in the
formulation:

s =

∑
t

atht (21)

Generally, AM is utilized after the LSTM model to con-
centrate on the features affecting output variables, increasing
the model’s performance.

D. HSWO-BASED HYPERPARAMETER TUNING
Finally, the design of the HSWO technique helps in the
optimal hyperparameter selection of the ALSTM model.
HSWOA is a biologically inspired optimization method
derived from the strong sensing capability of seal whiskers
in chasing the target [27]. Unlike humans, most of the
mammals have whiskers. Since the base of seal whiskers is
densely packed with nerve endings, these wiry, dense hairs
are susceptible to each movement. Like a seal, a marine
animal can sense and observe the object through whiskers;
however, it senses vibration in the water. Typically, mam-
mals have uniform, roundly shaped whiskers. However, most
seal species have irregular and wavy-shaped whiskers. The
whisker vibrates only in response to hydrodynamic trails.
Although they lack a lateral-line system, the Harbor Seal uses
their whiskers to track underwater disturbance and find prey.

Whiskers moving together send signals to the nerves car-
ried to the harbour seal’s brain, which is stimulated by the
water flow. This allows the seal to interpret and process com-
plicated environments. The whisker’s elliptical cross-section
enables it to differentiate the angle of attack from the water
flow.

The zero-attack angle represents the primary axis of an
ellipse and is parallel to the incoming flow. When the water
flow is coming from different directions, the whiskers will
have various characteristic diameters, which leads to drag
pressure on the whiskers. Drag forces will be conveyed to
cheek tension at the bottom of the whisker since there are no
nerves within the whiskers, which generates sensory signals
for the harbour seal.

1) EXPLORATION MODE
At a certain sensing velocity, the harbour seal explores the
search range to attack the prey using whiskers. While tracing
underwater vibration, the seals hold their whiskers up and
away from their faces. The prey movement stirs up the
water. The seal’s whisker picks up the hydrodynamic trails
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the prey leaves, which follow the prey’s trails. This enables
us to define the prey’s direction, proximity, and size. The
angular frequency, the oscillating sphere diameter, and the
displacement amplitude are s, d, and ω, correspondingly
formulated by:

vi =
M
2π

(
2X2

i
− D2

)
(x2i + D2)5/2

(22)

Ms = 2πωsd3sin (ωt) (23)

where the distance between seals and prey is represented as
D, xi refers to the seal’s location. The time harbour seals take
to sense the underwater disturbance of prey is defined as t .

2) EXPLOITATION MODE
After the update, the seals exploit the potential location of the
prey in this mode. The updated sensing velocity is formulated
by:

vk+1
i = Lr1vki + bQr2

(
GPbest − xki

)
+ aQr3

(
LPbest,i − xki

)
(24)

L = ab∗
1√

b2sin2Q+ a2cos2Q
(25)

a = 0.14sin (0.92n+ 1.5π) + 1 (26)

b = 0.067sin (0.91n+ π) − 0.0041n+ 0.64 (27)

Here , a and b are the length of the major and minor axes
of the ellipse, L denotes the ellipse diameter, r1, r2, and r3 are
randomly generated integers, the count of cross sections of
one whisker refers to n, and the flowing water attack angle
is Q.

The updated location of the seal is

xk+1
i = xki + vk+1

i (28)

The HSWO method develops a fitness function (FF) for
greater classification efficiency. It defines the positive integer
to represent the higher outcomes of the solution candidate.
In this study, the decline of the classifier error rate is consid-
ered the FF.

fitness (xi) = ClassifierErrorRate (xi)

=
No. of misclassified instances

Total No. of instances
× 100 (29)

IV. RESULT ANALYSIS
This section examines the performance validation of the
BPDL-SSHN technique using the NSL-KDD dataset [28].
The dataset includes 126238 samples with two class labels,
as represented in Table 1.

TABLE 1. Details on database.

Fig. 3 displays the confusion matrices produced by
the BPDL-SSHN approach under 80:20 and 70:30 of
TRPH/TSPH. The outcomes specify the effective recognition
of the normal and attack samples with all classes.

FIGURE 3. Confusion matrices of (a-b) 80:20 of TRPH/TSPH and
(c-d) 70:30 of TRPH/TSPH.

Table 2 shows the overall detection analysis of the
BPDL-SSHN approach under 80:20 of TRPH/TSPH.

TABLE 2. Detection outcome of BPDL-SSHN technique under 80:20 of
TRPH/TSPH.

In Fig. 4, the training results of the BPDL-SSHN technique
are stated under 80% of TRPH. These outcomes showcase
that the BPDL-SSHNmethod offers capable detection of nor-
mal and attack classes. With normal class, the BPDL-SSHN
technique obtains an increased accuy of 99.51%, precn of
98.88%, recal of 98.82%, Fscore of 98.85%, and MCC of
97.70%. Meanwhile, based on attack class, the BPDL-SSHN
method gets improved accuy of 98.13%, precn of 99.47%,
recal of 98.13%, Fscore of 98.80%, and MCC of 97.70%.
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FIGURE 4. Detection outcome of BPDL-SSHN technique under 80%
of TRPH.

In Fig. 5, the testing outcomes of the BPDL-SSHNmethod
can be described on 20% of TSPH. These findings highlight
that the BPDL-SSHN method achieves efficient detection of
normal and attack classes. According to normal class, the
BPDL-SSHN technique achieves raised accuy of 99.47%,
precn of 98.47%, recal of 99.47%, Fscore of 98.97%, and
MCC of 97.86%. Besides, with attack class, the BPDL-SSHN
technique gains increased accuy of 98.34%, precn of 99.43%,
recal of 98.34%, Fscore of 98.88%, and MCC of 97.86%.

FIGURE 5. Detection outcome of BPDL-SSHN technique under 20%
of TSPH.

Table 3 reports the overall detection analysis of the
BPDL-SSHN technique at 70:30 TRPH/TSPH. In Fig. 6,
the training outcomes of the BPDL-SSHN technique can be
determined under 70% of TRPH. These results show that the
BPDL-SSHNmethod effectively identifies normal and attack
classes. Based on normal class, the BPDL-SSHN method
acquires a higher accuy of 99.03%, precn of 97.34%, recal of
99.03%, Fscore of 98.18%, and MCC of 96.21%. Also, based
on the attack class, the BPDL-SSHN technique attains raised
accuy of 97.10%, precn of 98.94%, recal of 97.10%, Fscore of
98.01%, and MCC of 96.21%.

TABLE 3. Detection outcome of BPDL-SSHN technique under 70:30 of
TRPH/TSPH.

FIGURE 6. Detection outcome of BPDL-SSHN technique under 70%
of TRPH.

In Fig. 7, the testing analysis of the BPDL-SSHN technique
is informed with 30% of TSPH. The acquired outcomes
indicate that the BPDL-SSHN technique automatically rec-
ognizes normal and attack classes. According to normal
class, the BPDL-SSHN technique obtains improved accuy of
98.97%, precn of 97.29%, recal of 98.97%, Fscore of 98.12%,
and MCC of 96.06%. In the meantime, with attack class, the

FIGURE 7. Detection outcome of BPDL-SSHN model under 30% of TSPH.
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BPDL-SSHN approach gets an increased accuy of 96.99%,
precn of 98.86%, recal of 96.99%, Fscore of 97.92%, and
MCC of 96.06%.

The accuy curves for training (TR) and validation (VL)
displayed in Fig. 8 for the BPDL-SSHN method on 80:20 of
TRPH/TSPH provides valued insights into its effectiveness
with diverse epochs. Mainly, it can be a reliable improvement
in both TR and TS accuy with increased epochs, representing
the model’s proficiency in learning and recognizing patterns
in the data of TR and TS. The upward trend in TS accuy
emphasizes the model’s flexibility to the TR dataset and
ability to produce correct predictions on unnoticed data,
underscoring capabilities of robust generalization.

FIGURE 8. Accuy curve of BPDL-SSHN technique under 80:20 of
TRPH/TSPH.

Fig. 9 illustrates an extensive overview of the TR and
TS loss values for the BPDL-SSHN method under 80:20 of
TRPH/TSPH through numerous epochs. The TR loss con-
stantly diminishes as the model refines its weights to decrease
classification errors under both datasets. The loss curves show
the model’s alignment with the TR data, emphasizing its abil-
ity to capture patterns successfully. The continued refinement
of parameters in the BPDL-SSHN approach is significant and

FIGURE 9. Loss curve of BPDL-SSHN technique under 80:20 of
TRPH/TSPH.

is targeted at lessening discrepancies between predictions and
actual TR labels.

Fig. 10 illustrates the classifier analysis of the BPDL-SSHN
method with 80:20 and 70:30. Figs. 10a-10c represents the
PR analysis of the BPDL-SSHN method. These accom-
plished findings indicated that the BPDL-SSHN method
offers higher values of PR. Additionally, it is perceptible
that the BPDL-SSHN technique can obtain higher PR values
for each class. Lastly, Figs. 10b-10d shows the ROC analy-
sis of the BPDL-SSHN technique. This figure defined that
the BPDL-SSHN technique provides increased ROC values.
Also, the BPDL-SSHN technique can extend enriched ROC
values in all classes.

FIGURE 10. (a-b) PR and ROC curves of 70:30 and (c-d) PR and ROC
curves of 80:20.

In Table 4 and Fig. 11, the performance of the
BPDL-SSHN method can be compared with other mod-
els [11]. The simulated outcomes exhibit that the ANN-based
IDS and GAN models obtain poor performance. At the same
time, the DELM, RTS-DELM, SYD, and DNN models per-
form moderately well. Meanwhile, the BSSHN-GBOHDL

TABLE 4. Comparison analysis of BPDL-SSHN approach with other
methods.
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FIGURE 11. Comparative outcome of BPDL-SSHN technique with other
methods.

model reaches near-optimal performance. However, the
BPDL-SSHN technique results in superior performance with
maximum results with accuy of 98.91%, precn of 98.95%,
recal of 98.91%, and Fscore of 98.92%.

Table 5 and Fig. 12 compare the BPDL-SSHN technique’s
computation time (CT) results with recent techniques. These
results show that the BPDL-SSHN technique gains better per-
formance with a minimal CT of 4.10s. On the other hand, the

TABLE 5. CT analysis of BPDL-SSHN technique with other methods.

FIGURE 12. Comparative outcome of BPDL-SSHN method with recent
models.

BSSHN-GBOHDL, ANN-based IDS, GAN, DELM, RTS-
DELM, SYD, and DNN methods acquire increased CT
outcomes. These accomplished outcomes depicted the supe-
rior solution of the BPDL-SSHN approach.

V. CONCLUSION
This study introduced a novel BPDL-SSHN technique in
the IoT-cloud environment. In the BPDL-SSHN technique,
BC technology is applied, which enables the data to be
collected confidentially in the smart home network. Addition-
ally, the BPDL-SSHN method follows a series of processes
to detect malicious activities, such as HSWO method-based
hyperparameter tuning, ALSTM-based classification, and
BFOA-based feature selection. The design of the HSWO
technique helps in the optimal hyperparameter selection of
the ALSTM network, significantly enhancing the detection
performance. The comparative analysis of the BPDL-SSHN
technique reported the proficient performance of the smart
home network in monitoring and detecting harmful or mali-
cious activities. The experimental findings stated that the
BPDL-SSHN method achieves better results than other tech-
niques. The limitations of the BPDL-SSHN method include
scalability and adaptability to diverse atmospheres, which
remain a potential threat. Future research could focus on
scalability, real-time recognition, and privacy augmentation
to widen its applicability in varied smart home contexts.
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