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ABSTRACT There is a growing need for systems that can be used to effectively detect and classify
intrusions in extensive network data exchanges. To this end, we proposeHi-MLIC, a hierarchical multilayer
lightweight intrusion classification model that has been designed to address various intrusion types. This
study highlights the challenges involved in classifying intrusions due to data imbalance across different
types of intrusion data along with the complex nature of consolidating multiple benchmark datasets into
cohesive datasets for real-time detection. To address these issues, we consolidated packet capture data
from two widely used benchmark datasets, CIC-IDS2017 and UNSW-NB15, into two newer and more
comprehensive datasets, CM-CIC-IDS2017 and CM-UNSW-NB15, respectively. This consolidation enables
the identification and classification of a broader range of intrusion types. Our hierarchical approach achieves
improved classification accuracy by effectively addressing the class imbalance that is inherent in non-
hierarchical models. Layer-1 separates network traffic into benign and malicious categories. Layer-2 further
classifies malicious traffic into four groups, while Layer-3 identifies 23 specific intrusion types. We reduced
the model complexity and processing time by performing misclassification analysis and eliminating
unnecessary features. Our model ultimately achieved a recall metric of up to 98.8%, thus demonstrating
its effectiveness and efficiency in intrusion detection and classification. Altogether, the proposed Hi-MLIC
represents a significant advancement in addressing the challenges of real-time network intrusion detection.

INDEX TERMS Network intrusion detection, hierarchical classification, lightweight model, data format
conversion, data consolidation, machine learning, feature selection.

I. INTRODUCTION
Intrusion detection systems (IDS) play a critical role in
cybersecurity, specifically through protecting network infras-
tructure by identifying malicious activities and potential
security breaches. These systems monitor and analyze net-
work traffic to detect anomalies and suspicious patterns that
could indicate an ongoing or imminent cyber intrusion [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Ni.

In this context, the present study aims to create a lightweight
classification model for real-time detection that is capable of
both detecting and classifying various intrusion types.

Packet capture (PCAP) data, which contains a record of
all system interactions, serves as a comprehensive source of
information in IDS [2]. However, PCAP data is unsuitable
for use in real-time detection due to processing time and
storage capacity constraints. Therefore, we used the CIC-
IDS2017 [3] and UNSW-NB15 [4] datasets to extract useful
information from PCAP data and provide more kinds of
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recent intrusion types. A data format conversion process was
used to consolidate these two datasets to ensure that the data
were in a suitable format for intrusion detection and to enable
the detection of various intrusion types.

While the consolidated dataset could handle more kinds of
intrusion types, overlapping intrusion types were discovered
while merging the two datasets, and these overlaps resulted
in classification errors. Class imbalance issues were also
identified, either where malicious intrusions were underrep-
resented compared to benign data or where certain intrusion
types were overly prevalent. This imbalance in the data
made it difficult to effectively classify less frequent intrusion
types. To solve these problems, we introduced a hierarchical
multi-layer approach Hi-MLIC to solve data imbalance and
design an effective classification model. Further, various
feature selection techniques were considered to streamline
information gathering with the ultimate aim of enhancing
real-time detection.

Three feature selection methods have been implemented
with the ultimate aim of achieving a lightweight model with
fast classification capabilities that are suitable for real-time
detection. These methods target the removal of features that
contribute to misclassification, thus ensuring that only crucial
features are retained. This strategic elimination process
ultimately enhances the efficiency of themodel by facilitating
rapid and accurate classification.

Through this process, we propose a hierarchical intrusion
classification model that identifies various intrusion types
based on rich information and contributes to real-time
detection.

In summary, we first converted the raw PCAP data
from two popular benchmark datasets into their respective
formats and then merged the converted data within each
format, resulting in two new datasets. This approach
facilitates the detection and classification of more kinds
of intrusion types by preprocessing and integrating PCAP
data from both datasets. Secondly, we implemented a
hierarchical multilayer approach to enhance the accurate
classification of specific intrusion types. This approach
aims to mitigate misclassification rates stemming from
the imbalance between benign and malicious data, which
us primarily caused by the prevalence of benign traffic.
Altogether, we built a lightweight model for real-time and
efficient processing that considers more kinds of intrusion
types by eliminating unnecessary features that lead to
misclassification.

The rest of the paper proceeds as follows: Section II
discusses previous studies on NIDS systems along with prior
studies involving CIC-IDS2017 and UNSW-NB15 datasets.
Section III explains the dataset creation and preprocessing,
hierarchical multilayer approach, and feature selection meth-
ods. Section IV presents experimental results demonstrating
the advantages of the hierarchical multilayer approach and
analyzes the selected features. Section V offers a discussion
of future directions for further research. Finally, Section VI
summarizes this study.

II. RELATED WORKS
A. SELECTING AND PREPARING PCAP-BASED DATASETS
FOR VARIOUS INTRUSION ANALYSES
In [5], various datasets that can be used to train network
intrusion detection models were compared and analyzed.
We focused on investigating datasets that effectively reduce
the size of large-scale PCAP data while also providing
various intrusion types, thus emphasizing datasets that are
particularly suitable for IDS applications. The prior study
examined datasets such as CIC-IDS2017, DARPA, KDD
CUP 99, NSLKDD, and UNSW-NB15. In the current study,
we evaluated various datasets such as those mentioned,
and we ultimately decided to use the CIC-IDS2017 and
UNSW-NB15 datasets. These datasets are sufficient for
modern cybersecurity, they have been extensively employed
in various study experiments, and they offer detailed insights
into packet data and transformation processes.

Reference [3] captured all incoming and outgoing traffic
on the main switch of the victim network’s major switches
and generated packet capture files for the CIC-IDS2017
dataset. Raw logs in PCAP format can be reconstructed
into flow-based datasets using the CICFlowMeter sensor
proposed in the paper. The CIC-IDS2017 dataset includes
various intrusion types, such as DoS, DDoS, Brute Force,
XSS, SQL Injection, Infiltration, Port scan, and Botnet
intrusions.

Reference [4] connected each server through a router
and captured network traffic from the router to create a
packet capture file of UNSW-NB15. This PCAP file can be
reconstructed into a Flow-based Dataset using the Argus and
Bro Sensors proposed in the study. The UNSW-NB15 dataset
contains the following intrusion types: Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shell-
code, and Worms.

CIC-IDS2017 is the dataset related to flow time-related
statistics and contains information about statistics measured
for a fixed time of 1 second. UNSW-NB15 contains
both connection-related information and flow sequence-
related information. Section III-A1 provides more detailed
information. Our objective in the current study is to
analyze the characteristics of the two benchmark datasets
by integrating them. Through this integration, we aim to
identify a more effective method for converting PCAP data
that enhances both intrusion detection and diverse intrusion
type classification.

B. REAL-TIME SUITABILITY OF MACHINE LEARNING ON
SIGNATURE-BASED DETECTION
Reference [6] proposed a machine learning-based data-
driven system that enables active data monitoring. In [7],
[8], and [9], Deep Belief Networks, Random Forest, and
Deep Feedforward Neural Network specification models
were selected, respectively, and a study was conducted to
compare the performance of such models with those of
several other detection models. These studies trained models
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based on network traffic analysis. They provided implications
for network traffic analysis, with their results ultimately
suggesting the need for an artificial intelligence model.

In [10], [11], [12], and [13], AI frameworks that are capable
of performing intrusion detection were introduced. These
studies classified intrusion detection system methodologies
into Anomaly-based Detection (AD) and Signature-based
Detection (SD). In the ADmethodology, Deep Learning (DL)
models are primarily used to detect malicious traffic exhibit-
ing anomalies in benign traffic, while the SD methodology
uses Machine Learning (ML) models to identify well-known
intrusion types.

Since our aim in the present work is to develop a clas-
sification model for a real-time intrusion detection system,
the computational resources and inference time of the model
are crucial considerations. Reference [14] demonstrated that
ML requires relatively fewer computational resources and
less time than DL, while it is also more conducive to
interpreting internal operations. This phenomenon can also
be seen in [15]. Although they achieved the best classification
performance using the DL model, it had longer training and
inference times thanMLmodels. Given the trade-off between
classification performance and computational efficiency,
we opt for ML models that strike a balance between
decent classification accuracy and lightweight, fast operation.
This allows us to prioritize real-time processing without
sacrificing performance.

Considering the signature-based nature of selected bench-
mark datasets and our desired purpose of ultimately building
a model for use with a real-time system, we confirmed the
suitability of our proposed system using ML models.

C. EFFECTIVENESS OF HIERARCHICAL APPROACH IN
DETECTION AND CLASSIFICATION
In [16], [17], and [15], various intrusion types were classified
using a hierarchical intrusion detection system. In these
systems, specific intrusion types are classified after identi-
fying abnormal traffic. [16] achieved about 96% accuracy
by reducing misclassification rates through an extension
part following anomaly detection and attack classification.
Meanwhile, [17] achieved both high efficiency and improved
detection accuracy.

Reference [15] proposed the CSK-CNN model and
evaluated it on CIC-IDS2017 and UNSW-NB15, with the
results showing that it achieved over 98% accuracy. When
the number of samples in one class is much higher or
lower than the corresponding numbers in the other classes,
there is a problem of class imbalance, which leads to poor
model performance. To address this problem, the researchers
used the CKS sampling technique to adjust the dataset by
randomly increasing or decreasing the number of samples in
each class until achieving a consistent ratio. They then used
this modified dataset to train their model.

Due to our use of an integrated dataset, we had to classify
a wider range of intrusion types than has been done in

previous studies. Classifying numerous types of intrusions in
a single model is difficult to class imbalance issues. Having
verified the effectiveness of hierarchical classification in
previous studies, particularly in scenarios with increased
data volume and diversified intrusion types, we determined
that this approach could lead to performance improvements.
Therefore, in Hi-MLIC, we adopted a hierarchical approach
to classify various intrusion types within the integrated
dataset.

D. FEATURE SELECTION METHODS FOR LIGHTWEIGHT
MODEL
Existing studies focusing on feature importance include [18],
which considered complex features that represent sophisti-
cated intrusions to improve the accuracy of traffic anomaly
detection. Information gain was used in that study to
rank relevant features and group them by weight. The
authors of that study ultimately proposed a method for
determining a feature set that is effective for a specific
intrusion by substituting grouped features into a classifier
algorithm and analyzing the results. Reference [3] extracted
80 features from the PCAP file using CICFlowMeter, which
extracted flow-based features for the CIC-IDS2017 dataset
and then classified them using the RF class. Through this
process, the authors of that study proposed a method with
which to extract the best feature set for each intrusion
type detection by calculating each feature’s importance, the
average standardized mean value of each feature, and the
corresponding feature importance in each class.

Reference [19] proposed a flow-based classification
method for characterizing encrypted traffic and VPN traffic
using only time-related features. Two scenarios were used
to characterize traffic: one scenario that classified traffic
into VPN and non-VPN traffic, and another scenario that
described traffic without distinguishing between VPN and
non-VPN traffic. Using the C4.5 and KNN algorithms, time-
related features were demonstrated to be effective classifiers.
In [20], XGBoost was used for feature selection, which
improved the accuracy of IDS. The authors of that study
selected 19 optimal features from the UNSW-NB15 dataset
and combined them using various ML techniques. As a
result, the reduced feature vector led to a reduction in model
complexity and an increase in accuracy. Reference [21]
implemented the feature selection method for IDS using PIO
with the primary goal of reducing the number of features
while maintaining detection rate and accuracy, while also
striving to reduce false alarms. [22] used Weka tools and
various feature selection algorithms to find the optimal
feature combinations in UNSW-NB15.

III. METHODOLOGY FOR EFFICIENT LIGHTWEIGHT
INTRUSION CLASSIFICATION
In this section, we elaborate on how we devised Hi-MLIC
to be accurate and lightweight, as depicted in Figure 1.
To elaborate, in III-A, we first describe how we performed
format conversion of packet capture data to procure more
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FIGURE 1. Hierarchical multilayer lightweight intrusion classification architecture with dataset consolidation.

data, obtain more intrusion types, and lighten the dataset for
rapid inference. Next, in III-B, we explain how we designed a
hierarchical multilayer approach to accurately detect various
intrusions accurately in the imbalanced dataset. A detailed
figure is shown in Figure 4. In III-C, we elucidate the feature
selection process that we used to reduce the information to be
transformed and ultimately formulate a lighter classification
model. Finally, through a feature selection process, the Hi-
MLIC model, a hierarchical multilayer lightweight intrusion
classification model, was devised.

Figure 1 illustrates the overall process of Hi-MLIC. First,
the collected PCAP data is consolidated and merged into
CM-CIC-IDS2017 and CM-UNSW-NB15 datasets. Next,
intrusion data from the generated datasets is classified into
various intrusion types using the Hi-MLIC. During the data
classification process, Hi-MLIC uses a feature selection
process to streamline the lightweight data processing.

A. CONSOLIDATION OF DATASETS FOR MORE INTRUSION
TYPES AND EFFICIENT SIZE REDUCTION
1) CIC-IDS2017 AND UNSW-NB15 DATA FORMAT
The CIC-IDS2017 and UNSW-NB15 datasets are recognized
as key benchmarks in modern network security studies,
as they each reflect a variety of intrusion detection scenarios
on the network. While these datasets both provide detailed
network traffic information, they can be distinguished by their
unique collection and processing methods.

TABLE 1. Organization of the datasets.

CIC-IDS2017 is provided by the Canadian Institute for
Cybersecurity and is designed to capture a variety of intrusion
patterns under complex network conditions. This dataset
includes seven primary intrusion types and 14 detailed
intrusion types, as well as benign traffic. Meanwhile, UNSW-
NB15 was developed by the Australian Centre for Cyber
Security, and it aims to capture a variety of intrusion patterns
over a shorter collection period. This dataset provides a
mix of network traffic, including nine primary intrusion
types as well as benign traffic. Both datasets utilize unique
attribute extraction tools to extract valuable information
from network traffic. CIC-IDS2017 used CICFlowMeter
and UNSW-NB15 used Argus and Bro-IDS tools to extract
features. Table 1 summarizes the key features of the
CIC-IDS2017 and UNSW-NB15 datasets.

2) DATASET CONSOLIDATION PROCESS
Figure 2 depicts the process of combining UNSW-NB15
and CIC-IDS2017 PCAP files using the CICFlowMeter [23]
to generate CIC-IDS2017 formatted data. CICFlowMeter
utilizes the network traffic log data of each dataset to create
bidirectional flows. For each generated flow, information is
extracted and statistics are calculated, and 84 features in total
are represented. The source and destination information of
the initially observed packet is used as the directional key for
the corresponding flow.

FIGURE 2. Consolidation of UNSW-NB15 and CIC-IDS2017 PCAP data into
CM-CIC-IDS2017.

CICFlowMeter only processes the Ethernet header of the
packets. As the link layer protocol header in UNSW-NB15
is Linux cooked-mode capture (SLL), it must be replaced
with the Ethernet header in the process of converting UNSW-
NB15 PCAP data for use with the CICFlowMeter. This trans-
formation can be achieved using TraceWrangler software.
Subsequently, Wireshark Split-cap is employed to split and
remove incorrect packets, while Wireshark Mergecap is used
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to combine the PCAP files. The processed UNSW-NB15 data
and CIC-IDS2017 PCAP data are then transformed into CIC-
IDS2017 formatted data using CICIFlowMeter and finally
returned as CSV output. The integrated dataset is namedCM-
CIC-IDS2017.

During the feature generation process in CIC-IDS2017
format, missing values and infinite values were identified in
the Flow Byts/s and Flow Pkts/s columns. These features
were obtained by dividing Bytes and packet count by the
flow duration. In cases where packets only existed in one
direction, the numerator became 0, resulting in NaN values.
NaN values have been replaced with 0. There were also cases
where the duration was extremely short and returned as 0 by
the CICFlowmeter, thus causing the denominator to be 0 and
consequently resulting in infinite values; these were replaced
with the maximum value in their respective columns.

FIGURE 3. Consolidation of UNSW-NB15 and CIC-IDS2017 PCAP data into
CM-UNSW-NB15.

Figure 3 illustrates the process used to combine UNSW-
NB15 and CIC-IDS2017 PCAP files through three trans-
formation stages to generate data in the UNSW-NB15
format. Throughout this process, the Argus tool is used
to generate main features, Bro-IDS is used to generate
additional features, combine the two datasets using Flow ID,
and subsequently generate the remaining features through
post-processing [4].

The Argus tool processes network packet data in PCAP
format to create bidirectional flow data while employing
both argus server and argus-client components. The former
records input PCAP files in binary format within the argus
file format, while the latter extracts features from these
argus files. Bro-IDS, which is an open-source network traffic
monitor, generates features through three distinct logs: the
conn log records essential connection information, the HTTP
log captures request and reply details, and the FTP log
encompasses all FTP protocol-related activities. Integrating
these log files allows for the desired features to be extracted.
The features generated by these two tools are merged using
the Flow 5-tuple feature, with the Argus feature containing
flow-based information and the Bro feature consisting of
packet-based features. This consolidated data undergoes
a post-processing algorithm [4], with 11 supplementary
features generated as a result. In total, 49 features are
extracted from the UNSW-NB15 and CIC-IDS2017 PCAP
data, and these are subsequently provided as UNSW-NB15

format data in CSV output format. We name this consolidated
dataset CM-UNSW-NB15.

During the feature generation in the UNSW-NB15 format,
missing values were identified for some CIC-IDS2017 PCAP
data that was not generated by the Argus tool. Assuming that
values not generated by Argus imply a value of 0, missing
values were imputed as 0. For protocol features with values
arp, igm, and sctp, missing values in the S/Dport feature were
replaced with 0. Missing values for sTtl, dTtl, SrcTCPBase,
and DstTCPBase were also replaced with 0.

3) DATA SIZE REDUCTION FOR LIGHTWEIGHT PROCESSING
PCAP data captures information about every packet that is
sent on a network, thus providing a detailed snapshot of
network activity. Because of the depth of detail in this data,
direct analysis or processing of PCAP files requires large
computing resources and memory. To efficiently manage
and process the high volume and detail of PCAP data, the
data must be converted into another format. This conversion
process can reduce the size of the data while improving
the efficiency of analysis and processing. Table 2 presents
the results of converting PCAP data to other data formats.
The size of the data after conversion and the corresponding
percentage reduction in size provide a clear picture of the
importance and effectiveness of data conversion.

Assuming a data collection period of 30 days with five
days of actual data collection, the CIC-IDS2017 dataset
amounted to 287.40GB. After conversion into each dataset
format, it was reduced to 8.08GB for the CIC-IDS2017
format and 2.86GB for the UNSW-NB15 format. Similarly,
assuming a data collection period of 30 days with two days
of actual data collection, the UNSW-NB15 dataset amounted
to 753.00GB. After conversion into each dataset format,
it was reduced to 24.73GB for the CIC-IDS2017 format and
7.45GB for the UNSW-NB15 format. When both datasets
collected over 30 days were combined and converted, the
total size amounted 1,040.40GB. Then, depending on the
conversion method, the sizes were reduced between 34.17GB
and 10.40 GB for the respective formats.

Altogether, these results demonstrate that converting
PCAP data into the CIC-IDS2017 or UNSW-NB15 format
significantly reduces the storage requirements. This conver-
sion not only improves the ML model’s performance but also
contributes to efficient storage management.

4) PREPROCESSING FOR MACHINE LEARNING: ENCODING
AND SCALING
In building an ML model, it is crucial to encode
character-based data into numerical values and adjust
numeric-based data distribution through scaling. It is also
necessary to remove unnecessary features for training
and inference. In integrating two benchmark datasets, the
information to be excluded includes the timing of intrusion,
IP and port values representing the host information involved
in the intrusion, and unique IDs for each traffic. All features
containing such information were deleted.
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TABLE 2. Data size reduction after format consolidation.

FIGURE 4. Hierarchical multilayer intrusion machine learning classifier framework/pipeline.

Categorical values were encoded using one-hot encoding,
and numeric values were scaled using a quantile transformer.
While the CM-CIC-IDS2017 dataset consists entirely of
numeric values, the CM-UNSW-NB15 dataset includes
categorical values such as ’proto,’ ’state,’ and ’service,’
with the rest of the values being numeric. During the
one-hot encoding process, the features of the CM-UNSW-
NB15 dataset expanded from three categorical features to
178 features.

B. HIERARCHICAL MULTILAYER APPROACH FOR
INTRUSION CLASSIFICATION USING MACHINE LEARNING
In the process of combining the CIC-IDS2017 dataset
and the UNSW-NB15 dataset, we obtained 23 intrusion
types. However, certain class imbalance issues emerged,
such as issues involving an abundance of benign traffic
or certain intrusion types dominating the data. To address
these challenges and classify diverse intrusion types in a
proficient manner, we implemented a hierarchical approach.
Figure 4 illustrates a detailed framework of a hierarchical
multilayer intrusion classifier, as was presented in Figure 1.
In this hierarchy, Layer-1 detects malicious activities, Layer-
2 classifies malicious traffic into four categories, and Layer-3
further categorizes them into 23 specific intrusion types. Each
layer involves nine ML models with a hyperparameter tuning
process.

1) HIERARCHICAL APPROACH: THREE LAYERS
As shown in Figure 4, Layer-1 functions as a malicious detec-
tor that detects whether the traffic is malicious. The model
predominantly learns to differentiate between malicious and
benign traffic. Layer-2 operates as a NIST standard classifier
that categorizes malicious traffic into four categories: Access,
DoS, Malware, and Reconnaissance, according to [24].
This classification adheres to the NIST standard [24]

outlined in Table 3, which initially sorts similar intrusion

types among the 23 intrusion types. In Layer-3, from the
previously classified four intrusion categories, a further
subdivision into 23 specific intrusion types takes place. The
model was trained to discern subtle differences among similar
intrusions in further detail.

2) MACHINE LEARNING MODELS FOR SIGNATURE-BASED
NETWORK INTRUSION CLASSIFICATION
The CM-CIC-IDS2017 and CM-UNSW-NB15 datasets pri-
marily focus on commonly known types of intrusions, which
brings them closer to signature-based network intrusions.
ML models are widely used in various fields, particularly
for data-driven pattern recognition and classification tasks,
where they showcase excellent performance. Therefore,
it can be highly effective to use such models to classify
intrusion types of signature-based network intrusions. They
have relatively simple structures requiring less computation
and shorter training time than deep learning models. They
are known for their interpretability, thus enabling various
explanations for why specific classification results are
obtained.

We selected the best model among nine popular ML
classification models - Decision Tree (DT) [25], Random
Forests (RF) [26] Gaussian Naive Bayes (NB) [27], Linear
Discriminant Analysis (LDA) [28], Quadratic Discrimi-
nant Analysis (QDA) [29], Logistic Regression (LR) [30],
AdaBoost Classifier (Aboost) [31], K-Nearest Neighbor
Classifier (KNN) [32], and Multilayer Perceptron Classifier
(MLP) [33]. Table 4 lists detailed explanations for each
model.

3) HYPERPARAMETER OPTIMIZATION
Table 5 presents the important parameters that are needed for
ML model optimization. We fine-tuned the performance of
our ML model using Grid Search Cross Validation (Grid-
SearchCV) [34]. Exploring a pre-defined hyperparameter
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TABLE 3. Layer-2 intrusion groups categorized by NIST standard.

TABLE 4. Comparison of machine learning models.

grid for each layer of the model allowed us to find the
most effective hyperparameter combination and optimize the
model’s performance.

TABLE 5. Hyperparameter grid definition.

C. REMOVING UNNECESSARY FEATURES FOR
LIGHTWEIGHT MODEL
The inclusion of a large number of features in the data
can increase the complexity of the model, require longer
processing times, and ultimately lead to confused predictions
due to the presence of unnecessary information. In network
security situations, if the analysis speed is slower than
the incoming packet speed, any delays occurring in threat
detection and response can be critical to security. It is
therefore essential to select suitable features for anMLmodel
in theMLmodel design process. This paper proposes an error
analysis feature selection method that can be used to filter out
unnecessary features. First, as described in Section III-C1,
we rank important features using the XGBoost algorithm in
all layers of the hierarchical multilayer classifier. Based on
this evaluation, the final feature selection is determined by
two misclassification rate reduction methods: similarity anal-
ysis in Section III-C2 and impact analysis in Section III-C3.
This can improve the performance of the model while also
increasing the analysis speed.

1) FEATURE IMPORTANCE RANKING BY ENSEMBLE
LEARNING
To calculate the importance of features in high-dimensional
and complex datasets, we used the XGBoost algorithm.
XGBoost is an ensemble learning method that effectively
controls the complexity of the model by limiting the depth
of decision trees and adjusting the learning speed [35].
These characteristics help mitigate the risk of overfitting and
improve the prediction accuracy of the model, and these
advantages explain why this algorithm has been utilized by
many feature selection studies.

XGBoost allows for a score representation of feature
importance in trained models. In Hi-MLIC, where separate
learning models exist for each layer, we had to calculate
feature importance for each layer. Layer-1 identified impor-
tant features for distinguishing between positive and negative
instances. Layer-2 highlighted features that are important
for classifying into four intrusion groups, and Layer-3
emphasized features that are important for distinguishing
between 23 more granular intrusion types. We ultimately
ranked feature importance by considering all the feature
importance scores that had been calculated in each layer.
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2) FEATURE SIMILARITIES BETWEEN MALICIOUS INTRUSION
TYPES
After analyzing classification errors, we found that a signifi-
cant number of intrusions of DoS, Fuzzers, Reconnaissance,
Analysis, and Backdoor were misclassified as Exploits, thus
indicating a tendency for the model’s predictions to cluster
into a particular category of intrusion. We decided to focus
on features that may be causing similar intrusion types to be
indistinguishable from one another. To this end, we aimed
to remove features that did not show significant numerical
differences across different types of intrusions: We devised
a method to calculate the distance between the average
characteristics of each intrusion type, used this distance as
a measure of similarity between intrusions, and removed
features that exhibited high similarity scores. We used
the following formula to calculate the Feature Intrusion
Similarity (FIS):

FIS =

∑M
i

∑M
j

(
1−

∣∣µi − µj
∣∣)

M2 (1)

Here, FIS represents the Feature Intrusion Similarity, M
is the number of intrusion types (23 in our CM datasets),
and i, j denotes intrusion type indices. The term µi signifies
the average of each feature data belonging to the i-th
intrusion type. For each intrusion, the difference between
any two types of intrusion is calculated. This difference
ranges from 0 to 1, where a smaller difference indicates more
similarity. We then subtract this difference value from 1 to
represent this similarity. The resulting similarity values are
summed across all combinations of intrusions to create a
similarity matrix for the intrusion combinations, and a total
sum is finally calculated. If all intrusions were identical, the
sum of the diagonal elements of the matrix would be M2.
Therefore, the obtained total sum is normalized by dividing
it by M2 such that the normalized values range from 0 to 1.
This value can indicate the extent to which a feature exhibits
a high degree of similarity between intrusions.

3) FEATURE IMPACT ANALYSIS COMPARING CORRECT AND
INCORRECT RESULTS
In our simulations, the intrusion types of Fuzzers, Analysis,
Backdoor, DoS, Exploits, Reconnaissance, Shellcode, and
Worms all exhibited misclassification rates exceeding 50%.
To address this problem, we adopted the analytical strategy
shown in Algorithm 1.

First, we partitioned the data of these problematic intrusion
types into the Correct Group (CG) and Incorrect Group
(IG). The CG consists of instances where the predicted
type matches the actual type. Conversely, the IG comprises
instances where the predicted type does not align with
the actual type. We aim to identify features that reflect
the discrepancy group as close to the CG as possible.
This involves calculating the mean value for each feature
within both groups and subsequently discerning disparities
in these mean values between the groups. Features exhibiting
significant mean differences are identified as potential causes

Algorithm 1 Feature Impact Analysis (CG Vs. IG)
1: Input: Data instances with features (X ), predicted type

(ypred), true type (ytrue)
2: Output: Average feature gap between correct group

(CG) and incorrect group (IG)
3: 1: Get X , ypred, and ytrue
4: 2:Declare an empty DataFrame df to accumulate feature

gaps (F_gaps)
5: 3: Get intrusion types with recall below 50%
6: low_recall_IT ← []
7: for each intrusiontype in intrusion_types do
8: if recall(intrusiontype) < 0.5 then
9: low_recall_intrusions.append(i)
10: end if
11: end for
12: 4: Filter instances by low_recall_IT
13: filtered_inst ← Filter(X , ypred, ytrue = low_recall_IT )
14: 5: Create CG and IG groups
15: CG← Filter(filtered_inst, ypred = ytrue)
16: IG← Filter(filtered_inst, ypred ̸= ytrue)
17: 6: Accumulate feature gap between IG and CG
18: F_gaps← {}
19: for each feature do
20: avg_CG← Average(CG[feature])
21: avg_IG← Average(IG[feature])
22: F_gaps[feature]← abs(avg_CG− avg_IG)
23: end for
24: 7: df with feature gaps
25: for (feature, gap) in F_gaps do
26: df [feature]← gap
27: end for

for the discrepancies between the two groups that might
contribute to the high misclassification rate. Therefore,
to enhance classification accuracy, features with pronounced
differences, which are believed to be the main contributors to
misclassification, were excluded.

In this section, we explained the Hierarchical Multilayer
Lightweight Intrusion Classifier, Hi-MLIC, to enable the
accurate and rapid classification of various intrusion types in
consolidated datasets. This is achieved using a hierarchical
approach and feature removal.

IV. EXPERIMENTS AND EVALUATION
This section details the experimental setup and evaluation
procedures we used in this study. In particular, we provide
an overview of the consolidated dataset and evaluation
configuration, followed by a detailed review of the Hi-MLIC
performance. We also review the feature selection process
used herein.

A. CONSOLIDATED DATASET
1) TWO CM DATASETS: CONFIGURATION
The dataset comprises 23 distinct types of intrusions that
are categorized into four groups according to the NIST
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TABLE 6. Distribution of intrusion types in two CM datasets. The column ‘Ratio’ represents the percentage of instances, while the table is sorted by the
number of instances for each NIST category.

standard [24]: Reconnaissance, Access, Denial of Service
(DoS), and Malware. To facilitate model training and
evaluation, the dataset is divided into a training set and a test
set in a 7:3 ratio, respectively. Table 6 presents the overall
distribution of intrusion types for the CM-CIC-IDS2017 and
CM-UNSW-NB15 datasets. The table includes the instance
counts for each intrusion type, which are classified based
on the shape of the training and test sets according to NIST
categories.

As can be seen from the table, the dataset initially exhibited
a significant class imbalance among the 23 intrusion types.
However, we successfully mitigated this imbalance by strat-
ifying the data into NIST categories. The distribution within
each NIST category provides a more balanced representation
of intrusion types, which ultimately enhances the dataset’s
suitability for effective model training and evaluation.

2) EVALUATION CRITERIA: FALSE NEGATIVE RATES
We selected the recall metric as our primary evaluation
criterion. This choice reflected the significance of accurate
intrusion detection, and particularly the importance of
minimizing false negative (FN) rates, as it is critical to not
miss any malicious incidents. Recall measures the proportion
of correctly predicted positive (intrusion) instances among all
true positive (TP) instances, thus providing a clear assessment
of the model’s ability to identify intrusions. It can be
expressed as follows:

Recall(TruePositiveRate) =
TP

TP+ FN
(2)

As can be seen from the formula, enhancing recall entails
reducing FN rates. This aligns well with the imperative

of minimizing missed detections in intrusion scenarios.
Consequently, the recall value emerged as the appropriate
criterion with which to select the optimal model at each layer.

For the multi-class classification scenario, we leveraged
the Python scikit-learn library [34] while setting the average
option. Given the inherent class imbalance with many benign
instances, we adopted the weighted average approach to
address this disparity. This methodology compensates for
the skewed distribution of instances by assigning appropriate
weights to each label. Our study underscores the importance
of prioritizing the reduction of FN rates and utilizing suitable
evaluation metrics to ensure accurate intrusion detection.

B. ASSESSMENT OF THE HIERARCHICAL MULTILAYER
APPROACH
We propose and compare 1- to 3-step architectures to
showcase the performance of the innovative hierarchical
approach we introduced in Section III-B1. The 1-step
architecture is non-hierarchical, as it only uses Layer-3, thus
allowing a single ML model to be used to classify data
into the benign type and 23 intrusion types, thus comprising
24 classes in total. In the 2-step architecture, Layer-1
classifies incoming data into benign or malicious categories,
while Layer-3 refines the process by categorizing malicious
data into 23 distinct intrusion types. The 3-step architecture
extends the hierarchy utilizing three layers. As occurs in the
2-step architecture, data is initially categorized as benign or
malicious in Layer- 1. However, Layer-2 proceeds to classify
malicious data into four primary intrusion categories. Finally,
Layer-3 classifies data into sub-intrusion types within each

120106 VOLUME 12, 2024



Y. Kim et al.: Hi-MLIC for Various Intrusion Scenarios

category, ultimately allowing for a more detailed sequential
classification process.

TABLE 7. Optimal models and recall performance for each layer of the
2-step architecture.

TABLE 8. Optimal models and recall performance for each layer of the
3-step architecture.

1) OPTIMAL MODEL SELECTION
We conducted a process to enhance the overall performance
of intrusion classification by selecting the optimal model
at each layer. Utilizing the GridSearchCV function from
the Python scikit-learn library, we explored the optimal
hyperparameters and selected the best model, as explained
in Section III-B3. We performed comparative experiments
to identify the optimal model using the nine ML models
that were introduced in Section III-B2 in addition to the
hyperparameter grids for each model, which are provided in
Table 5. Following the approach outlined in Section IV-A2,
we chose the optimal model based on the highest recall value.
Tables 7 and 8 present the selected optimal models and their
corresponding recall values for each layer and classifier.

The process of distinguishing between benign and mali-
cious instances remains consistent across both the 2-step
and 3-step procedures through Layer-1. In the CM-CIC-
IDS2017 dataset, RF demonstrated superior performance,
while in the CM-UNSW-NB15 dataset, KNN outperformed
other models. This observation supports the notion that the
CM-CIC-IDS2017 format is more suitable for distinguishing
between benign and malicious instances. Upon analyzing
the frequently used models for each dataset, tree-based ML
models such as DT and RF were found to be suitable for
classification in the CM-CIC-IDS2017 format, while MLP
and KNN were found to be effective for the CM-UNSW-
NB15 format.

As presented in Table 8, the Access category in Layer-
3 showed relatively low classification performance. This
was mainly attributable to confusion with other types
of intrusions, particularly the ‘‘Exploit’’ intrusion type.
A subsequent analysis of the Malware category, which also
exhibited low classification performance, revealed issues
with the ‘‘Generic’’ intrusion type. To determine whether
these issues were specific to the 3-step architecture, the
confusion matrices for 1- and 2-step results were analyzed,

and they consistently indicated a problem of misclassifying
various intrusion types as either Exploit or Generic.

2) HIERARCHICAL APPROACH EVALUATION
To assess the overall performance of the entire architecture,
we conducted evaluations using the same test data as utilized
in Section IV-B1.
Tables 10 and 11 show the performance improvement of

the 3-step architecture against the 1- and 2-step architecture
for each CM dataset. On CM-CIC-IDS2017, performance
improved as the number of steps increased, with all metrics
peaking at 3-step.

For CM-UNSW-NB15, an overall performance improve-
ment was also noted with increasing steps. In all metrics aside
from the F1-Score, the 3-step architecture exhibited the best
performance, particularly showing a significant difference in
precision values. This suggests that the hierarchical approach
is effective when desiring enhanced performance.

Compared to the performance achieved by the 1-step
approach, the performance achieved on both datasets was
notably improved in the 2-step and 3-step approaches. This
underscores the significance of introducing Layer-1, the
malicious detector. In particular, in a more detailed analysis
of FN, i.e., instances classified as benign but are intrusions,
it was observed that, on the CM-CIC-IDS2017 test dataset,
the number of such instances decreased from 19,652 with the
1-step approach to 12,114 with the 2- and 3-step approaches,
thus representing a reduction of 38.36%. On the CM-UNSW-
NB15 dataset, the corresponding figure dropped from 6,601
to 3,839, indicating a reduction of 41.88%. These results
highlight the outstanding malicious detection performance of
Hi-MLIC.

Table 9 displays the recall values for each intrusion type,
revealing three patterns. First, intrusion types with a larger
number of samples tend to achieve higher recall, while those
with fewer samples exhibit lower recall. This is caused by the
class imbalance in the data, and we addressed this problem
using our hierarchical approach. In the 1-step approach, low-
frequent intrusion types are properly classified due to the vast
ratio of benign samples. We increased the number of layers
and adjusted the data distribution for each model’s learning.
As a result, we achieved better recall as the number of steps
increased, particularly in intrusion types such as Shellcode,
Bot, and Infiltration.

Secondly, as described in Section IV-B1, many intrusion
types were misclassified as Generic or Exploits. Generic
contains a general intrusion that does not belong to a
specific type, while Exploits denotes the exploitation of
vulnerabilities in systems or software. They can often be
confused with other types of intrusions as they encompass
a broad range of situations.

Moreover, due to the absence of specific characteristics,
these two intrusion types were often classified as benign. Our
Layer-1 classifier addressed this problem. After classifying
intrusions as malicious and benign, it became easier to
accurately identify Generic and Exploits. In the case of
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TABLE 9. Intrusion type-specific Recall Performance on CM-CIC-IDS2017 and CM-UNSW-NB15 for 1-,2- and 3-step Architecture. The column ‘Instances’
indicates the number of instances, while the column ‘Ratio’ shows the percentage of instances used for classification. The percentage values for recall are
displayed in the ’1-, 2-, and 3-step’ columns. The table is sorted based on the number of instances in descending order for CM-UNSW-NB15.

TABLE 10. Performance of 1-, 2-, and 3-step architectures on
CM-CIC-IDS2017 dataset.

TABLE 11. Performance of 1-, 2-, and 3-step architectures on
CM-UNSW-NB15 dataset.

CM-CIC-IDS2017, the recall of Exploits increased from
75.64% at 1-step to 98.73% at 3-step, while the recall of
Generic from 72.00% to 80.22%, respectively. Meanwhile,
in the case of CM-UNSW-NB15, the recall of Exploits went
from 85.45% to 88.64% and the recall of Generic went
from 97.75% to 99.26% when moving from 1-step to 3-step,
respectively. Intrusion types such as Fuzzers, Analysis, and
Backdoor that were merely classified as Generic and Exploits
also improved.

Lastly, using the CM-CIC-IDS2017 dataset, it was difficult
to classify intrusion types from the UNSW-NB15 dataset.
This indicates that the conversion method proposed by
CIC-IDS2017 may not perform well for different intrusion
types, in which case it would lack generalizability. Adding
hierarchical steps proved to be helpful in addressing these
issues. As the number of steps increased from 1 to 3, there
were improvements in the scores for Fuzzers, DoS, and
Shellcode. Fuzzers saw a rise in recall from 1.106 to 19.778,
DoS saw a corresponding rise from 0.133 to 0.438, and
Shellcode saw a corresponding rise from 0 to 15.517. This

indicates that our approach is effective for intrusion types
with low accuracy.

These findings are consistent with those of other studies.
We conducted a comparison with other studies that is
described in Section IV-D2.

FIGURE 5. Feature selection using three different approaches.

C. FEATURE SELECTION EVALUATION
1) SELECTED FEATURES
Figure 5 presents the feature selection process that was
performed using three different approaches while following
the methodology described in Section III-C. First, we used
the XGBoost model-based information acquisition method
to measure the importance of each feature, after which we
selected the top 50% of features with the highest importance
to generate an initial feature set for the final feature set.
Second, we analyzed the feature similarity between intrusion
types and removed highly similar features from the feature
data set. Thirdly, we used error analysis methods to evaluate
the impact of individual features on the misclassification rate
and excluded features that had a significant negative impact.
Finally, from the list of excluded features, we reintroduced
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those that had high importance in the first approach into the
dataset, thus resulting in the selection of the ultimate dataset.

TABLE 12. Final selected features for each dataset.

Table 12 presents the final feature set for each dataset
selected through the three approaches. As listed in the table,
17 features were selected as final features for CM-CIC-
IDS2017, while 40 features were selected as final features for
CM-UNSW-NB15. The results for features specific to each
approach are presented in Table 13.

2) PERFORMANCE AND EXECUTION TIME EVALUATION
To reduce the model’s complexity and improve its computa-
tional efficiency, feature selection was consistently applied
to all Hi-MLIC layers. We named the model Hi-MLIC-
Heavy when feature selection was not utilized and Hi-MLIC-
Lightweight when selected features were employed.

When using the CM-CIC-IDS2017 dataset, feature selec-
tion improved accuracy and recall from 97.721% to 97.800%.
However, when the same feature selection method was
applied to the CM-UNSW-NB15 dataset, the performance
decreased, which could be attributed to the interaction
between the characteristics of the dataset and the selected
features, as the specific feature selection methods used were
more suitable for the CM-CIC-IDS2017 dataset. More details
about each indicator can be seen in Table 14.

Feature selection also had a positive impact on the learning
and inference time of the model. We conducted experiments
to evaluate the necessary computational resources and time
for training and testing of theHi-MLIC-Heavy andHi-MLIC-
Lightweight models on the CM-CIC-IDS2017 and CM-
UNSW-NB15 datasets. These experiments were performed
on a system equipped with Intel(R) Xeon(R) Gold 6426Y x
2EA processors.

Since the Heavy model had more features, it exhibited a
higher computational cost regarding time and memory usage.
For the CM-CIC-IDS2017 dataset, the Heavy model required
207.541 seconds and 81.533 MB with a memory usage
of 0.615 MB, while the Lightweight model only required
49.342 seconds, 44.905 MB, and 0.277 MB of memory.
Similarly, for the CM-UNSW-NB15 dataset, the Heavy
model required 354.486 seconds and 796.625 MB with a
memory usage of 2.514 MB, while the Lightweight model
only needed 64.658 seconds, 174.369 MB, and 0.723 MB of

memory. These findings indicate that the Lightweight model,
while achieving slightly lower accuracy, uses significantly
reduced computational resources, thereby making it more
suitable for real-time applications where resource efficiency
represents a critical consideration.

By removing unnecessary features, the amount of informa-
tion to be processed was reduced, which ultimately allowed
the model to learn and process data quickly. This reduced
the response time of the model and improved the efficiency
of data processing in resource-constrained environments.
The reduction of features led to a lighter model that saved
computational resources and storage space.

D. COMPARISON WITH PREVIOUS STUDIES
1) FINAL CLASSIFICATION RESULT COMPARISON
Using Hi-MLIC, we achieved high-performance classifica-
tion across 24 types, thereby surpassing existing studies that
were limited to only seven or 10 types. Our classification
method was validated using the CIC-IDS2017 and UNSW-
NB15 datasets as well as compared with other studies in
Table 15.

Hi-MLIC exhibited excellent recall performance, which
was our priority evaluation metric. While its accuracy was
relatively lower than that presented in [15], it was difficult to
make a direct comparison, since their research did not provide
recall metrics.

Table 16 compares the key characteristics of Hi-MLICwith
previous studies, and this comparison allows us to summarize
the strengths and weaknesses of our approach. Hi-MLIC
emphasizes real-time processing while managing a broader
variety of intrusion types compared to existing studies. Unlike
previous studies that have typically focused on a single
dataset, Hi-MLIC utilizes consolidated datasets such as CM-
CIC-IDS2017, and CM- UNSW-NB15, covering 24 types of
intrusions. Despite the increased variety of intrusion types
it considers, Hi-MLIC demonstrated an improved recall for
each type of intrusion, particularly for those with smaller
sample sizes. This indicates that Hi-MLIC has a superior
ability to effectively manage and classify diverse intrusion
scenarios.

Hi-MLIC outperforms existing studies in terms of classifi-
cation, as presented in Table 15. The key performancemetrics
for Hi-MLIC include accuracy reaching up to 98.81%,
precision reaching up to 98.79%, recall reaching up to
98.81%, and F1-Score reaching up to 98.68%. These metrics
indicate that Hi-MLIC can effectively detect and classify
various intrusion types with high reliability. Further, Hi-
MLIC’s hierarchical multilayer lightweight model balances
complexity and performance, thus providing a stable and
robust solution that consistently performs above average
while ultimately ensuring that dependable results will be
obtained across different datasets.

While Hi-MLIC’s advanced feature selection methods and
hierarchical approach significantly enhance performance,
their use of multiple models leads to increased execution
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TABLE 13. Weight values of the features from CM-CIC-IDS2017 and CM-UNSW-NB15 selected features for Importance, Similarity, and Misclassification.

TABLE 14. Evaluation results of Hi-MLIC-Heavy and Hi-MLIC-Lightweight on CM-CIC-IDS2017 and CM-UNSW-NB15. The features column shows the
number of features selected. Metrics include Accuracy; Precision; Recall; F1-Score; train and test computation time in seconds; and model size and
memory usage in megabytes.

TABLE 15. Comparison with previous studies. The Intrusions column shows the number of benign and various intrusion types. The sections marked with
’-’ are left blank as the corresponding study does not provide such information. Hi-MLIC-’Heavy’ describes a model without feature selection, while
‘Lightweight’ demonstrates a model with feature selection.

time. This can be a disadvantage when applied to real-time
systems. To mitigate this issue, the model can be configured

to initially use only the component that differentiates
between benign and malicious activities, thus prioritizing
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TABLE 16. Comparison of Hi-MLIC and previous studies.

the prevention of malicious intrusions. Detailed solutions
for implementing this approach in real-time systems are
elaborated upon in Section V-D of the manuscript.

2) RESULT COMPARISON BY SPECIFIC INTRUSION TYPE
We addressed the class imbalance issue that commonly
occurs in intrusion detection datasets. Our Hi-MLIC effec-
tively mitigates this problem, thus improving performance
across various intrusion types. Class imbalance can cause
models to be biased toward majority classes, ultimately
resulting in lower detection rates for minority classes.
To address this potential issue, we adopted a hierarchical
classification strategy that divides the data intomore balanced
subsets before performing detailed classification.

The experimental results presented in Tables 17 and 18
demonstrate the effectiveness of our approach, as it
exhibits increased classification performance for specific
intrusion types. Using the CIC-IDS2017 dataset, out of
the 15 types, nine show better classification performance
compared to [38]. With the UNSW-NB15 dataset, out of
the 10 intrusion types, seven exhibit better classification
performance compared to [7].

This table is helpful for understanding how our hierarchical
approach addresses class imbalance issues. By examining
the ratio of each intrusion type, we can see that our method
improves the detection rates of less frequent intrusion types.

Specifically, in the Access category of the CIC-IDS2017
dataset, there was a very low number of instances for each
specific intrusion relative to the entire dataset, which resulted
in low data ratios and reduced recall. By hierarchically classi-
fying the data, we increased the proportion of each intrusion
type within a single model. This approach resolved the class
imbalance issue and effectively improved accuracy, with
SSH-Patator improving from 97 to 100, Bot from 79 to 96,
and Infiltration from 0 to 50. Similar improvements were
observed in the DoS category of the CIC-IDS2017 dataset
and the Access category of the UNSW-NB15 dataset, where
there were significant increases in previously low data ratios
of specific intrusion types, ultimately leading to enhanced
performance.

Through this experiment, we verified that our hierarchical
approach addresses class imbalance and enhances classifica-
tion performance for various intrusion types.

V. DISCUSSION
A. EXPECTED EFFECTS OF THE PROPOSED
CONSOLIDATED DATASET
The dataset we have proposed in the current work offers
the advantage of enhancing the model’s generalization
capabilities by consolidating two benchmark datasets to
address more intrusion types. It also exhibits a significant
reduction in size compared to the existing PCAP data, which
enhances data management efficiency.

In a future study, we aim to develop real-time intrusion
detection and dynamic access control systems. To explore
diverse network environments and intrusion scenarios,
we plan to utilize the format of the proposed dataset during
the log collection process. Logs collected in the format
of the proposed dataset are expected to more accurately
reflect our intrusion trends and dynamics, which would in
turn allow us to design strengthened security systems and
prepare for new intrusion types. Saving data storage space
and reducing dataset transmission costs also enables efficient
data management, while improving data processing speed
enhances the model training speed for the development of
real-time security systems. These benefits are expected to
support more realistic and effective security research and
system development.

B. HIERARCHICAL MULTILAYER MODEL EFFECTIVE IN
DETECTING AND CLASSIFYING VARIOUS INTRUSION
TYPES
The proposed hierarchical multilayer approach enhances the
accuracy of large-scale datasets by leveraging consolidated
benchmark datasets, thus contributing to the system’s overall
efficiency. Each layer’s model operates as an independent
module, while individually retraining to provide an adaptive
solution for new environments and network intrusions. The
independent performance improvements achieved at each
layer accumulate to lead to an overall enhancement in the
system’s performance.
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TABLE 17. Intrusion type distribution and improvement in classification performance for CIC-IDS2017 and UNSW-NB15 Datasets. This table shows the
number of instances and the ratio of each intrusion type within the respective dataset and NIST category. The column ‘Ratio in NIST’ represents the
percentage of each intrusion type within its NIST category. The ‘Improvement’ column highlights the enhancement in classification recall compared to
previous studies.

TABLE 18. Intrusion-specific recall performance compared with previous
studies. Columns ‘CM-C’ and ‘CM-U’ represent the classification
performance of the 3-step architecture on the CM-CIC-IDS2017 and the
CM-UNSW-NB15 datasets. Column ’ [38]’ represents Nguyen et al.’s
classification performance on the CIC-IDS2017 dataset, while column ’ [7]’
represents Yang et al.’s performance on the UNSW-NB15 dataset. This
table demonstrates that certain intrusion types exhibit low recall rates
not only in our study but in other similar research as well.

Using the same feature set across all layers reduces
the resources needed for feature processing and storage.
This is particularly useful for handling large-scale data
analysis, minimizing the computational burden for feature
extraction and transformation, and effectively reducing stor-
age space duplication. The hierarchical approach described
herein contrasts with the non-hierarchical approach of batch
classification by a 1-step model for all network traffic,
which results in an overall increase in system efficiency.
Filtering benign data at Layer-1 reduces the amount of data
that subsequent layers need to process, instead allowing
subsequent layers to focus on intrusion-type classification
and reduce the frequency of FN. This hierarchical multilayer
approach overcomes the typical trade-off between efficiency
and accuracy by improving both.

Lastly, the characterization of each layer will enhance
not only the intrusion detection accuracy of IDS devel-
oped in future research, thus enabling it to detect and
classify effectively various intrusion types, but also its
ability to swiftly and adaptively respond to evolving
intrusion scenarios. This approach establishes a crucial
foundation for developing advanced systems that can
effectively detect and classify various types of intelligent
intrusions.
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FIGURE 6. Proposed solution for integrating Hi-MLIC into a real-time
system.

C. CONSIDERING DATA CHARACTERISTICS FOR FEATURE
SELECTION
The results of the feature selection method presented in
Section III-C are summarized in Section IV-C. Although
feature selection improved performance on the CM-CIC-
IDS2017 dataset, it harmed the CM-UNSW-NB15 dataset.
This may be attributed to the fact that the CM-CIC-IDS2017
dataset consists entirely of numeric features, while the CM-
UNSW-NB15 dataset includes categorical features. Some
features do not follow a normal distribution that is centered
around a mean value. However, we select the mean value
as the representative value for features in Sections III-C2
and III-C3. Without considering their distributions, they may
inadequately capture the characteristics of the features.

For future research, an advanced feature selection method-
ology should be developed that takes into account the
distribution and characteristics of the features. In particular,
for the CM-UNSW-NB15 dataset, the process of encoding
categorical features into a one-hot vector format resulted in a
significant expansion of the feature space. A more thorough
consideration of the encoding process could lead to the design
of a model that is capable of rapid classification using fewer
features.

For future study, it is suggested to develop an advanced
feature selection methodology that takes into account the
distribution and characteristics of the features. In particular,
for the CM-UNSW-NB15 dataset, the process of encoding
categorical features into a one-hot vector format resulted in a
significant expansion of the feature space. A more thorough
consideration of the encoding process can lead to a model
capable of rapid classification using fewer features.

D. APPLICATION OF HI-MLIC IN REAL-TIME SYSTEMS
We propose a solution to integrate Hi-MLIC into real-time
systems while focusing on efficient data handling and rapid
intrusion response. As shown in Figure 6, this solution is
structured into three main stages: data capture, hierarchical
intrusion detection, and automated access control.

Network traffic data is extensive and requires real-
time processing. Intrusions can generate particularly large

volumes of traffic and therefore cause disruptions. This poses
challenges for systems that rely on event-based architectures
and asynchronous processing. To address this, we propose
the use of pfSense [39], an open-source firewall that is
suitable for providing automated access control, to capture
network packets in the first stage of the intrusion prevention
system. We also suggest using Apache Kafka [40], which
is a distributed streaming platform that allows efficient
processing of large-scale data streams, to preprocess the
traffic, thus making it possible to manage large-scale traffic.

Hi-MLIC employs a 3-step hierarchical approach to
enhance classification accuracy and processing speed,
thereby effectively managing the balance between benign and
malicious data. Layer-1 differentiates between benign and
malicious traffic by quickly detecting and blocking malicious
traffic to prevent immediate threats. Layer-2 further classifies
the blocked malicious traffic into four broad categories, while
Layer-3 identifies 23 specific intrusion types within these
broader categories. This detailed classification allows for
the implementation of appropriate access policies based on
the specific nature of the threat. This structured approach
improves detection accuracy and speed, making it suitable
for use in real-time systems where quick and precise
classification is essential. To serve our model, we suggest
using Spark [41], which supports machine learning libraries
and is efficiently designed to implement Hi-MLIC, where
multiple models are integrated. Its compatibility with Apache
Kafka also ensures seamless data preprocessing and model
utilization.

Upon detectingmalicious traffic, we propose the automatic
application of specific access control policies using pfSense.
These policies, which can be either host-based or network-
based, ensure that identified threats will be mitigated quickly
and effectively. Host-based access control operates at the
application level, managing security for individual systems,
while network-based access control analyzes and controls
access at the network and transport layers. This automated
response mechanism minimizes the potential for human error
and delays in response, thereby enhancing overall system
security.

By implementing these three stages, it is possible for
Hi-MLIC to be effectively deployed in real-time environ-
ments. Such integration is expected to facilitate robust and
adaptive security measures, thus protecting against a wide
range of network intrusions.

VI. CONCLUSION
In this study, we have proposed Hi-MLIC, which is a
hierarchical multi-layer lightweight intrusion classification
model. This model is based on machine learning and
leverages new consolidated datasets to cover more kinds of
intrusions types.

The CM-CIC-IDS2017 and CM-UNSW-NB15 datasets
have been constructed by consolidating two benchmark
datasets. Following this data integration, experiments have
been conducted to determine the suitable data format
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for network intrusion detection, which also results in the
acquisition of more types of intrusion scenarios.

As the two datasets are consolidated, a problem of data
imbalance emerges. The hierarchical multilayer approach has
been introduced to reduce misclassification rates resulting
from data imbalance. This approach shows strong perfor-
mance over the non-hierarchical approach, as it achieves
a recall rate of up to 98.81%. Through this comparison,
we confirm that the model can be trained to address
data imbalance by hierarchically adding the layers, thereby
enhancing the ease of classification.

Feature selection is a necessary aspect of creating a
lightweightmodel for real-time applications.We propose new
feature selection methods to eliminate features that contribute
to misclassification by calculating their scores. This has
allowed the model to be lighter while maintaining high
performance. In the CM-CIC-IDS2017 dataset in particular,
which consists of numeric features, a significant performance
improvement is observed. Overall, our model achieves
excellent accuracy of 98.81%, precision of 98.79%, recall of
98.81%, and F1 score of 98.68%, as presented in Table 15.
Ultimately, these results show that the Hi-MLIC model can
effectively detect and classify various intrusion types, thus
showcasing its potential to respond effectively to intrusions
within a network, evenwhen diverse response strategies come
to be applied in the future.

ABBREVIATIONS
The following abbreviations are used in this manuscript:

Aboost AdaBoost Classifier.
AD Anomaly-based Detection.
CG Correct Group.
CM Consolidated and Merged.
DL Deep Learning.
DT Decision Tree.
DoS Denial of Service.
FIS Feature Intrusion Similarity.
FN False Negative.
FTP File Transfer Protocol.
GB Giga Byte.
GridSearchCV Grid Search Cross Validation.
Hi-MLIC Hierarchical Multilayer Lightweight

Intrusion Classification.
HTTP Hypertext Transfer Protocol.
IDS Intrusion Detection System.
IG Incorrect Group.
KNN K-Nearest Neighbor Classifier.
LDA Linear Discriminant Analysis.
LR Logistic Regression.
ML Machine Learning.
MLP Multilayer Perceptron Classifier.
NB Gaussian Naive Bayes.
NIDS Network Intrusion Detection System.
PCAP Packet Capture.

QDA Quadratic Discriminant Analysis.
RF Random Forests.
SD Signature-based Detection.
TP True Positive.
XGBoost Extreme Gradient Boosting.
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