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ABSTRACT Complex ‘‘black-box’’ artificial intelligence (AI) models are interpreted using interpretive
machine learning and explainable AI (XAI); therefore, assessing the importance of global and local
features is crucial. The previously proposed approximate inverse model explanation (AIME) offers unified
explanations of global and local feature importance. This study builds on that foundation by focusing on
assessing feature contributions while also examining the multicollinearity and correlation among features
in XAI-derived explanations. Given that advanced AI and machine learning models inherently manage
multicollinearity and correlations among features, XAI methods must be employed to clearly explain these
dynamics and fully understand the estimation results and behaviors of the models. This study proposes a new
technique called principal component analysis-enhanced approximate inverse model explanation (PCAIME)
that extends AIME and implements dimensionality decomposition and expansion capabilities, such as PCA.
PCAIME derives contributing features, demonstrates the multicollinearity and correlation between features
and their contributions through a two-dimensional heat map of principal components, and reveals selected
features after dimensionality reduction. Experiments using wine quality and automobile mile-per-gallon
datasets were conducted to compare the effectiveness of local interpretable model-agnostic explanations,
AIME, and PCAIME, particularly in analyzing local feature importance. PCAIME outperformed its
counterparts by effectively revealing feature correlations and providing a more comprehensive perspective
of feature interactions. Significantly, PCAIME estimated the global and local feature importance and offered
novel insights by simultaneously visualizing feature correlations through heat maps. PCAIME could improve
the understanding of complex algorithms and datasets, promoting transparent AI and machine learning in
healthcare, finance, and public policy.

INDEX TERMS Approximate inverse model explanation, explainable artificial intelligence, feature
correlation, feature importance, model explanation, principal component analysis, principal component
analysis-enhanced approximate inverse model explanation.

I. INTRODUCTION
Machine learning and artificial intelligence (AI) are becom-
ing increasingly central to decision-making in various
sectors, such as automated driving, medical diagnostics,
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and financial transactions. The expanding impact of these
technologies on critical decisions highlights the need for a
clear understanding of how predictions and estimates are
derived and which data features most significantly influence
outcomes. However, grasping the internal workings of com-
plex models, including deep learning, remains challenging.
Nevertheless, the field of explainable AI (XAI) has seen
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significant research and development in recent years [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20].

A previous study derived approximate inverse operators
for black-box models and used them in combination with
the dataset of interest to explain black-box model behavior
and data properties. Further, the local and global feature
contributions were estimated using a new and versatile
approach, called approximate inverse model explanation
(AIME) [21]. AIME can be effectively applied to various
data types. In contrast to the existing interpretable machine
learning and XAI methods, AIME provides both global and
local feature importance and facilitates the visualization of
the relationship between these estimates using similarity
distribution maps for representative estimation instances.
The representative estimation instances are typical data
points for estimation results derived from a black-box
model. The previous study [21] also showed that AIME can
derive clearer and more interpretable explanations than local
interpretable model-agnostic explanations (LIME) [22] and
Shapley additive explanations (SHAP) [23]. Furthermore, the
explanatory features derived by AIME are robust against
multicollinearity.

This study highlights the importance of displaying both
multicollinearity and correlations among features in the
explanations provided by XAI, which is crucial not only
for understanding the behavior of a model but also for
interpreting the contributions of specific features to the
estimated results for individual data points. In simpler,
transparent models such as linear and logistic regres-
sion, multicollinearity and correlations can decrease the
accuracy and complicate the interpretation of explanatory
coefficients. Consequently, feature selection and dimen-
sionality reduction are typically employed before model
construction.

However, recent advancements in complexAI andmachine
learning models enable these systems to process multi-
collinearity and correlations internally, without the need
for preliminary feature selection or dimensionality reduc-
tion. This capability enables the construction of models
that do not require adjustments for multicollinearity and
correlations among features. Nevertheless, when analyzing
such models to understand their behaviors or the factors
contributing to their predictions, demonstrating the presence
of multicollinearity and the correlations among features is
essential. Although AIME has been noted for addressing
multicollinearity, it lacks the capability to explicitly articulate
the relationships among features.

This study proposes principal component analysis-
enhanced approximate inversemodel explanation (PCAIME),
which is an extension of AIMEwith dimensionality reduction
and expansion features such as principal component analysis
(PCA) [24], [25]. PCAIME derives features with large
contributions, simultaneously reveals the multicollinearity
and correlations among the features and their contributions
using a two-dimensional (2D) heat map of principal

components, and highlights features with dimensionality
reduction. Thus, PCAIME can simultaneously show the
correlations among features and their contributions.

Fig. 1 presents an overview of the proposed method, which
introduces decomposition and expansion functions into the
conventional XAI approach. Therefore, despite the use of
PCA in this study, the developed approach is not limited
to PCA because it is a reversible method that can realize
decomposition and expansion. In this method, deriving the
relationships among the features via decomposition, along
with the derivation and visualization of the explanation via
expansion, while maintaining the relationships among the
features is a meaningful endeavor.

Furthermore, the developed approach introduces PCA for
decomposition and expansion and incorporates AIME into
the XAI method, which is a combination of PCA and AIME.
In particular, this method of decomposition eliminates the
‘‘curse of dimensionality’’ caused by data with numerous
dimensions for surrogate XAI methods such as AIME.
This method facilitates the extraction of global and local
features.

The effects of PCA have been clearly demonstrated in
previous studies [24], [25]. However, the objectives of
the present study were to combine PCA and AIME and
to include the functions of decomposition and expansion
in the XAI mechanism. PCAIME reveals the contributing
features by examining the relationship among the features
and reduces the dimensionality of the features. It aims to
show the relationship among the features and to derive a
more accurate explanation from the effect of dimensionality
reduction.

Experiments on two datasets with multiple linearity were
performed to compare LIME, SHAP, AIME, and PCAIME
using heat maps, particularly for local feature importance.
The corresponding results indicate the effectiveness of
PCAIME in exhibiting feature correlation and contributing
features in an overhead view. This proposed combined
method estimates the global and local feature importance and
provides new insights via heat map-based feature correlation
visualization.

The primary contributions of this study are as follows:
• By introducing the functions of decomposition and
expansion into AIME and combining it with a previously
proposed XAI method, this study proposes a new
method, PCAIME, which introduces PCA into decom-
position and expansion functions. This method derives
features with high contributions and simultaneously
shows the correlations among the features and their
contributions through a 2D heat map of the principal
components and features with dimensionality reduction.

• The validity of the proposed method is verified using
two datasets that exhibit multicollinearity. The 2D
heat map of the principal components for global
features for one dataset, including multicollinearity,
are examined. This heat map expresses the behavior
of the model using PCAIME. For another dataset,
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FIGURE 1. Overview of PCAIME. The proposed method focuses on highlighting multicollinearity and feature correlations alongside explaining
model behavior and feature contributions. (0) Recent complex AI and machine learning models inherently manage multicollinearity and
feature correlations, eliminating the need for explicit preprocessing steps such as feature selection and dimensionality reduction. (1) However,
when interpreting model behavior and feature contributions, multicollinearity and feature correlations must be addressed. Although AIME is
robust against multicollinearity, it lacks an explicit representation of feature relationships. (2) Introducing decomposition to delineate feature
relationships and expansion to elucidate explanations while preserving these relationships is imperative. (3) PCAIME is proposed,
incorporating PCA-based decomposition and expansion functions. The focus of this study is not merely combining PCA and AIME, but rather,
devising a new XAI approach that explicitly showcases multicollinearity and feature relationships through decomposition and expansion
functions.

PCAIME is used to derive the global feature impor-
tance, which describes the behavior of the model and
estimates derived from specific data. The local fea-
ture importance elucidates the derivation of estimates,
which are compared with the results obtained using
LIME, SHAP, and AIME. The results indicate that
2D heat maps with PCAIME provide valid insights
by simultaneously showing the features contributing
to the estimates and the relationships among the
features.

The remainder of this paper is organized as follows.
Section II presents prior work relevant to this study.
Section III provides an overview of the recently demonstrated
method, namely, AIME. Section IV details the PCAIME
formulation. Section V describes comparative experiments
conducted using LIME, SHAP, AIME, and PCAIME to
validate the effectiveness of PCAIME. Finally, Section VI
highlights the major conclusions drawn from the study
findings.

II. RELATED WORKS
As indicated in the previous section, research on XAI has
surged in recent years [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20]. Speith [17] broadly divided XAI methods into ante-hoc

and post-hoc methods. The ante-hoc method introduces a
transparent model that can be explained in advance. The
model is constructed using the linear regression, decision
tree, and k-nearest neighbor methods, and explanations
are derived based on the model values. In contrast, post-
hoc methods are employed for complex or less transparent
models.

Post-hoc methods are broadly classified into model-
specific and model-agnostic methods. Model-specific meth-
ods are highly interpretable; however, the range of models is
limited. For example, Grad-CAM [26] is an interpretability
method for convolutional neural networks and is effective
for computing the importance scores of neural networks.
In addition, several other model-specific interpretability
methods [27], [28], [29], [30] for deep neural networks have
been reported to date.

Model-agnostic methods can be divided into three main
categories. The methods in the first category are used to
understand the behavior of black-box models by varying the
input and training data using the target model. These methods
include partial dependency plots [31], [32], which aid in
the visualization of the estimated value and impact of each
feature, and individual conditional explanations [33], which
evaluate the importance of a feature by randomly reordering
or removing specific features. In addition, certain methods
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evaluate the feature importance by randomly reordering
or deleting specific features and via permutation feature
importance [34] and leave-one-feature-out importance [35],
[36]. The methods in the second category extract the
important features in a forward direction using a different
technique. LIME [22] is a model-agnostic method that gen-
erates explanations for individual predictions and estimates
by evaluating the contributions of specific features. Other
methods have been proposed as extensions of LIME [22],
including ALIME [37], DLIME [38], OptiLIME [39],
ILIME [40], QLIME-A [41], and S-LIME [42]. Anchors [43],
an extension of LIME, is a model-agnostic interpretability
method that provides rule-based explanations. SHAP [23]
is a model-agnostic method that interprets the contribution
of each feature to a given prediction. Shapley values based
on cooperative game theory can be used to represent the
contribution of each feature to a predicted outcome; however,
this approach incurs a high computational cost [44]. The
methods in the third category extract the important features
in an inverse direction using a different technique; AIME
belongs to this category [21].

XAI is crucial for explaining the behavior of black-box
models, estimating the results derived from such models, and
revealing the relationships and multicollinearity among the
contributing features. The relationships and multicollinearity
among the contributing features are revealed by clarifying the
manner in which the input features interact and contribute to
the predictions obtained from the decision-making process
of the model. As an extension of SHAP [23], Shapley
Flow [45] determines direct and indirect feature contributions
from a given causal graph. In this method, a user requiring
an explanation must provide this relationship. Shapley
Chains [46] extends SHAP [23] by incorporating label
interdependence into the explanation design process to ensure
that the explanations reflect the interdependence of multiple
output predictions. This method includes multiple classifiers
to obtain the Shapley value, derives the relationships among
the features, and derives explanations that consider the
interdependence among the features.

GLIME [47] combines LIME with the graphical least
absolute reduction and selection operator, which generates
undirected graph models to capture both direct and indirect
feature effects and reveal the conditional relationships
between the features and model decisions, providing novel
graphical explainability tools.

Lo and Yin [48] introduced an influence score (namely,
I-score) to screen for non-informative variables in images
and interactively realize an environment with explainable
features that are directly related to predictability. This method
has been demonstrated for a pneumonia chest X-ray image
dataset.

However, previous methods, such as LIME [23] and
SHAP [24], do not reveal the multicollinearity or relation-
ships among features. Thus, several authors [44], [45], [46],
[47], [48] have attempted to derive relationships among
features. However, these methods are ad-hoc. These methods

exhibit two phases: defining or automatically extracting
the relationships among features and deriving explanations
for model behavior and estimation results; both have been
implemented separately. Furthermore, these methods are
associated with additional computational costs, even if the
relationships among the features are provided in advance or
are automatically extracted.

Chaudhury et al. [49] introduced a novel and user-friendly
definition of XAI based on the Wasserstein distance as the
backbone for i) model explainability, ii) feature explain-
ability, and iii) explainability of decisions made by the
model.

Certain researchers have utilized XAI in some applica-
tions. Gaspar et al. [50] conducted a perturbation analysis
on intrusion detection systems (IDSs) using machine learning
to explore their interpretability introducing LIME and SHAP
as XAI. Arreche et al. [51] focused on the development of
AI techniques for IDSs and analyzed six different metrics
of two popular black-box XAI methods, SHAP and LIME.
Palkar et al. [52] compared various XAI methods with
machine learning-based algorithms and integrated patient
data, including medical records and genetic profiles. They
found that XAI can foster trust between patients and
healthcare professionals, who must rely on AI diagnosis and
treatment recommendations.

For PCA, Dorabiala et al. [53] proposed a scalable
method called ensemble PCA (EPCA) that simultaneously
addressed these issues in the case of data with a low-rank
structure.

The incorporation of the functions of decomposition and
expansion into the XAI (includingAIME)method enables the
derivation of explanations formodel behaviors and estimation
results based on the multicollinearity and relationships
among the features. In addition, the decomposition function
derives the relationship among the features and determines
the contribution values of the features that reflect the
relationship. Although these steps increase the computational
complexity of dimensionality reduction, they reduce the
computational complexity of the XAI (including AIME).
Thus, this function is anticipated to be used in the future for
processing data with numerous features.

III. AIME
Fig. 2 shows an overview of AIME, where X is a matrix of
the number of features × the number of datapoints and Y is a
matrix of number of the number of classes × the number of
data points.

By learning these data, a black-box model function f (x) is
created, which outputs an estimate ŷ for an input data point
x. This process forms the basis for machine learning as a
black-box model represented by f (x). The data X used for
training are fed as inputs into the black-box model, and the
matrix Ŷ of data points × number of classes is obtained. This
pair of X and Ŷ matrices represents the behavior of the black-
boxmodel. In the implementation ofAIME,X is amatrix, and
each xmust be a vector of the number of feature dimensions.
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In the above description, X is the same as the training dataset.
A dataset with a similar distribution can be used or resampling
can be employed to reduce the amount of data.MatricesX and
Ŷ are used to generate the approximate inverse operator A† of
the black-box model as follows [21]:

X = A†Ŷ ,

XŶ T = A†Ŷ Ŷ T ,

XŶ T
(
Ŷ Ŷ T

)−1
= A†

(
Ŷ Ŷ T

) (
Ŷ Ŷ T

)−1
,

A† = XŶ T
(
Ŷ Ŷ T

)−1
= XŶ †, (1)

where Ŷ T represents the transpose matrix of Ŷ and Ŷ †

represents the Moore–Penrose generalized inverse [54], [55]
of matrix Ŷ . The size of matrix A† is the number of features×

number of classes. A† can be used to obtain an approximation
x̂ of the original data x using the operation A†ŷ. In other
words, A† is defined as the approximate generalized inverse
matrix of the black box model. A† is also the approximate
inverse operator that serves as a linear map from ŷ to x̂.

Herein, A† is a matrix of features × numbers of classes
(or number of objective variables in the case of regression).
The first column, whose values are computed and sorted
in the order of increasing absolute values, represents an
important feature for recognizing the first class. Similarly,
the second column, with absolute values sorted in ascending
order, serves as an important feature for the second class. The
same trend is observed in the overall behavior of the model.

The approximate inverse operator A† stores the contri-
bution of each feature by computing A†ŷ to obtain the
estimate x̂:

l = A†ŷ ◦ x, (2)

where the local feature importance vector l comprises
the number of feature dimensions. Each value represents
the feature importance, and ◦ represents the Hadamard
product [56]. The local feature importance vector l indicates
the mechanism associated with the estimation of ŷ for a given
x. These absolute values indicate the importance coefficients.
Therefore, these absolute values are sorted in descending
order. For more information, see [21].

IV. FORMULATION OF PCAIME
A. OVERVIEW OF PCAIME
The overall process flow of PCAIME is illustrated in Fig. 3.
This method comprises an original model (assuming a black-
box model, complex or nontransparent AI, or machine
learning model), an approximate inverse operator construc-
tion function, a global feature importance computation
function, a local feature importance computation function,
a decomposition function, and an expansion function.
Notably, in the derivation of global/local feature importance,
the explanatory variables X and x must be decomposed, and
the expansion function is used to represent the relationship
between the features and contributing features in a 2D heat

FIGURE 2. AIME for constructing approximate inverse operators.

map of the principal components and features. This heat
map facilitates the observation of the relationships between
features and the importance of features simultaneously. The
approximate inverse operator construction function, shown in
Fig. 3, creates A† (Section III). The global feature importance
computation function extracts the important features that
contribute to the behavior of the model (Section III). The
local feature importance computation function extracts the
features that contribute to the derivation of estimate ŷ when
a data point x is input into a black-box model (Section III).
Here, ‘‘features’’ represents the features obtained after
decomposition, or in the case of PCA, principal components.
Thus, when the decomposition function is constructed in the
PCA, the outputs of the global and local feature importance
computation functions are the contributions of each principal
component.

The decomposition function processes the multiple lin-
earity and relationships among the features and performs
dimensionality reduction to address the curse of dimensional-
ity that impedes the derivation of explanations. Consequently,
for high-dimensional explanatory variables, complex or less
transparent AI and machine learning models can perform
feature selection and dimensionality reduction, whereas
regular XAI does not contain these operations. However, the
decomposition function solves this problem.

PCAIME is a combination of PCA and AIME, and the
decomposition and expansion functions are assumed to be
implemented in PCA.

PCAIME offers multiple advantages over conventional
LIME, SHAP, AIME, and other similar methods, including
better treatment of multicollinearity and relationships among
features and improved computational efficiency and inter-
pretability through dimensionality reduction. Specifically,
PCAIME effectively solves the problem of multicollinearity
at the preprocessing stage and provides more insightful
model descriptions by considering the interactions among
the features. This step is particularly important for high-
dimensional datasets, wherein PCAIME can overcome the
curse of dimensionality and significantly improve the model
interpretability.
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B. DECOMPOSITION FUNCTION
The decomposition function addresses the curse of dimen-
sionality encountered while deriving model explanations
and revealing correlations among features within complex
datasets [57]. Dimensionality reduction lowers the computa-
tional cost by eliminating redundancy while preserving the
essential structure of the data. However, when performing
dimensionality reduction, maintaining or interpreting the
correlations among the features in the original feature space
is essential.

Among the diverse approaches for dimensionality reduc-
tion, PCA specifically captures the linear correlations among
features, identifies the direction of the maximum variance
in the dataset, and represents the original feature space
using a small number of principal components. This process
facilitates both the compression and interpretation of the
dataset. In addition, it enables expansion using PCA loadings.

The PCAIME proposed in this study uses PCA-based
decomposition to reveal the correlations among features and
derive feature contributions that reflect these relationships.

C. EXPANSION FUNCTION
1) BASIC FORMULATION OF PCA LOADINGS AND HEAT
MAP DERIVATION
PCA loading serves as a measure of how much the original
features contribute to the principal components of PCA.
These loadings are crucial for depicting the correlation
between the principal components and the original variables,
indicating the significance of each variable in each principal
component. The loadings pij are calculated using the elements
of the eigenvectors of the principal components (indicating
the direction of the principal components) as follows:

pij = vij
√

λ i, (3)

where vij is the jth component of the eigenvector of the
ith principal component and λi is the eigenvalue of the ith
principal component. The maximum value of i is the number
of principal components, and the maximum value of j is the
number of features in the original data.

Let matrix P be a matrix with elements pij. The matrix P is
the number of principal components× the number of features
of matrix X . Then, the PCA loading P is used to construct
the expansion function. This expansion function uses the
PCA loadings to derive the contribution of each feature while
extracting the relationship between the original feature space
and principal components. Essentially, A†′ is derived from X ′

and Ŷ , which are subjected to dimensionality reduction using
decomposition, and the global and local feature importance
is derived. Thus, the output is attributed to the principal
components. Consequently, it is a vector representing the
number of dimensions of the principal components defined
in Section IV-B. Let l denote a vector obtained using the
following equation:

H = P · diag (l) , (4)

where diag is a square matrix with l components along
the diagonal. The matrix H is the number of principal
components× the number of original features. For each value
of matrix H , negative and positive values are assumed to
be represented by blue and red gradients in the heatmap,
respectively. Rows exhibiting similar values indicate the
existence of a correlation among the features. In addition,
a feature with a large value in a column indicates an important
feature with a large contribution.

2) HEAT MAP FOR GLOBAL FEATURE IMPORTANCE
By substituting X ′, which is the number of datapoints ×

the number of principal components, that is, X reduced in
dimension to X ′, for X in the formula for A† presented in
Section III-A, we obtain

A†′ = X ′Ŷ T
(
Ŷ Ŷ T

)−1
= X ′Ŷ †. (5)

By setting X ′, A†′ can be represented as the number of
principal components × number of classes (or number of
objective variables). Thus, the first and second columns
represent the principal components that contribute to the first
and second classes in the model, respectively. The heat map
Hk for the kth class is expressed as follows:

Hk = P · diag (lk) , (6)

where lk is the vector from which the kth column of A†
′

is extracted and Hk is a matrix of principal components
× original features, whose rows represent the principal
components and columns represent the features of class k .

3) HEAT MAP FOR LOCAL FEATURE IMPORTANCE
By substituting the dimension-reduced x ′ for x in the equation
shown in Section III-C, we obtain

lPCA = A†′ŷ ◦ x′. (7)

As discussed in Section IV-B-II, A†′ is the number of
principal components× the number of classes (or the number
of objective variables). Therefore, we must substitute for
the dimension-reduced x′. Consequently, the vector lPCA,
which highlights the local feature importance, becomes
the dimension of the number of principal components and
indicates the principal components that contribute to the
estimation result of ŷ for x′ reduced in dimension from
x. From vector l, the 2D heat map Hlocal of the principal
components × features can be expressed as

Hlocal = P · diag (lPCA) , (8)

where Hlocal is a matrix, whose rows represent the number
of principal components and columns represent the number
of features. Features with similar values in the same row
are correlated, and the columns indicate the features that
contribute to ŷ derived from the black-box model by
inputting x.
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FIGURE 3. Overview of the proposed method, PCAIME. This method comprises an original model (assuming a black-box model, a complex or
nontransparent AI, or a machine learning model), an approximate inverse operator construction function, a global feature importance
computation function, a local feature importance computation function, a decomposition function, and an expansion function. The unique feature
of this method is that a decomposition function is applied before the mechanism for deriving explanations and an expansion function is used
before visualizing explanations. These functions visualize the relationship between the features while explaining them through dimensionality
expansion.

V. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
In this study, experiments were conducted to assess the issue
of multicollinearity and its correlation with other features,
as well as to explore themechanisms throughwhich PCAIME
generates explanations and elucidates feature relationships.
This section outlines the experimental setup and provides an
in-depth discussion of the results. The experiment employed
the automobile mile-per-gallon (MPG; the fuel consumption
rate when driving in a straight line at a constant speed on a
flat paved road, expressed as the number of miles that can be
traveled on one gallon of fuel) dataset (Auto MPG) [58].

The Auto MPG data consisted of 397 data points,
8 features, and 1 MPG score. These data were divided into
training and test datasets. The size of X in the Auto MPG
data was 298 × 8, and the size of Y was 298 × 1, resulting in
dimensions of 8 × 1 for A†.

The black-box models were developed using various
algorithms and the most accurate parameters using PyCaret
3.3.0, which is a library of AutoML. An extra tree classifier,
random forest classifier, and extra tree regressor were
adopted in this study because they yielded the highest
prediction accuracies using PyCaret as LIME, SHAP, AIME,
and PCAIME are model-agnostic methods. Then, for each
dataset, the data were divided into 75% training data and 25%
test data, followed by an examination of their accuracies.

In the experiment, the global feature importance was
derived and compared for both the red and white wine
datasets using AIME and PCAIME. Additionally, the local
feature importance for specific data points was analyzed
using LIME, SHAP, AIME, and PCAIME. To facilitate com-
parison, all outputs were visualized using heatmaps, created
with Matplotlib 3.7.1, Seaborn 0.13.1, and Pandas 1.5.3. For
implementation, LIME was utilized in the form of LIME
0.2.0.1, SHAP was applied in the form of SHAP 0.44.1, and
AIME and PCAIME were independently implemented using
scikit-learn 1.4.1 post1 and NumPy 1.25.2, respectively.

B. APPLICATION OF PCAIME TO AUTO MPG DATASET
In the first experiment, the Auto MPG dataset was utilized to
derive and compare explanations of global feature importance
for both AIME and PCAIME. The second experiment
employed the Auto MPG dataset to derive and compare
explanations based on local feature importance using LIME,
SHAP, AIME, and PCAIME.

The dataset includes the following parameters: Cylinders,
Displacement, Horsepower, Weight, Acceleration, Model
Year, and Origin. Origin is a categorical variable and accepts
‘‘2’’ or ‘‘3.’’ A machine learning model that derives MPG
was constructed as a black-box model using these features
employing an extra tree regressor.
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A previous study on AIME [21] focused on explana-
tions pertinent to classification. In contrast, the current
study addressed a numerical dataset—specifically, the MPG
dataset—and was focused on deriving explanations for
regression problems. y, ŷ (these are scalers), Y , and Ŷ (these
are matrices have dimensions of 1×the number of datapoints,
(1 ×294)) can be implemented for AIME and PCAIME
without modifications, except that they now represent the
objective variables. In this case, matrix X has dimensions of
8× 294, because it has 8 features and 294 data points.

1) GLOBAL FEATURE IMPORTANCE FOR AUTO MPG
DATASET
This section explores the global feature importance as derived
by applying the AIME and PCAIME methodologies to the
Auto MPG dataset.

Fig. 4 presents a heat-map correlation matrix for each
feature in the dataset. The results highlight that features such
as Cylinders, Displacement, Horsepower, and Weight exhibit
strong positive correlations.

FIGURE 4. Heat map representation of the correlation matrix of the Auto
MPG dataset.

Table 1 displays the results obtained for the variance
inflation factor (VIF), an indicator utilized to assess multi-
collinearity in the auto MPG dataset. VIF values exceeding
10 are observed for Cylinders, Displacement, and Weight,
indicating multicollinearity in the data. Additionally, the high
VIF of Horsepower (9.9573) suggests a strong relationship
with other characteristics. This finding indicates that the Auto
MPG dataset exhibits multicollinearity, with other features
showing correlations with each other.

For this analysis, the extra tree classifier was employed
as the black-box model for regression. The MAE(Mean
Absolute Error), MSE(Mean Squared Erro), RMSE(Root
Mean Squared Error), and R2(Coefficient of Determination,
R squared) values were 6.364267, 1.762663, 2.52275, and
0.873808, respectively.

TABLE 1. VIF for the auto MPG dataset.

For a comparative analysis, the results are presented in
Fig. 5, where the Extra Trees Regressor was utilized to derive
feature importance.

The contributions of Cylinders and Displacement to the
regression model for the Auto MPG dataset are notable, with
respective values of 0.31 and 0.26, suggesting a significant
influence on the model predictions. Meanwhile, the Model
Year contribution is 0.13, which, although smaller than that
of Cylinders and Displacement, is still larger than those
of Horsepower and Weight, each contributing 0.12. These
characteristics are important predictors within the regression
model. However, the nature of these contributions is to fully
understand their impact on the model output.

FIGURE 5. Heat map representation of the feature importance derived
using the extra tree classifier for the Auto MPG dataset.

A heat map of the global feature importance results from
the AIME for the Auto MPG dataset is shown in Fig. 6.
For Cylinders, Displacement, Horsepower, andWeight, the

model shows a negative contribution, whereas Model Year,
Acceleration, Origin_2, and Origin_3 contribute positively.
Notably, the contribution of Origin_3 is more positive than
that of Origin_2. In contrast to the functional importance
depicted in Fig. 5, the global functional importance revealed
by AIME clearly indicates whether the model contributes
positively or negatively.

FIGURE 6. Heat map representation of the global feature importance,
derived using AIME, for the Auto MPG dataset.

The cumulative explanation variance and scree plot for the
MPG dataset quality dataset are presented in Figs. 7 and 8,
respectively.
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The cumulative explanation variance shown in Fig. 7 is
approximately 0.85 when the number of principal compo-
nents is 3. This result implies that it contains approximately
85% of the information content of the original data. The scree
plot consists of a gradual slope, referred to as the scree, which
indicates the number of principal components. In Fig. 8,
the scree plot displays the screes for principal components
2 and 3. Consequently, PCAIME was derived for principal
component 3 based on this result. In this case, matrix X ′ has
dimensions of 3 ×294, matrix A†′ is 1× 3, matrix P is 3 ×8,
and matrix Hk is 3×8.

Fig. 9 illustrates the corresponding results of the global
feature importance derived using PCAIME. Because this
regression model contains only one dependent variable, the
global feature importance obtained through PCAIME is
efficiently captured in a single heatmap. Consistent with
the previous figures, the vertical axis in these visualizations
represents the principal components, and the horizontal axis
denotes the features. PC1 contributes almost exclusively of
the global feature importance and negatively to the model,
with features such as Cylinders, Displacement, Horsepower,
and Weight also contributing negatively. Conversely, Model
Year, Acceleration, Origin_2, and Origin_3 contribute pos-
itively and are strongly correlated. These correlations arise
because these variables move in the same direction along
the PC1 axis. The second and third principal components
also contribute negatively to the model. Components with
positive and negative values in opposite directions within
the same principal component indicate a negative correlation
between these features. For example, focusing on the
PC1 axis, Cylinders, Displacement, Horsepower, and Weight
are negatively correlated with Model Year, Acceleration,
Origin_2, and Origin _3.

This analysis focuses on the same feature as presented in
Fig. 6; however, here it is represented solely by PC1. The
ability to represent this feature on a single axis suggests a
correlation among all features associated with PC1.

FIGURE 7. Cumulative explanation variance for the Auto MPG dataset.

2) LOCAL FEATURE IMPORTANCE FOR AUTO MPG DATASET
This section discusses the local feature importance derived
using LIME, SHAP, AIME, and PCAIME. Despite the strong
multicollinearity among the features in the dataset, predicting

FIGURE 8. Scree plot for the Auto MGP dataset.

FIGURE 9. Heat map representation of the global feature importance
derived using PCAIME for the Auto MPG data.

MPG seems straightforward for extra tree regressors, and
the data do not show significant disparities in results. For
this analysis, the local features of a relatively fuel-efficient
car, with an actual MPG of 26.0 and an extra tree regressor
prediction of 25.99, were examined. Similarly, for a fuel-
inefficient car, an actual MPG of 15.0 and an extra tree
regressor prediction of 14.25 were analyzed. The importance
of these features was then derived and compared.

Fig. 10 shows the results derived using LIME, SHAP,
and AIME to explain the MPG value of 26.0 and extra tree
regressor prediction of 25.99.

The specific values for this data point after normal-
ization are as follows: Cylinder: 4; Model Year: 72;
Displacement: −0.94164742; Horsepower: −0.92267201;
Weight −0.92958509; Acceleration 0.89232939; Origin_2:
1; Origin_3: 0. In LIME, the positive values of Cylinders,
Displacement, Horsepower, and Weight are significant.
In SHAP, a high positive correlation between Cylinders
and Displacement is observed, and the negative correlation
of Model Year is also pronounced. In AIME, Cylinders,
Displacement, Horsepower, Weight, and Origin_2 show high
positive correlations, and the negative correlation of Model
Year is substantial. The actual data point features positive
values for Cylinders and negative values for Displacement,
Horsepower, and Weight, aligning with the characteristics
of a fuel-efficient vehicle. Typically, a positive value for
Cylinders indicates a smaller engine size, whereas negative
values for Displacement, Horsepower, and Weight suggest

VOLUME 12, 2024 121101



T. Nakanishi: PCAIMEs Through Dimensional Decomposition and Expansion

lower engine displacement, reduced power, and decreased
vehicle mass, respectively—traits commonly associated with
fuel efficiency. The accurately reflects the performance of the
vehicle. However, the AIME shows a value of 0 for Origin_3,
ranging from −1 to 1, which is straightforward to interpret.
Yet, these values do not account formulticollinearity or depict
relationships among features that are not visualized.

FIGURE 10. Heat map representation of the local feature importance of
fuel-efficient vehicle data points derived using LIME, SHAP, and AIME
(Auto MPG data).

Fig. 11 shows the results derived using PCAIME to explain
the MPG value of 26.0 and the extra tree regressor prediction
of 25.99.

Notably, the values of Origin_2 and Origin_3 are reversed
in Fig. 11 compared to SHAP and AIME in Fig. 23. This
discrepancy can be attributed to the ability of PCAIME to
manage relationships between features. Indeed, one can infer
that the newer model (Origin_3) is more fuel-efficient than
the older model (Origin_2).

FIGURE 11. Heat map representation of the local feature importance of
fuel-efficient vehicle data points derived using PCAIME (Auto MPG data).

The vertical axis represents the principal components,
whereas the horizontal axis represents the features. Features
that exhibit values along the same direction for the same
principal component (row) can be considered correlated
with each other. Fig. 11 shows that the results can be
explained simply using PC1 and PC2, which is because

the value of PC3 is usually low. The columns show
that Cylinders, Displacement, Horsepower, and Weight are
positively correlated, whereas Acceleration and Origin_2 are
negatively correlated. The positive correlations of Cylinders,
Displacement, Horsepower, and Weight and the negative
correlations of Model Year and Weight are expressed only
in PC1, confirming that these features are positively or
negatively correlated with each other. In addition, because
the original value of Origin_3 is 0, PC1 and PC2 cancel
each other out. These results are similar to those of LIME,
SHAP, and AIME. PCAIME shows the relationship between
features, in addition to the contributions of the features. Thus,
the principal component axis illustrates the relationships
between features and the columns reveal the features that
contribute to the estimation results of the data points of
interest. Components with positive and negative values in
opposite directions within the same principal component
indicate a negative correlation between these features. For
example, focusing on the PC1 axis, Model Year, Acceleration
Origin_2, and Origin _3 were found to be negatively
correlated with Cylinders, Displacement, Horsepower, and
Weight. When focusing on the PC2 axis, Origin _2 was found
to be negatively correlated with Origin _3.

Fig. 12 shows the results derived using LIME, SHAP, and
AIME to explain the MPG value of 15.0 and the extra tree
regressor prediction of 14.25.

The specific values for these data after normalization are
as follows—Cylinders: 8; Model Year: 70; Displacement:
1.87146856; Horsepower: 2.22492429; Weight: 1.02840604;
Acceleration: −2.55551732; Origin_2: 0; Origin_3: 0. For
LIME, SHAP, and AIME, Cylinders, Model Year, Displace-
ment, Horsepower, and Weight are negative capitals. How-
ever, Acceleration is smaller than −0.74 for LIME. AIME
also shows a negative acceleration contribution. In contrast,
SHAP exhibits a positive acceleration contribution. However,
these results do not reveal any relationship among the
features.

Fig. 13 presents the results derived using PCAIME to
explain the MPG value of 15.0 and the extra tree regressor
prediction of 14.25. The vertical axis represents the principal
components, and the horizontal axis denotes the features.
Features exhibiting values in the same direction for the same
principal component (row) are considered correlated. Fig. 13
demonstrates that the problem can be effectively explained
using only PC1. Consequently, Model Year, Acceleration,
Origin_2, and Origin_3 are positively correlated with each
other, whereas Cylinders, Displacement, Horsepower, and
Weight are negatively correlated with each other. Compo-
nents with positive and negative values in opposite directions
within the same principal component indicate a negative
correlation between these features. For example, focusing
on the PC1 axis, Cylinders, Displacement, Horsepower, and
Weight were found to be negatively correlated with Model
Year, Acceleration, Origin_2, and Origin _3.

In addition, the results in Fig. 11 are almost identical
to those in Fig. 12, particularly in terms of the columnar
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alignment; however, Acceleration also shows a positive
correlation with SHAP. This difference can be attributed to
the methodologies employed: PCAIME calculates results by
examining the interrelationships among features, whereas
SHAP, derived from cooperative game theory, may yield
divergent outcomes compared to LIME, which approximates
a linear model in a local vicinity, and AIME, which
employs inverse operators to establish a linear model. Further
refinement in AIME, through the addition of decomposition
and expansion functions, enables more nuanced analyses
that consider the interplay between features. Whether accel-
eration contributes positively or negatively to MPG can
vary depending on specific cases. Theoretically, a car with
efficient acceleration usually features an efficient engine
and lightweight design, both of which can enhance fuel
economy. Urban driving scenarios, which frequently involve
stop-and-go conditions, can benefit from smooth acceleration
that minimizes fuel waste. Conversely, vehicles engineered
for high acceleration might consume more fuel to deliver
such performance, particularly during continuous high-speed
conditions such as highway driving. Additionally, vehicle
designs focused on enhancing acceleration can sometimes
compromise fuel efficiency. Thus, integrating domain knowl-
edge is crucial for informed analysis and interpretation of
these dynamics.

Unlike in Fig. 12, Model Year, Acceleration, Origin_2,
and Origin_3 show positive correlations in Fig. 13. These
differences can be attributed to the influence of other features
in the case of Fig. 12, suggesting that factors such as a
newer model year and better acceleration typically contribute
positively to the fuel efficiency of a car.

These findings demonstrate that by deriving a PCA-like
function that summarizes the relationships among features
as principal components, feature importance can be assessed
independently of other feature influences.

VI. DISCUSSION
The experimental findings indicate that PCAIME is an
effective method of interpreting the results from the original
model (often referred to as a black-box model), while
also uncovering the multicollinearity and interrelationships
among features. Specifically, the introduction of a decom-
position function within PCAIME enables the extraction
and analysis of these relationships, providing a deeper
understanding of how each feature influences the outcomes
of the model. Additionally, the expansion function plays a
crucial role in elucidating the behavior of the model and the
estimation results for individual data points, further clarifying
the complex dynamics among the features.

In this experiment, the global feature importance derived
using PCAIME was compared with that determined using
an extra tree regressor, and AIME. The contributions of the
feature importance, whether negative or positive, could not
be clearly determined for the random forest classifier, extra
tree classifier, and extra tree regressor. In contrast, AIME
explicitly indicates the positive or negative contribution

FIGURE 12. Heat map representation of the local feature importance of
non-fuel-efficient vehicle data points derived using LIME, SHAP, and
AIME (Auto MPG data).

FIGURE 13. Heat map representation of the local feature importance of
non-fuel-efficient vehicle data points derived using PCAIME (Auto MPG
data).

of the derived feature importance to each class. Notably,
PCAIME facilitates clear visualization of the correlations
among the features and their contributions—either positive or
negative—to themodel. Additionally, the local feature impor-
tance derived using LIME, SHAP, AIME, and PCAIME was
compared. The findings demonstrate that PCAIME not only
considers, but also clearly visualizes the interrelationships
among features. Consequently, contributions to local feature
importance may sometimes appear in opposite directions,
likely due to the PCAIME calculations that account for the
complex relationships among the features. The highlights the
utility of PCAIME in providing a nuanced understanding of
feature interactions and their impact on model predictions.

Notably, in this study, PCA was incorporated into AIME,
which is a type of XAI, to implement a mechanism for
deriving and visualizing the multicollinearity and relation-
ships among features and determine feature importances. The
modified approach PCAIME, which incorporates reversible
decomposition and expansion functions, is a novel method
of realizing such a mechanism. Note that this proposed
technique is feasible only if reversible decomposition and
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expansion functions are present. PCAIME can be easily
realized via dimensionality reduction performed using PCA
and via dimensionality expansion performed based on the
relationship between the features and principal components
using PCA loadings. In other words, previous studies have
demonstrated that PCA is suitable for performing these oper-
ations. Complex AI and machine learning models potentially
contain functions of dimensionality reduction and feature
selection that process multicollinearity and relationships
among features while explaining their estimation results.
However, explaining the multicollinearity and relationships
among features is essential and was investigated in the
present study. The present study was primarily focused on
the development of an XAI method that implements both
reversible decomposition and expansion functions.

However, the proposed PCAIME has certain limitations.
Although the reversible decomposition and expansion func-
tions enable visualization of the relationships among features
to some extent, using conventional correlation matrices and
VIFs is suitable for deriving strict multicollinearity. In other
words, PCAIME is mainly aimed at detecting both the
existence of a relationship among the features and important
features. The correlation matrix and VIF can only determine
the relationships between features and multicollinearity.
PCAIME provides a higher level of visualization than these
systems because the correlation matrix and VIF cannot
indicate the importance of a feature.

This method automatically derives the correlations among
the features and does not consider causal relationships.
Introducing some type of domain knowledge is necessary
to verify the causal relationships based on the derived
correlations. The construction of such a method will be
attempted in a future study.

PCAIME raises questions concerning the use of results
obtained via previously developed feature importance meth-
ods to recreate AI and machine learning models by simply
using only the most important features. This is because
PCAIME shows the relationships among features in the form
of principal components; therefore, new important features
can be created that sometimes serve as components while
considering the relationships among features. In other words,
considering data with correlations or multicollinearity among
features, PCAIMEmust be used to observe the feature impor-
tance while considering the relationships among features.
In this study, we examined the relationships between the
features and multicollinearity in AIME. However, LIME [22]
and SHAP [23] also need to address this issue.
PCAIME can determine the feature contributions by

considering the relationships among the features, behavior
of the model, and explanation of the estimation results for
each data point. In addition, the relationships among the
features and their contributions can be visualized using a
simple heatmap. This process enables the derivation of highly
accurate and more interpretable explanations of the results
obtained using complex AI and machine learning models for
users. Elucidating the original (black-box) model using the

various interpretive machine learning and XAI techniques of
PCAIME is crucial for the development of next-generation
machine learning and AI technology and for ensuring
reliability, transparency, responsibility, and accountability.
The exploration of methods to integrate and evaluate these
numerous interpretive machine learning and XAI approaches
may be addressed in future research.

VII. CONCLUSION
In this study, reversible decomposition and expansion
functions were applied to previously reported AIME to
formulate a visualization method that simultaneously shows
the relationship between features and their contributions in
a heat map. The relationships were obtained by deriving the
behavior of the black-boxmodel and features that contributed
to the estimated results when each data point was fed as an
input, while considering the multicollinearity and correlation
among the features. This approach leverages the decomposi-
tion function and approximate inverse operator of AIME to
uncover relationships among features, providing an explana-
tion that accounts for these interconnections. Additionally,
the expansion function elucidates the relationship between
features and their contributions. These insights offer deeper
understanding of black-box models, highlighting the superi-
ority of PCAIME over previously reported XAI techniques.
These findings suggest that deriving decomposition and
expansion functions, which encapsulate feature relationships
as principal components, enables the determination of feature
importance without impacting other features.

PCAIME implements the decomposition and expansion
functions using PCA, where the PCA loadings reflect the
relationships between the features and principal compo-
nents. This study underscores the significance of leveraging
these features to derive explanations. PCAIME facilitates
the derivation of feature contributions while considering
correlations among features, notably in terms of global
and local feature importance. Comparative analysis was
conducted between the global feature importance derived
using PCAIME and that obtained from an extra tree regressor.
The results indicate that the extra tree regressor cannot reveal
the positive or negative contribution of the feature importance
to a class. In contrast, AIME indicates the positive or negative
contribution of the features to each class. Notably, PCAIME
outperforms all these methods because a simple heat map
distinctly reveals the one-to-one correspondence among the
features as well as their positive or negative contribution to
the model. Similarly, the local feature importance derived
using PCAIME was compared with that derived using LIME,
SHAP, and AIME, and the results indicate that PCAIME
considers as well as reveals the relationships among features.

The proposed method, in which reversible decomposition
and expansion functions are applied to AIME to derive
the global and local feature importance by considering the
multicollinearity and correlation among the features, is one
method of solving the problem of multicollinearity and
correlation among features indicated in previous studies.
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Future studies should focus on conducting experiments using
datasets with several explanatory variables to explore and
verify the potential advantages of PCAIME. In particular,
the decomposition feature should be implemented to realize
dimensionality reduction while balancing the computational
cost. In addition, PCAIME should be applied in scenarios
wherein causal relationships exist between features, as well
as in real-world problems.

PCAIME is an innovative approach that unravels complex
AI and machine learning-based black-box models and
paves the way for the development of transparent and
reliable decision-making processes for feature contributions,
including multicollinearity and relationships among features.
Its unique approach to deriving feature relationships and
importance through reversible decomposition and expansion
functions has the potential to redefine our understanding
of and trust in complex algorithms. PCAIME provides a
comprehensive framework that significantly advances the
field of machine learning interpretability. Given the growing
demand for transparent AI and machine learning models
in various critical areas such as healthcare, finance, and
public policy, PCAIME will play a vital role in bridging the
divide between complex algorithms and datasets and human
understanding.

APPENDIX A
This Appendix presents the results of the experiments
conducted on the wine data to determine whether PCAIME
is also valid for other datasets.

A. ADDITIONAL EXPERIMENTAL ENVIRONMENT
The additional experiment utilized the wine quality
dataset [59] to evaluate the framework. The red wine data
consisted of 1599 data points, 11 features, and quality score
labels ranging from 3 to 8, whereas the white wine data
consisted of 4898 data points, 11 features, and quality scores
ranging from 3 to 9. These data were divided into training
and test datasets. The size of X of the red wine data was
1199 × 12 and the size of Y was 1199 × 6, resulting in A†

with dimensions of 12 × 6. The size of X of the white wine
data was 3673× 12 and the size of Y was 3673× 7, resulting
in A† with dimensions of 12 × 7.

B. EXPERIMENT 1: APPLICATION OF PCAIME TO WINE
QUALITY DATASET
In an additional experiment, the red and white wine quality
datasets were employed to derive and compare explanations
using the AIME and PCAIME methods. Both datasets
encompassed several parameters including Fixed Acidity,
Volatile Acidity, Citric Acid, Residual Sugar, Chlorides, Free
Sulfur Dioxide, Total Sulfur Dioxide, Density, pH, Sulfur
Dioxide, Sulfates, and Alcohol. A machine learning model
was constructed to predict the quality from these features,
operating as a black-box model. The quality of red wine was
represented by integral values in the range of 3–8 and 3–9,
respectively.

1) FEATURE IMPORTANCE FOR RED WINE QUALITY
DATASET
Fig. 14 presents the heat-mapped correlation matrix for each
feature, illustrating the degrees of correlation, where red
indicates stronger positive correlations and blue signifies
stronger negative correlations. The matrix highlights several
key relationships: Fixed Acidity and Citric Acid, as well as
Fixed Acidity and Density, are highly positively correlated.
Free Sulfur Dioxide and Total Sulfur Dioxide also display
a strong positive correlation. Conversely, a strong negative
correlation is observed between Fixed Acidity and pH. The
correlation between Fixed Acidity and pH is negative and
significant. Table 2 presents the results of the VIF.

TABLE 2. VIFs for red wine quality data.

FIGURE 14. Heat map representation of the correlation matrix of the red
wine quality data.

Features with VIF values exceeding 10 do not exist;
however, the VIF values for Fixed Acidity and Density, that
is, 7.768 and 6.3438, respectively, are high. These results
indicate that no sufficiently correlated feature group in the
red wine quality dataset can be considered multicollinear.
However, correlated features are present.
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As indicated in Section IV-A, an extra tree classifier
was used as the black-box model for these data. The
corresponding results were highly accurate, with area under
the curve (AUC), recall, precision, and F1 score of 0.6925,
0.857602, 0.661672, and 0.67519, respectively.

The feature importance results obtained using the extra tree
classifier are shown in Fig. 15. As the values are not very
large (approximately 0.1), the important features cannot be
identified.

FIGURE 15. Heat map representation of feature importance derived using
the extra tree classifier, for the red-wine quality dataset.

The AIME-derived heat map of the global feature impor-
tance is presented in Fig. 16. Quality 3 and 4 exhibit positive
contributions of Volatile Acidity, whereas Quality 5 shows
a positive contribution of Volatile Acidity and Total Sulfur
Dioxide but a negative contribution of Alcohol. For Quality 6,
7, and 8, Sulfates and Alcohols are positively correlated.
Citric Acid is particularly high for Quality 7 and 8. Thus, the
global feature importance derived using AIME revealed the
contributions of the features in each class of the black-box
model.

FIGURE 16. Heat map representation of the global feature
importancederived using AIME, for the red-wine quality dataset.

Because the proposed PCAIME adopts PCA, determining
the number of principal components to be used is crucial. The
cumulative explanation variance and scree plots for the red
wine quality dataset are shown in Figs. 17 and 18, respec-
tively. The cumulative explanation variance is approximately
0.85when the number of principal components is 6; this result
implies that the contributions of the components contain 85%
of the original data. The scree plot in Fig. 8 shows the screes

for PC2 and PC6 (herein, PC followed by a number represents
principal components). Based on this result, PCAIME is
obtained for PC6.

FIGURE 17. Cumulative explanation variance for the red wine quality
dataset.

FIGURE 18. Scree plot for the red wine quality dataset.

Negative correlations between quality values and specific
features are also observed. Quality 3 is negatively correlated
with Citric Acid (−0.21), Free Sulfur Dioxide, Total Sulfur
Dioxide (−0.30), Sulfates (−0.27), and Alcohol (−0.22).
Thus, these features are negatively associated with Quality
3 wines. For Quality 4, negative correlations are observed
with Fixed Acidity (−0.44), Citric Acid (−0.55), Free Sulfur
Dioxide (−0.42), Total Sulfur Dioxide (−0.37), Sulfates
(−0.46), and Alcohol (−0.30), suggesting that higher levels
of these features are not conducive to Quality 4. Quality 5 is
negatively correlated with Fixed Acidity (−0.14), Citric Acid
(−0.24), pH (−0.12), Sulfates (−0.13), and Alcohol (−1.00),
indicating that these features negatively affect this quality
level. For Quality 6, negative correlations are observed with
Fixed Acidity (−0.14), Volatile Acidity (−0.26), pH (−0.12),
Sulfates (−0.42), and Alcohol (−1.00), highlighting its
significant negative impact. Quality 7 is negatively correlated
with Volatile Acidity (−0.66), Chloride (−0.22), Free Sulfur
Dioxide (−0.20), Total Sulfur Dioxide (−0.89), and Density
(−0.41), implying that these features reduce wine quality.
Quality 8 is negatively correlated with Volatile Acidity
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(−0.66), Chlorides (−0.22), Free Sulfur Dioxide (−0.22),
Total Sulfur Dioxide (−0.38), Density (−0.64), and pH
(−0.09), indicating that these features negatively affect the
quality. Finally, Quality 9 is negatively correlated with
Volatile Acidity (−0.46), Chlorides (−0.28), Free Sulfur
Dioxide (−0.25), Total Sulfur Dioxide (−0.36), Density
(−0.32), and pH (−0.39), suggesting that these elements
negatively contribute to the quality.

The results for PCAIME Quality 3, 4, 5, 6, 7, and
8 are shown in Figs. 19, 20, 21, 22, 23, and 24, respec-
tively. The PCAIME is represented using a heat map,
wherein the principal components and features are displayed
on the vertical and horizontal axes, respectively. The rows
with the same principal components and similar values are
highly correlated. The columns indicate features with strong
contributions in the corresponding class.

Fig. 19 shows the PCAIME results for Quality 3. The rows
indicate that PC3 and PC5 are effective for representation of
feature importance.

In particular, PC3 shows a positive correlation between
Volatile Acidity and Density and negative correlations among
Free Sulfur Dioxide, Total Sulfur Dioxide, and Alcohol.
The correlations among these features are attributed to their
same principal components and values in the same direction.
In the columns, Volatile Acidity, Residual Sugar, and Density
contribute positively, whereas Free Sulfur Dioxide, Total
Sulfur Dioxide, and Alcohol contribute negatively. The
contribution of Chlorides is lower than that derived using
AIME, whereas that of Residual Sugars is higher than that
derived using AIME. This result can be ascribed to the ability
of PCAIME to organize correlations with other features
using principal components. Components with positive and
negative values in opposite directions within the same
principal component indicate a negative correlation between
these features. For example, Free Sulfur Dioxide and Total
Sulfur Dioxide have negative correlations with Alcohol and
PC2.

Fig. 20 displays the PCAIME results for Quality 4. These
results are consistent with those observed for Quality 3,
shown in Fig. 19, particularly in the effectiveness of PC3 and
PC5 when analyzed row by row. Specifically, PC3 reveals
a positive correlation between Volatile Acidity and Density
and a negative correlation among Free Sulfur Dioxide,
Total Sulfur Dioxide, and Alcohol. The consistency of these
principal components and the direction of their values in
both quality levels underline their correlated nature. In the
column-wise analysis, Volatile Acidity, Residual Sugar, and
Density show positive contributions, whereas Free Sulfur
Dioxide, Total Sulfur Dioxide, and Alcohol demonstrate
negative contributions. Notably, the contribution of residual
sugar is more pronounced in PCAIME than in AIME. This
difference is attributed to the ability of PCAIME to organize
correlations with other features through its use of principal
components, providing a clearer delineation of how each
feature influences wine quality. Citric Acid, Residual Sugar,
Free Sulfur Dioxide, Total Sulfur Dioxide, pH, and Alcohol

are negatively correlated with Volatile Acidity and Density in
PC3.

FIGURE 19. Heat map representation of the global feature importance of
Quality 3, derived using PCAIME, for the red-wine quality data.

FIGURE 20. Heat map representation of the global feature importance of
Quality 4 derived using PCAIME for the red wine quality dataset.

Fig. 21 presents the PCAIME results for Quality 5.
In contrast to the Quality 3 and 4 results shown in
Figs. 8 and 9, respectively, the results for Quality 5 show a
strong influence of PC2.

In particular, Free Sulfur Dioxide and Total Sulfur Dioxide
are strongly affected in the same direction, and a strong
correlation is observed between these two features. In the
columns, Volatile Acidity, Free Sulfur Dioxide, Total Sulfur
Dioxide, and Density show positive contributions, whereas
Alcohol shows a negative contribution. This trend is similar
to that obtained for the Quality 5 row in Fig. 16. However, the
negative contribution of Sulfate for Quality 6 is not the same
as that obtained for Quality 5 (Fig. 16). This result may be
attributed to the PCA processing of the relationships among
the features. Thus, Fig. 21 derives feature importance that
reflects relationships and multicollinearity among features.
Alcohol is negatively correlated with Free Sulfur Dioxide and
Total Sulfur Dioxide in PC3.

Fig. 22 shows the PCAIME results for Quality 6, exhibiting
strong contributions from PC2, PC3, and PC6, in contrast to
those observed in Figs. 19–21.

In particular, the negative contributions of Free Sulfur
Dioxide and Total Sulfur Dioxide in PC2 indicate a strong
relationship between these two features. In the column
analysis, the negative contributions of Free Sulfur Dioxide
and Total Sulfur Dioxide outweigh the positive contributions
of pH and Alcohol. Additionally, Density also exhibits a neg-
ative contribution when included in the column assessments.
This trend mirrors the observations in the Quality 6 analysis
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FIGURE 21. Heat map representation of the global feature importance of
Quality 5, derived using PCAIME, for the red-wine quality data.

as presented in Fig. 6, underscoring consistent patterns across
different quality levels in the dataset. Alcohol is negatively
correlated with Free Sulfur Dioxide and Total Sulfur Dioxide
in PC2.

FIGURE 22. Heat map representation of the global feature importance of
Quality 6 derived using PCAIME for the red wine quality data.

Fig. 23 depicts the PCAIME results for Quality 7. Notably,
PC2 and PC3 of Free Sulfur Dioxide and Total Sulfur Dioxide
show positive and negative values that offset each other.
This result indicates a strong correlation between these two
features. Further, the values of Fixed Acidity and Sulfates are
lower than those obtained for Quality 7. Alcohol is strongly
negatively correlated with Free Sulfur Dioxide and Total
Sulfur Dioxide in PC2.

FIGURE 23. Heat map representation of the global feature importance of
Quality 7, derived using PCAIME, for the red-wine quality data.

Fig. 24 presents the PCAIME results for Quality 8, which
are similar to those observed for Quality 7 in Fig. 13. The
analysis highlights that the positive and negative values in

PC2 and PC3 for Free Sulfur Dioxide and Total Sulfur Diox-
ide appear to offset each other, suggesting a strong correlation
between these two features. Moreover, when compared to
the results for Quality 8 depicted in Fig. 6, the values for
Fixed Acidity and Sulfates are relatively low, indicating a
distinct pattern in how these components impact wine with
higher quality ratings. Free Sulfur Dioxide and Total Sulfur
Dioxide consumption are strongly negatively correlated with
Alcohol and Volatile Acidity in PC2. Furthermore, Volatile
Acidity consumption is strongly negatively correlated with
Free Sulfur Dioxide and Total Sulfur Dioxide in PC3.

FIGURE 24. Heat map representation of the global feature importance of
Quality 8, derived using PCAIME, for the red-wine quality data.

These results suggest that PCAIME reveals the correlations
among the features and derives their contributions by
considering the relationships among the features.

2) FEATURE IMPORTANCE FOR WHITE WINE QUALITY
DATASET
Fig. 25 shows the heat-mapped correlation matrix for each
feature. Residual Sugar andDensity, Free Sulfur Dioxide, and
Total Sulfur Dioxide are highly positively correlated.

Table 3 presents the VIF results. The VIF values for Resid-
ual Sugar and Density exceed 10, indicating multicollinearity
of the data. The large VIF value of Alcohol (7.7070) indicates
its strong relationships with the other characteristics.

As indicated in Section IV-A, a random forest classifier
was used as the black-box model for these data; the
corresponding accuracy, AUC, recall, precision, and F1 score
are 0.659592, 0.842657, 0.659592, 0.663018, and 0.649181,
respectively.

The results obtained using the random forest classifier
(shown in Fig. 25), which can derive feature importance, were
compared. Because the values are low (approximately 0.1),
the important features cannot be identified.

Fig. 26 shows a feature-importance heat map, developed
using a random forest classifier, for the white-wine quality
dataset. In addition, a heat map of the global feature
importance results derived using AIME is presented in
Fig. 27.

In the case of AIME, Quality 3 shows positive con-
tributions from Fixed Acidity and Free Sulfur Dioxide.
In particular, in the case of Quality 3, Free Sulfur Dioxide
shows a very large contribution of 1.0. Moreover, Free
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FIGURE 25. Heat map representation of the correlation matrix of the
white-wine quality data.

TABLE 3. VIF for white-wine quality Data.

FIGURE 26. Heat map representation of the feature importance, derived
using a random forest classifier, for the white-wine quality dataset.

Sulfur Dioxide is often high in low quality wines. Quality
4 exhibits a positive contribution from Volatile Acidity and
negative contributions from Residual Sugar, Free Sulfur
Dioxide, and Total Sulfur Dioxide. Quality 5 indicates
positive contributions from Volatile Acidity, Residual Sugar,
Chlorides, Total Sulfur Dioxide, and Density; in contrast,
a negative contribution is obtained from Alcohol. Quality
6 indicates a negative contribution from Volatile Acidity.
Quality 7 indicates positive contributions from pH and
Alcohol, along with negative contributions from Residual
Sugar, Chlorides, Total Sulfur Dioxide, and Density. Quality
8 indicates positive contributions from pH and Alcohol and

negative contributions from Fixed Acidity, Chlorides, Total
Sulfur Dioxide, and Density. Quality 9 indicates positive
contributions from Fixed Acidity, Citric Acid, pH, and
Alcohol, with negative contributions from Residual Sugar,
Chlorides, Free Sulfur Dioxide, Total Sulfur Dioxide, and
Density.

FIGURE 27. Heat map representation of the global feature importance
derived using AIME for the white wine quality data.

Negative correlations between quality values and specific
features are also observed. For Quality 3, a negative
correlation exists with Sulfates (−0.31), which indicates
that lower alcohol content is associated with lower-quality
wines. For Quality 4, negative correlations are observed
with Citric Acid (−0.28), Residual Sugar (−0.46), Free
Sulfur Dioxide (−0.77), and Total Sulfur Dioxide (−0.35),
suggesting that higher levels of these features are not
conducive to higher quality. Quality 5 shows negative
correlationswith pH (−0.24) and Sulfates (−0.13), indicating
that alcohol content negatively affects this quality level. For
Quality 6, negative correlations are observed with Volatile
Acidity (−1.00), highlighting its significant negative impact.
Quality 7 is negatively correlated with Fixed Acidity (−0.17),
Volatile Acidity (−0.19), Citric Acid (−0.12), Residual Sugar
(−0.35), Chloride (−0.50), Free Sulfur Dioxide (−0.11),
Total Sulfur Dioxide (−0.46), and Density (−0.75), implying
that these features reduce the quality of wine. Quality 8 is
negatively correlated with Fixed Acidity (−0.33), Citric Acid
(–0.07), Residual Sugar (−0.15), Chlorides (−0.33), Total
Sulfur Dioxide (−0.31), and Density (−0.64), indicating that
these features negatively affect quality. Finally, Quality 9 is
negatively correlated with Residual Sugar (−0.39), Chlorides
(−0.62), Free Sulfur Dioxide (−0.37), Total Sulfur Dioxide
(−0.41), and Density (−0.57), suggesting that these elements
negatively contribute to each quality.

The AIME results indicate the presence of complex
relationships among the features, except that high alcohol
consumption results in high quality. The cumulative expla-
nation variance and scree plot for the white-wine quality
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dataset are shown in Figs. 28 and 29, respectively. The
cumulative explanation variance shown in Fig. 18 is greater
than 0.80 when the number of principal components is 6;
this result indicates that the contribution of PCs contains over
80% of the original data information. The scree plot in Fig. 19
shows the screes for PC2 and PC6, and these results were used
to derive the PCAIME for PC6.

FIGURE 28. Cumulative explanation variance for the white wine quality
dataset.

The PCAIME results for Quality 3, 4, 5, 6, 7, 8, and 9 are
shown in Figs. 30, 31, 32, 33, 34, 35, and 36, respectively.

FIGURE 29. Cumulative explanation variance for the white wine quality
dataset.

Fig. 30 presents the PCAIME results for Quality 3,
indicating that PC5 and PC6 are valid.

Specifically, the PC6 values of Chlorides and Free
Sulfur Dioxide exhibit a positive correlation, indicating
that these features share the same principal component
number and values along the same direction. Conversely,
these factors and Sulfates demonstrate negative correlations.
Within the column, Volatile Acidity, Free Sulfur Dioxide,
and Total Sulfur Dioxide display strong positive correlations.
Furthermore, the PC4 and PC6 values of Sulfur Dioxide
exhibit a strong positive correlation, whereas the PC5 values
demonstrate a negative correlation, suggesting a cancellation
effect. Chlorides showcase large positive PC6 values and

substantial negative PC4 and PC5 values, indicating a
cancellation effect as well. Additionally, compared to the
Quality 3 row in Fig. 27, the Fixed Acidity is low due to
PCAIME being the main component. This result may be
attributed to the use of principal components by PCAIME
to determine the correlations with other features. Volatile
Acidity has a strongly negative correlation with Chlorides in
PC5, and Chlorides, Free Sulfur Dioxide, and Total Sulfur
Dioxide have negative correlations with Sulfates, Density,
and Residual Sugar in PC6.

Fig. 31 illustrates the PCAIME results for Quality 4,
revealing the validity of PC3 and PC4. Additionally, Citric
Acid and Sulfates are correlated with the same principal
component number, PC3, with values along the same negative
direction. Meanwhile, Chlorides and Sulfates share the same
principal component numbers and are correlated along the
same positive direction. Moreover, Sulfates demonstrate a
strong positive correlation in PC4; however, they exhibit a
negative correlation in PC3, indicating a cancellation effect.
In terms of the columns, Volatile Acidity and Chlorides
display positive contributions, whereas Citric Acid and Free
Sulfur Dioxide show negative contributions. In addition,
compared with the Quality 4 row in Fig. 27, the value of
Fixed Acidity is small, and Residual Sugar and Total Sulfur
Dioxide do not exhibit large negative contributions, possibly
because PCAIME uses principal components to determine
the correlations with other features. Citric Acid, Free Sulfur
Dioxide, and Sulfates have strong negative correlations with
Volatile Acidity in PC3, and Residual Sugar and Free
Sulfur Dioxide have negative correlations with Chlorides and
Sulphates in PC4.

FIGURE 30. Heat map representation of the global feature importance of
Quality 3, derived using PCAIME, for the white-wine quality data.

Fig. 32 displays the PCAIME results for Quality 5,
highlighting the validity of PC1, PC3, and PC4. Total Sulfur
Dioxide and Density are correlated with the same principal
components, with their values along the same positive
direction. In PC4, Chlorides and Sulfates are correlated
due to sharing the same principal components and their
values along the same positive direction. Within the columns,
Volatile Acidity, Residual Sugar, Chlorides, Total Sulfur
Dioxide, and Density demonstrate positive contributions,
while alcohol exhibits a negative contribution. Comparing
these contributions with those observed in the row for Quality
5 in Fig. 27, similar trends are evident. Alcohol and pH
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FIGURE 31. Heat map representation of the global feature importance of
Quality 4, derived using PCAIME, for the white-wine quality data.

have negative correlations with Residual Sugar, Chorides,
Free Sulfur Dioxide, Total Sulfur Dioxide, and Density in
PC1, and Citric Acid, Free Sulfur Dioxide, and Sulfates have
negative correlations with Volatile Acidity in PC3.

Fig. 33 shows the PCAIME results for Quality 6,
confirming the significant contributions of PC3, PC4, and
PC5. In PC4, Chlorides and Sulfates are correlated with
the same principal component and the values are in the
same negative direction. In PC5, Volatile Acidity, Sulfates,
Alcohol, and Total Sulfur Dioxide are correlated in the same
negative direction. Sulfates are a positive contributor of PC3,
whereas PC4 and PC5 cancel each other out. Volatile Acidity
exhibits a negative contribution in the columns. Moreover,
the trend is similar to that of the Quality 6 row in Fig. 27.
Volatile Acidity, Residual Sugar, Chlorides, and Density have
negative correlations with Citric Acid in PC3, and Fixed
Acidity, Volatile Acidity, Free Sulfur Dioxide, Total Sulfur
Dioxide, Sulfates, and Alcohol have negative correlations
with Chlorides in PC5.

FIGURE 32. Heat map representation of the global feature importance of
Quality 5, derived using PCAIME, for the white-wine quality data.

Fig. 34 shows the PCAIME results for Quality 7, indicating
that PC1 is valid. For PC1, Citric Acid, Residual Sugar, Chlo-
rides, Free Sulfur Dioxide, Total Sulfur Dioxide, and density
are correlated with the same principal components and
exhibit the same negative values. Conversely, these variables
are negatively correlated with alcohol consumption. In the
columns, Residual Sugar, Chlorides, Total Sulfur Dioxide,
and Density exhibit negative contributions, whereas Alcohol
exhibits a positive contribution. Furthermore, compared to the
Quality 7 row in Figs. 27 and 34, the trends are similar in this
case. Fixed Acidity, Citric Acid, Residual Sugar, Chlorides,

FIGURE 33. Heat map representation of the global feature importance of
Quality 6, derived using PCAIME, for the white-wine quality data.

Free Sulfur Dioxide, Total Sulfur Dioxide, and Density have
negative correlations with Alcohol in PC1.

Fig. 35 presents the PCAIME results for Quality 8,
confirming the validity of PC1. Additionally, for Quality 7,
Total Sulfur Dioxide is correlated with Density. Conversely,
these variables demonstrate a negative correlation with Alco-
hol. Within the columns, Residual Sugar, Chlorides, Total
Sulfur Dioxide, and Density display negative contributions,
whereas Alcohol exhibits a positive contribution. Moreover,
comparing these trends with those observed in the Quality
8 row in Figs. 27 and 35, similarities are apparent. Fixed
Acidity, Citric Acid, Residual Sugar, Chlorides, Free Sulfur
Dioxide, Total Sulfur Dioxide, and Density have negative
correlations with Alcohol in PC1.

Fig. 36 shows the results of PCAIME for Quality 9,
showing that PC1, PC3, and PC5 are valid. In PC5, Volatile
Acidity, Sulfates, and Alcohol exhibit the same principal
components, and their values are in the same positive
direction. In the columns, the volatile acidities cancel each
other out in PC3 and PC5. Furthermore, compared with the
row of Quality 9 in Fig. 27, the contributions of Fixed Acidity
and pH are low, whereas that of Sulfates is high. This result
may be attributed to the use of principal components by
PCAIME to determine correlations with other features. Fixed
Acidity, Citric Acid, Residual Sugar, Chlorides, Free Sulfur
Dioxide, Total Sulfur Dioxide, and Density are negatively
correlated with Alcohol in PC1.

FIGURE 34. Heat map representation of the global feature importance of
Quality 7, derived using PCAIME, for the white-wine quality data.

These results indicate that PCAIME can represent the
relationship between features in the line direction and identify

VOLUME 12, 2024 121111



T. Nakanishi: PCAIMEs Through Dimensional Decomposition and Expansion

FIGURE 35. Heat map representation of the global feature importance of
Quality 8, derived using PCAIME, for the white-wine quality data.

the features contributing to that class along the column
direction. Certain results differ from those ofAIME; however,
these differences may exist because the PCAIME decompo-
sition resulted in a better reflection of the multicollinearity
and relationships among features, because PCA reduces
the dimensionality and resolves the multicollinearity and
relationships between features in the first place.

FIGURE 36. Heat map representation of the global feature importance of
Quality 9, derived using PCAIME, for the white-wine quality data.
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