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ABSTRACT The COVID-19 pandemic has underscored the importance of face masks in curbing viral
transmission, prompting governments worldwide to enforce stringent public health mandates requiring
mask usage in public areas. Consequently, there is a growing focus on developing automated mask
detection technologies to augment these measures and minimize viral spread. In this study, we explore
the potential of the Swin Transformer architecture for accurately identifying face mask usage, aiming
to surpass the current performance limitations of existing face mask detection models. We evaluate the
performance of our proposed model and comparison models using comprehensive evaluation metrics,
including accuracy, precision, recall, specificity, F1-score, Kappa coefficient, and MCC. Our experiments
yield several notable findings. Firstly, MobileNetV2 demonstrates superior performance compared to the
baseline CNN model across all seven evaluation metrics within the face mask datasets. Secondly, within
the category of convolutional neural networks (CNNs), EfficientNetV2 outperforms MobileNetV2, a classic
lightweight network, across all metrics. DenseNet exhibits better performance than ResNet-50 across all
seven evaluationmetrics.Most significantly, the Swin Transformer architecture emerges as themost effective
model, surpassing not only MobileNetV2 but also EfficientNetV2. The empirical results confirm that our
Swin Transformer achieves statistically significant improvements in accuracy, precision, recall, specificity,
F1-score, Kappa coefficient, and MCC compared to the other models.

INDEX TERMS Face mask detection, swin transformer, EfficientNet, MobileNet.

I. INTRODUCTION
The COVID-19 virus, a type of coronavirus, spread rapidly
worldwide within a few months and continued to evolve
through mutations. TheWorld Health Organization classified
it as a global pandemic in 2020 [1], [2], [3]. As of June
14, 2023, there have been 767,984,989 reported cases of
COVID-19 and 6,943,390 deaths globally.

In response to the escalating situation, it has been found
that the virus is primarily transmitted via droplets and
airborne particles. When an infected individual coughs,
sneezes, talks, or breathes, they release respiratory droplets
carrying the virus. These droplets can be directly inhaled by
nearby individuals or land on the mucous membranes of the
mouth, nose, or eyes, causing infection.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

FIGURE 1. The face mask detection transformer model.

Besides droplet transmission, the COVID-19 virus can
also exist in the air as small suspended particles called
aerosols. If someone inhales aerosols containing the virus
exhaled by an infected person, they may become infected [4],
[5], [6]. Therefore, wearing masks is an effective way to
prevent cross-infection and control the virus’s spread. Masks
protect the wearer from exposure to respiratory droplets and
aerosols carrying the virus, reducing the risk of infection
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FIGURE 2. The schematic diagram of the proposed system.

from respiratory diseases like COVID-19, especially when in
contact with patients or individuals who may carry the virus,
as well as in enclosed and crowded environments [7], [8], [9].

Most governments are enforcing strict guidelines to wear
masks in public places. It is not feasible to manually check
if people are wearing masks [10]. Developing tools and
techniques to detect mask usage can significantly reduce the
spread of infections like COVID-19.

The automatic detection of masks on faces has become an
increasingly crucial research topic, especially in the context
of the COVID-19 pandemic. With the mandatory use of
masks in many countries to curb the spread of the virus, the
ability to automatically detect whether a person is wearing a
mask has significant implications for public health and safety.

Moreover, the development of efficient and accurate mask
detection algorithms can have wide-ranging applications
beyond health and safety. For instance, they can be used in
facial recognition systems to ensure that only masked indi-
viduals are granted access to certain areas, such as hospitals
or public transportation. Additionally, these algorithms can
be integrated into smart home systems to control the entry of
guests or visitors and in retail spaces to monitor compliance
with mask-wearing regulations.

As the use of masks becomes more prevalent in daily
life, the ability to automatically detect masked faces will
become increasingly important in various fields, including
healthcare, public transportation, and security. Therefore,
research into this area is not only essential but also timely
and will undoubtedly continue to be a key focus of study in
the coming years.

Due to the importance of face mask detection, this paper
explores the use of transformer architectures, specifically
the Swin transformer (see Figure 1), to detect whether an
individual is wearing a mask. We focus on pushing the
performance limits of face mask detection. Additionally,
we propose four comparative network architectures: ResNet-
50, DenseNet, MobileNet V2, and EfficientNet V2. We eval-
uate the performance of these face mask detection models
using seven metrics.

Our study yields several noteworthy observations. First,
we confirm that MobileNet V2 outperforms CNN in all seven
evaluation metrics on our face mask datasets. Between the
two comparative CNN models, DenseNet performs better
than ResNet-50 [11] in all metrics. Second, EfficientNet V2
surpasses MobileNet V2 [12] in all evaluation metrics for
facemask detection. Third, the Swin transformer outperforms
both MobileNet V2 and EfficientNet V2. Our experimental

results indicate that the Swin transformer exceeds the
performance of the other four models across all seven
evaluation metrics.

The research objectives of this study are twofold: first,
to develop and evaluate Swin Transformer architectures
for accurate face mask detection, and second, to assess
their performance compared to existing convolution neural
network (CNN) face mask detection models, which are
MobileNet V2 and ResNet-50. The problem statement
revolves around the need for effective automated face mask
detection technologies in the context of the COVID-19
pandemic. By leveraging Swin Transformer architectures,
we aim to overcome the current limitations of CNN-based
models and achieve superior performance in face mask
detection.

Addressing these goals contributes significantly to both
computer vision and public health domains. In computer
vision, the study advances the state-of-the-art by exploring
novel architectures specifically tailored for face mask detec-
tion tasks, potentially leading to more efficient and accurate
detection systems. From a public health perspective, the
development of robust automated mask detection technolo-
gies can aid in enforcing mask mandates, thereby mitigating
the spread of infectious diseases such as COVID-19 in
public settings. Ultimately, this research aims to bridge the
gap between computer vision advancements and real-world
applications in public health, with the overarching aim of
enhancing disease prevention strategies.

The rest of this paper is organized as follows: Section II
reviews related work on face mask detection. Section III
describes our experimental methodologies. In Section IV,
we present the datasets, evaluation metrics, comparison
results, and analysis of transformers and other relatedmodels.
Section V concludes our work, and Section VI discusses
future directions.

II. RELATED WORK
Our research focuses on detecting individuals not wearing
face masks to help interrupt the transmission and spread of
serious infectious diseases like COVID-19. Researchers have
proposed various deep learning architectures to enhance the
accuracy and efficiency of face mask recognition [10], [13],
[14], [15], [16], [17].

Traditional face mask recognition methods face chal-
lenges in accuracy and efficiency. Venkateswarlu et al.
[18] addressed these issues by employing a MobileNet
model that can detect mask parts of faces. Sanjaya and
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Rakhmawan [19] improved upon MobileNet by developing
MobileNetV2, increasing the accuracy of face mask detection
to 96.85%. Hussain and his team [20] presented a deep
convolutional neural network (CNN) and MobileNetV2
based on transfer learning for mask detection. They tested
their approach on two datasets, one with 2,500 images
and the other with 4,436 images. Their comparative exper-
iments showed that MobileNetV2 outperforms the deep
CNN, achieving accuracy rates of 99% and 98% on these
datasets, respectively. Elnady and Almghraby [12] utilized
the deep learning architecture MobileNetV2, employing the
optimization method ‘stochastic gradient descent’ with a
learning rate set to 0.001 and a momentum of 0.85. The
accuracy peaked after 12 epochs, reaching 99% for training
and 98% for validation, with training and validation losses
minimized at 0.05% and 0.025%, respectively.

On the other hand, Golwalkar and Mehendale [21] applied
deep metric learning and their improved FaceMaskNet-
21 to produce 128-dimensional encoding, facilitating face
recognition from static images, real-time video streams, and
static video files. They achieved a testing accuracy of 88.92%
while maintaining an execution time below 10 ms.

Bishwas et al. [11] have made significant contributions
in mask detection using a ResNet-50 model. Their work
includes fine-tuning a pre-trained ResNet-50 model on their
datasets, achieving an accuracy of 89%. This demonstrates
the effectiveness of transfer learning for this specific task.
They also developed and fine-tuned the hyperparameters of
a ResNet-50 based architecture, resulting in approximately
47% accuracy in identifying faces within the masked face
datasets. This indicates the challenges and complexities
involved in distinguishing masked faces. They provided
a detailed description of hyperparameter tuning for the
model, offering insights into the optimization process and
contributing valuable knowledge to the field.

Tan and Le [22] introduced EfficientNetV2, which
surpasses its predecessor EfficientNet in training accel-
eration and parameter efficiency. EfficientNetV2 exhibits
exceptional performance across various datasets, including
ImageNet, CIFAR-10, and CIFAR-100. It attains 87.3% top-1
accuracy on the ImageNet dataset, with a 3-9x improvement
in training speed and a 6.8x reduction in model size compared
to previous models.

Liu et al. [23] proposed the network model Swin Trans-
former, which achieves superior results in COCO object
detection and ADE20K semantic segmentation, significantly
outperforming previous methods.

III. MATERIALS AND METHODS
In our research methodology, we selected the Swin Trans-
former architecture for face mask detection. The process flow
is illustrated in Fig. 2. The first step involves image augmenta-
tion, including rotations, scaling, and other transformations.
The second step is data splitting, dividing the datasets into
training, validation, and testing sets in a 7:2:1 ratio. The
third step involves constructing and training the face mask

FIGURE 3. The Swin Transformer face mask detection model.

detectionmodel using the training set. Next, model evaluation
and validation are conducted to ensure proper training
and prevent overfitting. Training is terminated when the
validation accuracy stops improving. Finally, classification is
performed on the testing set to determine whether faces are
masked or not.

Additionally, we conducted an exhaustive evaluation of
the performance of EfficientNetV2 and the Swin Trans-
former on this dataset and compared their performance
with MobileNetV2 [12] and ResNet-50 [11], which were
previously used for face mask detection in related works.

A. SWIN TRANSFORMER
Swin Transformer [23] is a novel vision transformer
capable of functioning as a general-purpose backbone for
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TABLE 1. Detailed architecture specifications.

computer vision. It builds hierarchical featuremaps to capture
different-scale information within an image. Swin Trans-
former models at diverse scales and has linear computational
complexity relative to image size.

We propose an enhanced face mask detection framework
based on the Swin Transformer (Swin-T), as illustrated
in Figure 3. The framework comprises four stages, each
progressively reducing the resolution of the input feature
image. Initially, an input face image tensor is divided into
non-overlapping patches by a patch splitting module. Each
patch, treated as a ‘‘token,’’ features a concatenation of raw
pixel values and relative positional information.

In Stage 1, the raw-valued face features are projected
to an arbitrary dimension using a linear embedding layer.
In Stages 2 through 4, the feature tensor is subsampled by a
patch merging layer. Each of these stages contains duplicated
stacks of Swin Transformer blocks, with the number of blocks
being 2, 4, 6, and 2, respectively, as optimized through
extensive ablation experiments.

Subsequently, the features extracted by the Swin Trans-
former block are processed through a convolutional block.
This block consists of a 3 × 3 Conv2d layer followed by
BatchNorm2d and a SiLU activation function. The processed
features are further refined using a 1 × 1 Conv2d layer. The
output is then fed into a classifier layer for categorization.
The classifier layer is composed of an AdaptiveAvgPool2d
layer, a Flatten layer, a Linear layer, and a Sigmoid activation
function. This classifier is designed to detect the presence or
absence of a mask.

The red components in Figure 3 represent our improved
module.

1) SWIN TRANSFORMER BLOCK
The Swin Transformer is designed by replacing the standard
multi-head self-attention (MSA) module in a Transformer
block with a module based on shifted windows. Other
components, such as the LayerNorm layer, two-layer multi-
layer perceptron (MLP), and residual connection, remain
unchanged. Each Swin Transformer block primarily consists
of window-basedmulti-head self-attention (W-MSA)module
and a multi-layer perceptron module. The LayerNorm
layer and the residual connection are applied to each
module.

As shown in the right of Figure 3, two successive Swin
Transformer blocks, which form a basic computational
module of the Swin Transformer, differ in that one uses

Window-based Multi-head Self-Attention (W-MSA) and the
other uses Shifted Window-based Multi-head Self-Attention
(SW-MSA).’’ W-MSA restricts attention to the interior of
each blocklet, whereas SW-MSA introduces translational
operations that allow the blocklet to interact with its sur-
rounding blocklets. This combination of mechanisms enables
the Swin Transformer to capture correlation information of
an image at different granularities, leading to more powerful
feature representation and learning capabilities. This also
explains why the number of Swin Transformer blocks is even.

2) HYPER PARAMETER SPECIFICATION
First, we investigate four original Swin Transformer architec-
tures, including Swin-T, Swin-S, Swin-B, and Swin-L [23],
for face mask detection.

Using Swin-T as a baseline, we then examine the impact
of different hyperparameter settings on the performance
of the Swin Transformer model. Our experiments involve
adjusting the depths (Swin-st), the number of attention heads
(Swin-h), and the embedding dimensions (Swin-d) of the
model, followed by an evaluation of the metrics on a test
set.

As shown in Table 1, an input face image size of 224 ×

224 is assumed for all architectures. ‘‘Concat n×n’’ indicates
a concatenation of n×n neighboring features in a patch,
resulting in a downsampling of the feature map by a rate of
n. ‘‘96d’’ denotes a linear layer with an output dimension of
96. In Swin-d, we focus on different embedding dimensions.
‘‘win. sz. 7×7’’ indicates a multi-head self-attention module
with a window size of 7×7. ‘‘3h’’ indicates three heads in the
multi-head attention module. In Swin-h, we focus on varying
the number of heads in different stages. ‘‘×2’’ means that
the stage contains two Swin Transformer blocks. In Swin-st,
we adjust the number of Swin Transformer blocks in stage 2.
LN stands for LayerNorm.

B. COMPARISON METHODOLOGY
Several other face detection models are used in our exper-
iments for comparison, namely MobileNetV2, DenseNet,
and ResNet-50 [11]. MobileNetV2 is a significant model
for face mask detection [12], [17], [19], [20], [24] and
serves as our primary comparison methodology. ResNet-50
and DenseNet, both convolutional neural networks (CNNs)
[10], [17], are key comparison models for MobileNetV2.
Additionally, we develop an EfficientNet-based face mask
detection model for comparative analysis.
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1) EfficientNetV2
There are some challenges associated with the EfficientNet
[25] family of models. EfficientNetB0 to EfficientNetB1 are
suitable for scenarios with limited computational resources,
while EfficientNetB2 to EfficientNetB3 build on these
models and are suitable for a wider range of tasks and
datasets. EfficientNetB4 to EfficientNetB7, though more
powerful, have significantly more parameters and compu-
tational complexity, resulting in slow training speeds when
dealing with large image sizes.

To address these limitations, Tan and Le introduced a
novel convolutional neural network called EfficientNetV2.
Unlike EfficientNet, which employs a composite scaling
method, EfficientNetV2 adopts a non-uniform scaling strat-
egy by dividing model scaling into two distinct branches:
EfficientNetV2-S and EfficientNetV2-M. This non-uniform
scaling strategy makes EfficientNetV2 more adaptable in
design compared to its predecessor. Additionally, Efficient-
NetV2 incorporates a ‘breadth boosting’ strategy, which
enhances the model’s capacity by increasing the channel
dimensions, allowing it to better capture data features and
potentially improve performance across various tasks.

Tan and Le conducted experiments with EfficientNet-B4,
replacing the MBConv with the Fused-Conv structure in
the shallow layers, and observed a significant improvement
in speed. After a series of experiments, they identified the
optimal configuration by replacing the Fused-Conv structure
from Stage 1 to Stage 3. This is illustrated in Figure 4.

Table 2 presents the architecture of our face mask
detection model. The input layer processes a face image
with 3 channels, and the output is a logistic regression layer.
Stage 1 uses a 3 × 3 small convolution kernel to expand the
number of channels to 24. Stages 2 to 4 consist of Fused-
MB blocks, whose architecture is shown in Figure 4. Stages
5 to 7 are composed of MB Conv blocks. Stage 8 comprises a
1 × 1 convolution, pooling, and fully-connected (FC) layers.

2) MobileNetV2
MobileNetV2 [26], proposed by Google, is a lightweight
network model that offers improved performance compared
to its predecessor.

As described in related work, Elnady’smodel [12] achieves
the highest performance among several MobileNetV2-based
models [12], [17], [19], [20], [24] for face mask detection.
Therefore, Elnady’s model is selected as a key previous work
for comparison with our model.

MobileNetV2 introduces an inverted residual structure.
The traditional residual structure uses a 1× 1 convolution
to reduce the number of channels, followed by a 3 ×

3 convolution, and finally another 1 × 1 convolution to
restore the number of channels. In contrast, the inverted
residual block inMobileNetV2 replaces the 3×3 convolution
with a depthwise separable convolution. It first uses a 1 ×

1 convolution to increase the number of channels, then applies
a depthwise 3 × 3 convolution, and finally uses another
1 × 1 convolution to reduce the number of channels.

FIGURE 4. The Architecture of MBConv and Fused-MBConvt.

TABLE 2. The architecture of EfficientNetV2-S face mask detection model.

3) ResNet-50
ResNet-50 [11] is another previous work used for comparison
with our model.

ResNet-50 [27] serves as a feature extractor, coupled with
a fully connected layer and a sigmoid output function for our
face mask classification. Residual connections are introduced
to address issues such as gradient vanishing and gradient
explosion in deep neural network training. These connections
create direct, skip paths between different layers, allowing
residual blocks to learn how to add input features to output
features effectively. This enables the construction of deeper
neural networks.

4) DenseNet
We use DenseNet-169 [28] as a feature extractor, cou-
pled with a fully connected layer and a sigmoid output
function as a classifier. The building blocks of DenseNet-
169 primarily consist of DenseBlocks and Transition lay-
ers. The structure of a DenseBlock is BN+ReLU+1 ×

1Conv+BN+ReLU+3 × 3Conv. This internal structure is
repeated multiple times within the DenseBlock, allowing the
featuremaps to be densely connected, which enhances feature
representation and reduces the number of parameters.

The Transition layer consists of BN+ReLU+1 ×

1Conv+2×2AvgPooling, and it connects each DenseBlock.
When the input to the Transition layer has a feature
mapping with C channels, the output feature mapping has C
times the compression coefficient channels (the compression
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FIGURE 5. Sample images in the dataset.

coefficient is usually between 0 and 1). This effectively
reduces the computational complexity and the number of
parameters of the model.

IV. EXPERIMENTAL RESULT AND DISCUSSION
All models were trained using an NVIDIA GeForce
RTX4060 laptop GPU. The algorithms were implemented
using the Pytorch framework, and several experiments were
conducted to evaluate the performance of the models.

A. DATASETS
The datasets used in this study were obtained from the
National Multimedia Software Engineering Technology
Research Centre of Wuhan University. The primary sources
of data were the Real World Masked Face Dataset (RMFRD)
[29] and the Simulated Masked Face Dataset (SMFRD) [30],
with supplementary data from the Moxa3K dataset [31].
To ensure diversity and balance, a combined total of
24,594 images were selected, maintaining an almost equal
distribution of masked and unmasked face images, as detailed
in Table 3. Sample images from these datasets are displayed
in Figure 5.

TABLE 3. List of datasets.

The RMFRD dataset contributed 5,000 masked images
and 90,000 non-masked images, making it the largest source
of non-masked data. SMFRD provided 6,559 masked and
6,558 non-masked images, offering a balanced dataset for
both categories. The Moxa3K dataset, while smaller in size,
included 5,380 masked images but only 14 non-masked
images, highlighting a significant imbalance that necessitated
careful handling during the augmentation process.

From these datasets, we selected a subset of 3,680
masked images from RMFRD, 3,946 from SMFRD, and
69 from Moxa3K, amounting to a total of 7,695 masked
images. To further improve the robustness and generalization
capabilities of our model, we applied data augmentation
techniques to these images, involving random rotations
between−15 and 15 degrees. This choice avoided large-angle
rotations that could distort natural facial poses, which is
critical for maintaining accuracy in mask detection. The

augmentation process resulted in an additional 4,324 images,
which were incorporated into the training set.

For non-masked images, we selected 4,809 from RMFRD,
4,059 from SMFRD, and those fromMoxa3K, and generated
3,707 additional augmented images. These images were also
added to the training set. After augmentation, the final dataset
was organized into training, validation, and test sets in a
7:2:1 ratio, comprising 17,216 images for training, 4,919 for
validation, and 2,459 for testing.

Overall, our dataset preparation process ensured a
well-balanced and diverse dataset, critical for training a
robust and generalizable mask detection model.

B. EVALUATION METRICS
To compare and evaluate the performance of different face
mask detection models, several evaluation metrics [32],
including accuracy, precision, recall, specificity, F1-score,
and kappa coefficient, have been investigated in this paper.
These metrics are calculated using the confusion matrix
shown in Table 4, which includes True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN)
values.

TABLE 4. Confusion matrix.

The confusion matrix components are defined as follows:
• True Positive (TP): The number of masked images
correctly identified as masked.

• True Negative (TN): The number of unmasked images
correctly identified as unmasked.

• False Positive (FP):The number of unmasked images
mistakenly labeled as masked.

• False Negative (FN):The number of masked images
mistakenly classified as unmasked.

1) ACCURACY
Accuracy is defined as shown in (1). It measures the ratio of
correctly classified samples to the total number of samples in
the testing data.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
× 100% (1)

2) PRECISION
Precision calculates the proportion of true positive predic-
tions out of all positive predictions made by the model.

Precision =
TP

TP+ FP
× 100% (2)

3) RECALL
Recall represents the ratio of true positive predic-
tions to the actual number of positive samples in the
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testing data.

Recall =
TP

TP+ FN
× 100% (3)

4) SPECIFICITY
Specificity indicates the proportion of true negative predic-
tions out of all negative predictions made by the model.

Specificity =
TN

TN + FP
× 100% (4)

5) F1-SCORE
The F1-score is the harmonic mean of recall and precision,
offering a balance between these two metrics.

F1 =
2 × precision× recall
precision+ recall

× 100%

=
2TP

2TP+ FP+ FN
× 100% (5)

6) KAPPA COEFFICIENT
The kappa coefficient measures the agreement between the
model’s predictions and the actual class labels, taking into
account the possibility of agreements due to chance.

Kappa =
totalAccuracy− randomAccuracy

1 − randomAccuracy
× 100% (6)

7) MATTHEWS COEFFICIENT
The Matthews correlation coefficient (MCC) is a com-
prehensive performance indicator used to evaluate binary
classification models, as shown in (7). A higher MCC
value indicates better performance, a value of approximately
0 indicates random performance, and a negative value implies
poorer performance, suggesting the model performs worse
than random guessing. TheMCC is particularly advantageous
in cases of imbalanced categories and small sample sizes
because it considers all four classification outcomes when
evaluating performance, thereby reducing the randomness of
the results.

M =
TP× TN − FP× FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

× 100% (7)

In summary, the evaluation of classification models
involved comprehensive analysis using the mentioned met-
rics, providing a well-rounded assessment of their perfor-
mance on the testing data.

C. HYPER PARAMETER OPTIMIZATION
Through ablation experiments, we determined that tuning the
model depth had the most significant effect on performance.
As shown in Table 5, Swin-T outperforms the other archi-
tectures (Swin-B, Swin-S, and Swin-L) in most evaluation
metrics. Therefore, we chose Swin-T as the baseline for
further optimization.

The optimal configuration was found to be Swin-st, which
optimally adjusts the depth of the Swin Transformer blocks.

This suggests that, with the same embedding dimension and
number of attention heads, appropriately increasing the depth
of the middle layers of the model can substantially improve
its representation ability and classification effectiveness for
face mask detection.

Furthermore, we observed that adjusting the number of
attention heads (Swin-h) and embedding dimensions (Swin-
d) also influences model performance, albeit to a lesser
extent. Specifically, increasing the number of attention
heads slightly improved some metrics, while increasing the
embedding dimension had a slightly lesser impact.

Thus, Swin-st was selected as our base architecture for
face mask detection. To enhance the performance of the
transformer network, we added a classification module at the
end of the Swin Transformer architecture, resulting in our
final model.

FIGURE 6. The training result of face mask Swin Transformer model.

D. RESULTS OF TRAINING AND VALIDATION DATASET
Figure 6 illustrates the training results of the Swin Trans-
former model for face mask detection. ‘train loss’ and
‘val loss’ denote the mean square error between the labels
and detection results on the training and validation sets,
respectively. ‘train acc’ and ‘val acc’ represent the accuracy
of face mask detection on the training and validation sets,
respectively. As shown in Figure 6, the training accuracy
mirrors the validation accuracy after epoch 15, with both
metrics plateauing. Similarly, the loss function trends for both
the training and validation sets converge after epoch 20.

FIGURE 7. The training result of the face mask EfficientNet model.

Figures 7, 8, 9, and 10 depict the training results of our
face mask detection models using different architectures—
EfficientNet V2, MobileNet V2, ResNet-50, and DenseNet,
respectively. These models were trained over multiple epochs
to enhance their accuracy and performance.
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TABLE 5. Results obtained for swin transformer architecture.

Figure 7 shows the training progress of the EfficientNet
V2-based model, demonstrating a gradual improvement in
performance. The loss function steadily decreases, while the
accuracy metric consistently increases.

FIGURE 8. The training result of face mask MobileNet model.

Figure 8 presents the training outcomes of the face mask
detection model using MobileNet V2 architecture. Similar to
the previous figure, there is an upward trend in accuracy and a
downward trend in loss after each epoch, indicating effective
learning from the dataset.

FIGURE 9. The training result of face mask ResNet-50 model.

Figure 9 displays the training results of the face mask
detection model based on ResNet-50 architecture, showing
promising progress with decreasing loss values and increas-
ing accuracy scores over time.

Figure 10 illustrates the training results of the face mask
detection model built on DenseNet architecture. It exhibits
similar trends, with diminishing loss values and increasing
accuracy rates throughout successive epochs.

After 15 epochs of training, all models, including Swin
Transformer, EfficientNet V2, MobileNet V2, ResNet-50,
and DenseNet, converge towards stability. Further improve-
ments become marginal beyond this point, suggesting that
25 epochs of training are sufficient for these models.

FIGURE 10. The training result of face mask DenseNet model.

Additional iterations may not significantly enhance their
performance.

In conclusion, through 25 epochs of training, all face
mask detection models—including our Swin Transformer,
EfficientNet V2,MobileNet V2, ResNet-50, and DenseNet—
were trained effectively.

E. COMPARISON BETWEEN OUR PROPOSED MODELS
AND RELATED WORKS
1) RESULT OF OUR DATASETS
Table 6 provides a comprehensive comparative analysis of the
evaluation metrics—Accuracy, Precision, Recall, F1 Score,
Specificity, Kappa Coefficient, and MCC—for five different
model architectures. Our improved Swin Transformer model,
referred to as Swin-st in Table 5, is our proposed model.
MobileNetV2, which is one of the state-of-the-art models in
facemask detection, is highlighted in relatedworks [12], [17],
[19], [20], [24]. ResNet-50 [11] is another significant model
in face mask detection. All results are derived from our test
set, including those for MobileNetV2, which were obtained
after training and validation on our datasets.

The ResNet-50 and DenseNet architectures, widely
adopted in computer vision tasks, both achieve approximately
97% in accuracy, precision, recall, specificity, and F1 score.
These architectures provide strong baseline performance
in our face mask detection task, with parameters in the
tens of millions. They exhibit good generalization ability
and are relatively easy to train, making them suitable
for tasks with limited computational resources. However,
in terms of the Kappa coefficient and Matthews correlation
coefficient (MCC), ResNet-50 and DenseNet perform much
lower than other models, as shown in Figure 11. Compared
to newer architectures like EfficientNetV2 and the Swin
Transformer, ResNet-50 and DenseNet may struggle to
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TABLE 6. Results obtained for the classification models on our test set.

FIGURE 11. Accuracy, precision, recall, specificity, F1-score, and kappa coefficient of different models on the test set.

capture fine-grained details and long-range dependencies in
images, potentially limiting their performance in complex
scenarios.

MobileNetV2, known for its lightweight design and effi-
cient inference, has only 3 million parameters and achieves
over 99% in accuracy, precision, recall, and specificity in
our face mask detection task, outperforming ResNet-50
and DenseNet. These characteristics make it suitable for
deployment on resource-constrained devices. MobileNetV2
balances model size and accuracy well, making it a prac-
tical choice for real-time applications. However, in terms
of F1-score, Kappa coefficient, and MCC, MobileNetV2
performs lower than more complex architectures like Swin
Transformer and EfficientNet V2, as shown in Figure 11.
This suggests thatMobileNetV2may sacrifice some accuracy
and representational capacity, especially in tasks requiring
fine-grained feature extraction.

EfficientNetV2, with 20.3 million parameters, surpasses
MobileNetV2 in all seven evaluation metrics, especially
in recall, F1-score, Kappa coefficient, and MCC. Effi-
cientNetV2 shows competitive performance in face mask
detection tasks, effectively balancing model complexity and
accuracy. It uses compound scaling to efficiently balance
model depth, width, and resolution, leading to improved
performance. However, compared to the Swin Transformer,
EfficientNetV2 scores lower in every evaluation metric,
as shown in Figure 11. Despite its efficiency, EfficientNetV2
may not capture intricate spatial relationships in images
as effectively as more complex architectures like the Swin
Transformer. The fixed scaling coefficients may limit its
adaptability to diverse datasets and scenarios compared to
architectures with more flexible hyperparameters.

As shown in Figure 11, our Swin Transformer model
surpasses the other four models across all evaluation metrics.

Specifically, in terms of Kappa coefficient and MCC,
ResNet-50 [11] achieves approximately 94%, while our
Swin Transformer reaches an impressive 99.7%, a 5.7%
improvement. From Table 6, it is clear that our Swin
Transformer model excels in mask detection across all
evaluation metrics, outperforming the other four neural
network models. It is notable that MobileNetV2 [12], a state-
of-the-art model for face mask detection, is outperformed by
our model by 1.7% in terms of Kappa coefficient and MCC.
The Swin Transformer shows significant gains in face mask
detection, particularly in capturing long-range dependencies
and contextual information within images. Its self-attention
mechanism effectively models global relationships among
image pixels, leading to superior feature representation. How-
ever, the Swin Transformer, with 28.4 million parameters, has
higher computational complexity than simpler architectures
likeMobileNetV2, which has only 3 million parameters. This
results in increased resource requirements during training and
inference. Despite its effectiveness, the Swin Transformer
may require larger datasets and longer training times to fully
utilize its capabilities compared to lightweight architectures
like MobileNetV2.

In our comparative analysis of different architectures
for face mask detection, including EfficientNet V2, Swin
Transformer, ResNet-50, DenseNet, and MobileNetV2,
we observed distinct strengths andweaknesses in eachmodel.
The Swin Transformer shows significant performance gains
in face mask detection, especially in capturing long-range
dependencies and contextual information within images. Its
self-attention mechanism effectively models global relation-
ships among image pixels, leading to superior feature repre-
sentation. However, our Swin Transformer’s computational
complexity is higher than that of simpler architectures like
MobileNetV2, resulting in increased resource requirements
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TABLE 7. Results obtained by the classification model on the SMFRD test set.

FIGURE 12. Accuracy, precision, recall, specificity, F1-score, and kappa coefficient of different models on the SMFRD test set.

during training and inference. Despite its effectiveness, our
Swin Transformer may require larger datasets and longer
training times to fully utilize its capabilities compared to
lightweight architectures.

This finding underscores the importance of leveraging
advanced architectural components, such as self-attention
mechanisms, to capture long-range dependencies and contex-
tual information within images.

2) RESULT OF THE SMFRD DATASET
In this subsection, we compare the performance of our pro-
posed model on the SMFRD dataset with four other models
to enhance the quality and robustness of the experiments.
The results for ResNet-50 and MobileNetV2 were tested on
the same dataset and did not come directly from the original
papers. The experimental results on the SMFRD dataset,
summarized in Table 7, present a comparative evaluation
of several models, including ResNet-50, MobileNetV2, and
our proposed Swin Transformer. This subsection provides a
detailed analysis of these results, focusing on the comparison
between our Swin Transformer and the baseline models
ResNet-50 [11] and MobileNetV2 [12].

As shown in Figure 12, our Swin Transformer achieves a
superior accuracy of 99.7%, with minor variations between
99.6% and 99.8%. In comparison, ResNet-50 achieves
around 97.2%, and MobileNetV2 records approximately
98.9%. This significant improvement demonstrates the Swin
Transformer’s effectiveness in capturing intricate patterns
and generalizing well across the dataset. The accuracymargin
of approximately 2.5% over ResNet-50 and 0.8% over
MobileNetV2 underscores its robustness.

The parameter count is crucial for evaluating model effi-
ciency and scalability. Our Swin Transformer has 28.4 mil-
lion parameters, compared to ResNet-50’s 24.5 million and

MobileNetV2’s 3.2 million. While the Swin Transformer’s
larger parameter count indicates higher computational and
memory requirements, it also enhances learning capacity and
accuracy. Conversely, MobileNetV2’s lower parameter count
balances efficiency and performance, making it suitable for
resource-constrained environments.

Beyond accuracy, our Swin Transformer performs supe-
riorly in other metrics, consistently scoring 99.5%. In con-
trast, ResNet-50 scores 94.5%, and MobileNetV2 scores
97.9%. These results highlight the comprehensive perfor-
mance advantages of the Swin Transformer, indicating
its effectiveness in accuracy and other critical evaluation
parameters.

The comparative analysis reveals that our Swin Trans-
former outperforms both ResNet-50 andMobileNetV2 across
all primary evaluation metrics. The increase in parameter
count is justified by substantial gains in accuracy and
performance. MobileNetV2, while less accurate than the
Swin Transformer, offers a favorable trade-off with its
minimal parameter count, making it attractive for resource-
limited applications. ResNet-50, although reliable, falls short
in accuracy and additional performance metrics compared to
the other two models.

V. CONCLUSION
The ongoing COVID-19 pandemic, which has significantly
impacted global health since its emergence in 2019, has
underscored the effectiveness of face masks in curbing viral
transmission. As a result, many governments worldwide
have enforced stringent public health measures mandating
mask usage in public settings. In response, there has been
a growing emphasis on the development of automated mask
detection technologies to reinforce these efforts and reduce
viral transmission rates.
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In this study, we proposed and evaluated the Swin
Transformer model for the task of face mask detection.
Our extensive experiments on the SMFRD and our own
datasets demonstrated that the Swin Transformer signifi-
cantly outperforms existing models, including ResNet-50
[11] and MobileNetV2 [12], [17], [19], [20], [24], across all
key evaluation metrics such as accuracy, precision, recall,
specificity, F1-score, Kappa coefficient, and MCC.

Our experiments yield several noteworthy findings. Firstly,
MobileNetV2 demonstrates superior performance compared
to the baseline CNNmodel across all seven evaluationmetrics
within the face mask datasets. Secondly, within the category
of convolutional neural networks (CNNs), EfficientNetV2
outperforms MobileNetV2, a state-of-the-art model for face
mask detection, across all metrics. Additionally, DenseNet
exhibits better performance than ResNet-50, another related
work for face mask detection, across all metrics. Most
significantly, our Swin Transformer architecture emerges as
the most effective model, surpassing not only MobileNetV2
but also EfficientNetV2. The empirical results confirm
that our Swin Transformer achieves statistically significant
improvements in accuracy, precision, recall, specificity, F1-
score, Kappa coefficient, and MCC compared to the other
models.

In conclusion, our experimental results offer valuable
insights into the field of face mask detection, highlighting the
potential of advanced architectures like the Swin Transformer
for real-world applications. By leveraging these findings,
researchers and practitioners can continue to innovate and
develop cutting-edge solutions to address pressing chal-
lenges in public health and safety. Our Swin Transformer’s
remarkable robustness and generalization capabilities make
it a promising candidate for practical applications involving
diverse datasets, contributing significantly to the enhance-
ment of automated mask detection technologies.

VI. LIMITATIONS AND FUTURE WORK
While our study has provided valuable insights into facemask
detection using state-of-the-art architectures, it is important to
acknowledge several limitations and potential areas for future
research:

1) DATASET LIMITATIONS
The performance of our models is contingent upon the quality
and diversity of the dataset used for training and evaluation.
While we made efforts to curate a comprehensive dataset,
there may still be inherent biases or limitations in the data,
such as imbalanced class distributions or variations in image
quality.

Future research could explore the use of larger and more
diverse datasets to improve model generalization and robust-
ness across different demographic groups, environmental
conditions, and mask types. Additionally, incorporating
domain-specific data augmentation techniques tailored to the
characteristics of face mask images could further enhance
model performance.

2) MODEL INTERPRETABILITY AND EXPLAINABILITY
While our models have demonstrated high accuracy and per-
formance, their internal mechanisms may lack interpretabil-
ity, making it challenging to understand the reasoning behind
model predictions. This could pose challenges in gaining trust
and acceptance from end-users and stakeholders.

Future research could focus on enhancing the interpretabil-
ity and explainability of deep learning models for face mask
detection, employing techniques such as attention mech-
anisms, saliency maps, and model visualization methods.
By providing insights into model decision-making processes,
these approaches can enhance transparency and facilitate
model adoption in real-world settings.

3) REAL-WORLD DEPLOYMENT CONSIDERATIONS
The practical deployment of face mask detection systems
involves various logistical, ethical, and legal considerations
that must be addressed. These include privacy concerns, data
security, regulatory compliance, and societal acceptance.

Future research should engage stakeholders from diverse
backgrounds, including policymakers, privacy advocates, and
end-users, to develop ethically sound and socially responsible
deployment strategies. Collaboration with domain experts
and interdisciplinary teams can help navigate these complex
challenges and ensure the responsible adoption of face mask
detection technology.

In summary, while our study has made significant con-
tributions to the field of face mask detection, there remain
important avenues for future research to address limita-
tions and advance the state-of-the-art. By addressing these
challenges and embracing interdisciplinary collaboration,
we can continue to innovate and develop robust, effective, and
ethically responsible solutions for public health and safety.
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