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ABSTRACT With the ever-increasing penetration level of renewable energy and emerging electricity
demand, it is very important to ensure the safe and reliable operation of the modern transmission system
with strong stochastics and dynamics. Exceeding transmission limits will lead to line overloading, equipment
damage, voltage instability, and even cascading failures. Therefore, it is of great significance to accurately
evaluate the total transfer capability (TTC) in real-time. This paper proposes a novel ensemble model-
based method to learn the nonlinear mapping between online operating conditions and TTCs of key
transmission corridors. Massive representative operational samples are generated using a high-fidelity power
system security analysis engine involving a variety of operating conditions, and thermal stability, static
voltage security, and transient stability are considered. After feature extraction and label labeling of these
samples, the dataset was split into training and test sets. The samples were used to predict TTC using three
types of models: Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), and
Random Forest (RF). The hyperparameters of these models were optimized through random search and 50%
discounted cross-validation methods to enhance the accuracy of TTC estimation. Finally, the optimized
models were combined using the stacking method. In this approach, LGBM, XGBoost, and RF served
as base models, while LGBM functioned as the meta-model, leveraging the strengths of each model. The
proposed method was validated on a 500-node network model with real-world operational characteristics,
demonstrating improved TTC evaluation accuracy and higher efficiency.

INDEX TERMS Ensemble learning, total transfer capability, parameter optimization, power grid operation.

I. INTRODUCTION
In large-scale interconnected power grids, to guarantee the
secure operation of the power system and optimize the
utilization of transmission capacity, real-time evaluation
of available transfer capability (ATC) and TTC becomes
critical [1], [2]. The evaluation methods are divided into
deterministic, probabilistic, optimization, and machine learn-
ing methods, where deterministic methods include continu-
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ous power flow, optimal power flow, repeated power flow,
linear programming, and so on [3], [4], [5], [6].

In [3] and [4], ATC evaluation is based on the optimal
power flow model. In [5], an improved repetitive AC power
flow method (MRACPF) is proposed. In [6], the value
of TTC is estimated by assessing the system’s current
state and evaluating the system’s static or thermal stability
index. However, the deterministic method can only be
used for a fixed grid operating condition, which cannot
reflect the system’s dynamic characteristics over time. The
uncertainties of load, power generation, and other system
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parameters are considered in probabilistic methods and
optimization algorithms. In [7] and [8], an interval-based
ATC evaluation model is proposed, where the objective
function is divided into subproblems for the lower and
upper boundaries. The assumptions about the upper and
lower bounds of the interval determine the accuracy of
this method. If these assumptions are not accurate, the
evaluation results may deviate from the actual situation, thus
limiting the practical application of the model. With respect
to probabilistic methods, a data-driven method using the
sparse polynomial chaos expansion is proposed in [9] to
evaluate the TTC. Although the proposed sparse scheme can
improve computational efficiency, calculating polynomial
chaos expansion is still complicated. In [10], a fast differential
equation power flow method minimizes the frequency of
solving linear equations. Simultaneously, dynamic ATC is
evaluated using theNewton-Raphson-Seydelmethod. In [11],
a probabilistic method based on multi-objective clustering
technology is proposed. Probability model analysis is done
by subdivding a random set into smaller clusters. For the
optimization algorithm in [12], a hybrid chaotic selfish herd
optimizer method is proposed to evaluate ATC.

In [13], the square sum relaxation method is proposed for
the solution of TTC. In [14], TTC computation of population-
based bioinspired optimization techniques, but this algorithm
does not always find the optimal solution. In [15], a hybrid
method, which does not consider the fluctuation of wind
power and load, is proposed by combining the improved
Gray Wolf optimization algorithm and the primal-dual
interior point method. Evaluating probabilistic methods and
optimization algorithms requires complex simulations and
calculations, making achieving real-time applications diffi-
cult. Many factors must be considered in the TTC calculation
because the system’s operating condition changes frequently.
Stability analysis involves many constraints that should be
considered, such as thermal stability, static stability, dynamic
stability, transient stability, and other factors. In practice,
it can be very complicated to consider all constraints. These
constraints make the calculation large and the calculation
process complex. The stability indices considered in the
calculation of ATC or TTC in the above literature and those
considered in the calculation of TTC in this paper are shown
in TABLE 1.

As can be observed in TABLE 1, the transient stability
of the system is rarely considered in most of the literature
when estimating ATC or TTC. In [10], a transient energy
function is proposed to calculate the ATC of N-1 contingency.
However, the calculation of this method is too simplified,
resulting in insufficient accuracy. This paper calculates the
TTC under transient stability using the DSA Tools software.
The condition of the power system changes frequently, but
the optimization and probability-based methods need to
run from scratch without the ability to accumulate prior
knowledge. In contrast, machine learning-based algorithms
have the ability to learn from data and historical experiences
and gradually improve model performance. The prediction

TABLE 1. Comparison table of indicators.

process of machine learning-based models after training is
relatively simple and fast. It can dynamically adapt to system
changes and maintain prediction accuracy by constantly
updating the model.

In power systems, machine learning can typically be
applied to power forecasting, load forecasting, predicting
outages, predicting grid failures, and so on [16], [17], [18],
[19]. Machine learning methods for prediction include ran-
dom forest decision trees [20] and gradient-boosting decision
trees (XGBoost, LGBM) [21]. Random forests usually have
a stronger anti-overfitting ability due to integrating multiple
independent trees, but the prediction accuracy is slightly
lower. Gradient lifting is achieved by gradually optimizing
the model. Although the accuracy is high, it is easy to overfit.
Therefore, a stacked ensemble learning method is proposed
based on a single machine learning model. Stacked ensemble
learning combines the advantages of multiple models and
makes up for the shortcomings of a single model [22],
[23], [24]. In [22], the GBRT, SVR, BPNN, and RF models
are proposed, and the predicted results of each model are
integrated according to the optimized weights. In [23],
a combination of three basic learners, MLP, CNN, and LSTM
is proposed to construct wind power prediction models.
In [24], an integrated neural network framework is proposed
to predict wind and solar power generation. The framework
is composed of LSTM, SVM, BP, and ELM. However, the
disadvantage of neural networks is that they are easy to
over-fit and have a high demand for computing resources.
In general, stacked ensemble learning can train multiple
models in parallel and reduce the influence of outliers and
noise by voting or weighted average. In addition, combined
with hyper-parameter optimization, the performance and
stability of the model can be further improved, and the
optimal combination of parameters can be found in order to
achieve the best prediction effect.

Inspired by the above efforts, this paper proposes a novel
method for real-time TTC evaluation by means of ensemble
learning methods. By optimizing the selection of sub-models
and hyperparameters, an accurate and fast TTC evaluation
can be achieved online. The following is a summary of
the main contributions of this paper: The sample data of
this paper is generated by DSAtools software, which covers
different operation modes and multiple operation indexes
of power grid. By integrating LGBM, XGBoost and RF
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methods for TTC prediction, and optimizing sub-models and
hyperparameters, accurate and fast online TTC evaluation is
achieved. A summary of the main contributions of this paper
can be found below:

1) During sample data generation, the data is generated by
adjusting the load level of the entire power system to mimic
realistic operating conditions. The constraints of thermal
limits, voltage limits, transient stability, and voltage stability
are fully considered.

2) To evaluate the TTC, the stacked ensemble learning
method is proposed with XGBoost, LGBM, and RF models
as the base models and LGBM as the meta-model. By opti-
mizing the selection of sub-models and hyperparameters,
accurate and fast TTC online prediction can be achieved.

i) In the XGBoost model, not only the first derivative
is used, but the second derivative is also used to optimize
the loss function so as to fit the loss function more
accurately. LGBM can better capture complex relationships
when dealing with large data sets and high-dimensional
features. There are many parameters in XGBoost and LGBM,
and the parameter adjustment is complex, but the prediction
accuracy of both methods is high. Random forest integrates
multiple independent trees, which usually have the stronger
anti-overfitting ability, but the prediction accuracy is slightly
lower.

ii) Random search is an effective method for solving
XGBoost and LGBM parameter optimization problems.
In the parameter optimization of the stacking model,
a random search strategy can be used, combined with
five-fold cross-validation, to search for the best parameter
combination.

The remainder of this paper is organized in the following
manner: Section II introduces the proposed implementation
process of the stacking model. Section III introduces the
generation of sample data for TTC assessment. Section IV
introduces the principle of XGBoost, LGBM, RF model,
and the process of model hyperparameter optimization.
In Section V, case studies are performed on the 500-
node power grid model to demonstrate the effectiveness
of the proposed method. Finally, conclusions are drawn in
Section VI.

II. THE TRAINING OF STACKING MO·DELS FOR TTC
ASSESSMENT
A. MAIN FLOWCHART
The main flow of the proposed method can be seen in
Figure 1. Before constructing the Stacking model, we first
use the power system software DSATools to establish a
power grid model, simulate it to generate sample data,
and preprocess the sample data. Secondly, three models of
XGBoost model, LGBM model, and RF model are trained,
and random search is used to optimize the hyperparameters
to obtain the best combination of hyperparameters. Finally,
the optimized stacking model is used for online applications.

The stacked ensemble learning algorithm minimizes the
error by finding the optimal model combination weights and

FIGURE 1. Method flowchart.

structure so that the combination of the base model and the
meta-model can improve the overall prediction performance
[25], [26], [27]. The objective function of the stacking ensem-
ble learning algorithm to solve the regression prediction
problem can be expressed as minimizing regression loss
functions such as mean absolute error (MAE), root mean
square error (RMSE), and coefficient of determination (R-
squared). Therefore, the objective function of the stacking
ensemble learning algorithm is shown as below:

minL(y,F(x)) (1)

where L is the loss function, y is the real label of the sample,
and F(x) is the prediction result of the meta-model based on
the combination of the prediction results of the base model.
The input of the stacking model is the generated sample data,
and the stacking model output is TTC results.

In this paper, the TTC prediction method based on the
stacking algorithm takes the LGBMmodel, XGBoost model,
and RF model as the base model. The TTC prediction results
of the base model are integrated again and trained with the
five-fold cross-validation method.

Then, the LGBM model is used as a meta-model to output
the final results of the prediction. The final prediction results
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and the label values of the original test set are used to
evaluate the model’s performance. The stacking algorithm
combines the advantages of considering different models and
improves the accuracy and stability of TTC prediction. The
framework of the stacking algorithm is shown in Figure 2.

FIGURE 2. Stacking algorithm.

B. KEY STEPS
a) Step 1: The power grid model is established and simulated
in the power system software DSA Tools to generate sample
data.

b) Step 2: Preprocess the sample data generated in Step 1.
c) Step 3: Three models of XGBoost, LGBM and RF are

constructed.
d) Step 4: Hyperparameter optimization of the three

models constructed in Step 3 is carried out by random search,
and the optimal hyperparameter combination is obtained.

e) Step 5: The stacking model is constructed and trained
by using the model that completes the hyper-parameter
optimization in Step 4, and then use the trained stacking
model to predict TTC.

f) Step 6: Online application of TTC prediction based on
the stacking algorithm.

III. GENERATION OF SAMPLE DATA
DSATools is a comprehensive analysis software package
for power system dynamic security developed by Powertech
Labs. It provides a wide range of functional modules to
meet the requirements of the power industry for power grid
planning, operation, and control. The main functions include
Powerflow and Short-circuit Analysis Tool (PSAT), and
Transient Security Assessment Tool (TSAT). PSAT is a tool
for calculating power flow solutions such as voltage, power,

and current in the power system. TSAT is utilized to assess the
transient security and stability of the system and determine
the maximum transient stability power transmission capacity
for the specified section. The total transmission capacity
search process comprehensively considers the four indicators
of system transient stability, minimum damping ratio index,
voltage stability, and frequency stability.

The power system model and power flow analysis are
performed using PSAT, generate the convergent power flow
data file and obtain the feature set. In TSAT, the location of the
transmission section is determined, the expected fault set is
set, and the power adjustment strategy is specified to generate
the files necessary for TSAT simulation. The convergence
power flow data file and other necessary files calculated by
PSAT are used as the input files of the simulation software
TSAT, and the total transmission capacity is obtained by
relevant scanning and evaluation, and the TTC which meets
the requirements of safe transmission in TSAT is retained as
the label data. The TTC calculation process of a single sample
is shown in Figure 3.

IV. ENSEMBLE MODELS OF XGBoost, LGBM, AND RF
This paper uses the stacking method, taking advantage of
the three models: XGBoost, LGBM, and RF. Firstly, these
three models are constructed and combined as base models
for training. Then, the LGBM model is retrained as a meta-
model to obtain the final TTC results.

A. BUILDING THE XGBoost MODEL
Model input: given the training set sample {(xi, yi)}ni=1, where
xi is the i sample feature, yi is the i sample label, and n is the
total number of samples [28].
Internal structure: It is assumed that t-round iteration is

performed to establish a decision tree. Each iteration is the
generation of a new decision tree. The number of iterates or
the number of generated decision trees begins at zero and
increases incrementally until the specified maximum number
of iterates has been achieved. The value range of the decision
tree is 0 to the maximum number of iterations minus one.
Model output: the prediction result ŷi(t) of the model to the

sample after the t-round iteration, that is, the TTC value.
In the training process, the first decision tree is established,

and the features and labels of the training samples are used for
fitting. Then, the residual is calculated and used to train the
next decision tree. The principle of t-iteration training is as
follows:

For the 0th iteration, the initial prediction value ŷi(0) is 0:

ŷi(0) = 0 (2)

ŷi(1) = f1(xi) = ŷi(0) + f1(xi) (3)

ŷi(2) = f1(xi) + f2(xi) = ŷi(1) + f2(xi) (4)

ŷi(t) =

∑t

k=1
fk (xi) = ŷi(t−1)

+ ft (xi) (5)

where xi is the i-th sample feature, yi is the i-th sample label,
ŷi(t) is the prediction result of themodel after the t-th iteration,
fk (xi) is the prediction value of the k-th decision tree to the

VOLUME 12, 2024 120515



H. Gao et al.: Novel Ensemble Learning-Based Method for Online TTC Assessment of New Power System

FIGURE 3. TTC calculation process.

sample, ŷi(t−1) is the sample prediction value of the previous
t − 1 iteration, and ft (xi) is the new prediction function of the
t-th iteration.
The central idea of the XGboost algorithm is to fit the

residuals, so that the residuals continue to decrease. The
calculation of the residual Et of the t-tree decision tree is
shown as follows:

Et = yi − ŷi(t−1) (6)

TheXGBoost algorithm needs to calculate residuals during
each iteration. The residual error can be calculated in Eq.(6),
and the sample is re-weighted according to the calculation
results. Then, the next decision tree is trained again using the
corrected training set. Finally, the predicted results of each
decision tree model are summed and added. The predicted
result of the overall model is shown below:

F(x) =

∑T

k=1
αk fk (x) (7)

where k represents the k th decision tree; T represents the
number of rounds of iteration, that is, the number of decision
trees; F(x) is the prediction result of the overall model; αk is
the weight of the decision tree fk (x); and fk (x) represents the
prediction result of the k decision tree.
In summary, the XGBoost algorithm is an improved

version based on the boosting tree algorithm. Compared with
the traditional boosting tree algorithm, XGBoost introduces
regularization terms and second derivative information and
uses Taylor expansion to approximate the loss function.
By optimizing the loss function, XGBoost can fit data and
adjust model parameters more effectively.The principle of the
XGBoost algorithm is shown in Figure 4.

FIGURE 4. The principle of XGBoost algorithm.

B. BUILDING THE LGBM MODEL
LGBM and XGBoost are two commonly used gradient-
boosting tree algorithms that are different from traditional
decision trees in the splitting strategy, leaf node growthmode,
and data processing method [29].

Firstly, LGBM adopts a decision tree growing by leaves,
while XGBoost adopts a decision tree growing by layers.
LGBM selects the optimal leaf node for splitting each
time to minimize the loss. XGBoost splits nodes in a
hierarchical order to ensure that each layer has the same
number of leaf nodes. Secondly, the growth pattern of leaf
nodes is also different. LGBM uses a depth-constrained leaf-
growing strategy as trees grow, which can reduce the risk of
overfitting. XGBoost uses a pre-sorting algorithm to select
split points to improve training efficiency. In addition, data
processing methods are also different. LGBM internally uses
a histogram-based discretization method to process contin-
uous features, transforming continuous values into discrete
histogram blocks. XGBoost uses the gradient histogram
method to process features to make better use of the gradient
information of the feature value.

C. BUILDING THE RF MODEL
RF is based on the combination of Bagging (self-sampling
method) and decision tree algorithm. RF is an improved
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FIGURE 5. The principle of the LGBM algorithm.

version of the Bagging algorithm. Firstly, RF replaces the
base learner in Baggingwith a decision tree. At the same time,
RF introduces more random elements, which are random
not only in sample extraction but also in feature extraction.
This randomness can have the effect of a reduction in
the correlation between features and an increase in the
generalization ability of the model [30].

Given a training set sample s = {(xi, yi)}Ni=1, where xi is the
ith sample feature and yi is the ith sample label. In the feature
set f = {f1, f2, . . . , fM }, each sample corresponds to a set of
features.

The output of RF is the TTC prediction results, and the RF
training process is as follows:

1) Define hyperparameters: the number of decision trees
T , the maximum depth of the decision tree max _ depth.

2) Random sampling: N samples are randomly selected as
sub-training sets from the original training set with put-back,
and the process is repeated T times to form T sub-training
sets.

3) Randomly selected features: For each decision tree,
P features are randomly selected from the sub-training set
corresponding to the decision tree to construct a feature
subset of the node. This P is usually a fixed value that is much
smaller than the total characteristic number M .

4) Construction of decision tree:

Calculation of the MSE of each set/node is shown as
follows:

mean =
1
N

∑N

i=1
yi (8)

MSE =
1
N

∑N

i=1
(yi − mean)2 (9)

wheremean represents the mean value in the set,N represents
the total number of samples in the set, yi represents the target
value of each sample in the set.

5) According to the above steps, T decision trees are con-
structed, and all the generated decision trees are accumulated
together to obtain the final RF model, which can be used to
predict the labels of new samples. The final predicted score is
calculated by averaging the predicted scores of all the trees.
The final prediction results of the RF are presented as follows:

H (x) =
1
T

∑T

j=1
hj(x) (10)

where hj(x) is the prediction result of each decision tree, and
j is the jth decision tree. The principle of the RF algorithm is
shown in Figure 6.

FIGURE 6. Principle of random forest algorithm.

D. HYPERPARAMETER OPTIMIZATION
Hyperparameters refer to some configuration options in the
machine learning model. These options are manually set
and cannot be automatically optimized by functions within
the model. Random search is an effective method in the
case of large hyperparameter space and limited computing
resources. Since random search does not depend on gradient
information or other additional computational overhead,
it can quickly perform parameter searches with relatively
few computing resources. By randomly selecting parameter
combinations in the parameter space for evaluation, random
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search can quickly explore different parameter combina-
tions and find relatively good solutions. Taking XGBoost
as an example, the following is the process of random
search:

1) Setting the search space: determining the number
of samples (or iterations) for the random search and the
random selection range of parameters for each sample. For
the XGBoost model, the focus is on a small number of
parameters that have a more significant impact on the results:
themaximumdepthD defines themaximumnumber of layers
the decision tree can grow, limiting the complexity of a single
decision tree, and plays a role in the objective function of the
regularization. αk controls the contribution of each decision
tree to the final model predictions. αk is multiplied by the
prediction of each of the decision tree and added to the
cumulative prediction of all previous decision trees to obtain
the prediction of the final model;

⌢

W is the sum of the weights
of the smallest child nodes required during the node splitting
process.

⌢

W defines the minimum sum of sample weights
allowed on a leaf node. If the sum of the sample weights
on a leaf node is less than

⌢

W , the split is not continued, and
the node is treated as a leaf node; conversely, if the sum of
the sample weights is greater than or equal to

⌢

W , the split is
continued.

2) Specify search parameters: Specify how to iterate and
fold the search. The number of iterations defines the number
of times a hyperparameter combination is randomly selected
in the hyperparameter space. The number of folds determines
how many segments the cross-validation splits the data into,
allowing each hyperparameter combination to be trained and
evaluated across these segments.

3) The objective function is definedwithMAE, RMSE, and
R-squared, which are used as performance evaluation metrics
for the model.

4) Data preparation: The training set in the original data is
used for hyperparameter optimization.

5) Random Search: Use the specified XGBoost model,
search space, and search parameters to create a random
search object for a random search. In each iteration, a set
of parameter values is randomly selected, and the model is
trained on the training set. Then, the model’s performance is
assessed on the test set.

6) Record results and parameter combinations: Record the
results of each evaluation and the corresponding parameter
combinations.

7) Iterate Steps 5) and 6) until the specified number of
iterations is achieved.

8) The parameter combination yielding the highest
evaluation index value is chosen as the final model
parameter.

V. CASE STUDIES
Case studies are performed on a 500-node grid model to
showcase the effectiveness of the proposed method. The
model training process is as follows:

1) Using the PSAT and TSAT in the power system software
DSATools, a power grid model with 500 nodes is established
and simulated to generate sample data. Firstly, The power sys-
tem simulation software PSAT is utilized to create a 500-node
power grid model and conduct power flow analysis, resulting
in a converged power flow data file. The specific process is to
adjust the load level of the entire power network, solve power
flow, and save the adjusted condition in files. Operating data
can be extracted from the files, encompassing load active
and reactive power, generator active and reactive power, bus
voltage, and line active and reactive power. In TSAT software,
determining the section location, defining the expected fault
scenarios, and specifying the power adjustment strategy
are essential for modeling and simulating the dynamic
responses of the 500-node power grid under various operating
conditions.

FIGURE 7. The one-line diagram of the transmission corridor.

The transmission corridor of this example consists of a
series of lines, which are connected to bus 547 and other
nodes, respectively. These include lines from 547 to 548, lines
from 547 to 559, lines from 547 to 549, lines from 544 to 547,
and lines from 545 to 547. The section setting is shown in
Figure 7.

Through these lines, the power on bus 547 can be
transmitted to the corresponding node and supplied to
the right area, and then the TTC value is obtained by
automatically searching the safety limit. The original data
includes feature set and label data. The feature set includes
bus voltage amplitude Vm and bus voltage phase angle V ,
generator active power Pgen, generator reactive power Qgen,
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load active power Pload , load reactive powerQload , line active
power Pline, line reactive power Qline, The label data is TTC.
According to the distribution of TTC values shown in

Figure 8, it can be observed that the number of samples
with TTC values of about 800MW and 1000MW is small.
The value regions of sample features and label values are
displayed in TABLE 2.

TABLE 2. Feature and label value range table.

FIGURE 8. TTC sample distribution diagram.

Preprocessing the sample data.
The original data set includes feature sets and label data.

The feature set of each sample has a total of 3432 features.
Among them, bus voltage amplitude Vm has 563 data,
and bus voltage phase angle V has 563 data. the sum of
generator active power Pgen and generator reactive power
Qgen has 280 data, the sum of load active power Pload
and load reactive power Qload has 884 data, the sum of
line active power Pline and line reactive power Qline has
1142 data. The label data is a total of 39,000 sample data for
TTC values.

2) The optimal parameter combination is obtained by
random search using the following steps.
Define the parameter space: the continuous range of the

maximum depth D search is an integer between 1 and 20; the
continuous range of the learning rate search is a float number

between 0.01 and 0.2; and the continuous range of
⌢

W search
is an integer between 1 and 20.
Specify the search parameters: specify the number of

iterations is 10, and the fold of cross-validation is 5.
Define the objective function: The search parameter

is specified to define the objective function. The mean
square error is used as the evaluation index of the model
performance.
Data preparation: The training set in the original data

is used for hyperparameter optimization, and there are
31200 samples in the training set. Then, 20% of the
training set samples are reserved for evaluating the model’s
performance.
Random search: Use the specified XGBoost model, search

space, and search parameters to create a random search
object, and the sample is passed to the random search object
for a random search.
Record results and parameter combinations: Record each

evaluation result on the validation set and the corresponding
parameter combination.

Repeat the random search process 10 times according to
the specified number of iterations. Based on the recorded
parameter combinations from each iteration, the parameter
set yielding the highest evaluation index value is selected as
the final model parameter. The XGBoost, LGBM, and RF
models undergo iterative steps as described. Changes in their
configurations before and after parameter adjustments are
detailed in Table 3:

TABLE 3. Comparison of different algorithms before and after parameter
adjustment.

3) The construction of the stacking model and the training
and prediction process

Firstly, the original data set has 39,000 samples (each
sample includes 3,432 features and 1 label value), which
are partitioned into training and test sets. There are 31,200
samples in the training set and 7,800 samples in the test
set. Then, the training set is segmented into five parts; each
fold contains 6,240 samples. Taking the XGBoost model
as an example, the hyperparameters of the model are set,
the XGBoost model object is created, and the hyperpa-
rameters are passed to the model. The XGBoost model is
trained using four folds of the training set. The XGBoost
model will learn from the data and hyperparameters, fit
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the samples in the training set, and generate a trained
model. The trained XGBoost model is evaluated using a
previously reserved validation set and test set. Features from
these sets are fed into the model to obtain predictions.
Specifically, the validation set yields 6,240 predictions, and
the test set yields 7,800 predictions after five cycles. The
validation set predictions are concatenated row-wise to form
a dataset of 31,200 samples. The test set predictions are
averaged across the five cycles to produce 7,800 averaged
predictions.

Replace the XGBoost model with the LGBM and RF
models and perform the same steps. Finally, concatenate the
validation set predictions from the three models column-
wise, resulting in a dataset with 31,200 rows and 3 columns.
Similarly, concatenate the test set predictions from the three
models column-wise to obtain a dataset with 7,800 rows
and 3 columns. Combining the sample data of 31,200 rows
and 3 columns with the features of the original training set
samples results in a new dataset of 31,200 rows and 3,435
columns, which serves as the input for the new training set.
The labels from the original training set are used as the target
variable. Similarly, merging the 7,800 rows and 3 columns of
sample data with the features of the original test set produces
a new dataset of 7,800 rows and 3,435 columns for the new
test set, using the labels from the original test set as the target
variable.

LGBM is utilized as a meta-model, and the new training
set is used for its training. Once the meta-model training is
completed, the new test set will be employed to make the final
predictions.

4) Real-time application of TTC prediction using the
stacking algorithm

5) The comparison results of prediction errors before
and after optimizing each model’s parameters are shown in
Table 4.

TABLE 4. (a) Prediction error of test set before parameter adjustment.
(b) Prediction error of test set after parameter adjustment.

From the comparison before and after parameter adjust-
ment, the prediction error after random search hyperparam-
eter optimization is smaller than that before optimization.
This indicates that the optimized model achieves a better

fit to the training data and yields more accurate predictions
on the test set. From the perspective of prediction error,
the prediction results obtained by using this method are
better than those obtained by using XGBoost model,
LGBM model, and RF model alone. This shows that
the stacking model plays a good role in integrating the
prediction results of multiple basic models, such as the
LGBM model.

The prediction results of RF, LGBM, XGBoost, and stack-
ing models in the test set before and after hyperparameter
optimization are shown in Figure 9 and Figure 10. The curve
in the figure is the prediction error comparison result of
200 randomly selected sample data.

FIGURE 9. Comparison of prediction errors of each model before
parameter adjustment.

FIGURE 10. Comparison of prediction errors after parameter adjustment
of each model.

Ten samples were extracted from the test set for detailed
analysis. The data distribution of these sample features is
shown in Figure 11. The label values TTC of these samples
are listed in TABLE 5. After hyper-parameter optimization,
the prediction errors of these 10 samples by different methods
are shown in Figure 12. By analyzing the data in the table
and the curve in the figure, it is evident that the sample
errors at the limit values of 787.42 MW and 1020.22 MW are

120520 VOLUME 12, 2024
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FIGURE 11. Sample feature distribution map.

FIGURE 12. Comparison of prediction errors of different methods.

FIGURE 13. The error comparison diagram of TTC predicted value and real
value.

significant. Overall, the stacking algorithm provides superior
prediction results compared to other algorithms, effectively
capturing the actual data trend. Figure 13 compares the
predicted values with the real values for the stacking method
optimized by hyperparameters, with the orange shaded area
representing the error range. The figure shows that the errors
within the orange region are minimal, indicating a very

TABLE 5. Sample label value.

small deviation between the predicted and actual values. This
demonstrates that the optimized stacking method has high
prediction accuracy and reliability.

VI. CONCLUSION
This paper proposes a method for real-time TTC evaluation
using a stacked ensemble learning model. The following
conclusions can be made:

(1) In the process of sample generation, the constraints of
thermal limits, voltage security, transient stability, and volt-
age stability are comprehensively considered. This method
ensures that the generated sample data can accurately reflect
the operating characteristics of the actual power system under
different load conditions, which provides a reliable data basis
for the subsequent TTC prediction.

(2) By integrating LGBM, XGBoost, and RF models for
TTC prediction, this paper fully combines the advantages
of each model. Specifically, the efficiency and accuracy
of LGBM, the ability of XGBoost to deal with nonlinear
relationships, and the anti-overfitting characteristics of RF
have been fully utilized, thus significantly improving the
overall performance of TTC prediction.

(3) This paper combines a random search strategy and
a five-fold cross-validation method to search for the best
parameter combination of XGBoost, LGBM, and RFmodels.
It improves the accuracy of TTC evaluation and achieves
higher efficiency.
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