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ABSTRACT This paper presents a novel physics-based data-driven approach for reconstructing the nonlinear
governing equations and suppressing vibrations in vertical-shaft rotary machines during transient motion.
We first identify the key nonlinear terms using a physics-based methodology. Subsequently, a data-driven
approach, known as the Sparse Identification of Nonlinear Dynamical Systems (SINDy), is employed to
reconstruct the nonlinear governing equations of a typical rotary machine. After validating the model,
a robust nonlinear controller is designed using the terminal sliding mode control (TSMC) technique to
reduce lateral vibrations in the machine’s shaft. Extensive experimental tests on a laboratory-scale rotary
system confirm the stability and robustness of the proposed approach. The results also demonstrate that the
proposed method significantly reduces lateral vibrations in rotary machines.

INDEX TERMS Active vibration control, physics-based modeling, rotary machines, sparse identification
of nonlinear dynamics (SINDy), terminal sliding mode control (TSMC).

I. INTRODUCTION
Excessive vibrations in the transient response of rotary
systems can detrimentally impact performance, resulting in
heightened wear and tear and even structural damage. While
conventional control strategies have historically been utilized
to mitigate these vibrations, recent advancements in data-
driven techniques have amplified their importance.

The integration of data-driven models based on physics
into traditional scientific computing and engineering design
has garnered significant attention, primarily due to the
availability of high-capacity datasets and advancements
in numerical computation. This hybrid approach, known
as physics-based data-driven modeling, harmonizes univer-
sal physical laws with data-based models derived from
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experimental data to enhance accuracy, robustness, and
optimization across various domains [1]. Thesemodelsmerge
the strengths of conventional physical models with the flexi-
bility and adaptability inherent in data-driven methodologies.
By utilizing empirical data to refine and enhance physical
models, simulations and predictions can more closely align
with real-world observations. This process provides a more
precise representation of complex phenomena and facilitates
improved scientific computing and engineering design.
Furthermore, physics-based data-driven models have the
potential to uncover valuable insights from data that may
elude traditional modeling techniques alone, making them a
promising avenue for advancing both scientific and control
engineering.

Recent developments in data-driven control engineering
have underscored the utilization of machine learning algo-
rithms, such as deep learning and reinforcement learning, for
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control system design and optimization. Additionally, there is
a growing focus on applying physics-based machine learning
techniques in scientific computing, exploring how machine
learning algorithms can be combined with physical laws
and principles to enhance computational simulations and
modeling [2]. A nonlinear dynamic optimization framework
for learning governing equations from noise-contaminated
state measurements over time highlights the potential for
improved accuracy and efficiency in scientific computa-
tions [3]. Moreover, recent advances in data-driven modeling
and control for complex systems delve into the use of
techniques such as system identification andmodel predictive
control across various application domains. Kaiser et al.
underscore the potential of these approaches in enhancing
system performance and adaptability [4].

Mathematical modeling plays a vital role in understanding
the complexity of industrial systems, ensuring their con-
trol, and providing reliable representations. It enables the
development of fault monitoring systems and robust control
strategies, particularly for mitigating vibrations in rotating
systems [5], [6]. With the advancement of data-driven
science, there is a need to integrate these methodologies with
physics-based methods, especially where modeling based on
physical laws may have limitations. Accurate mathematical
models are crucial for the active vibration control of rotary
systems.

Finite Element Analysis (FEA) serves as a foundational
approach in this field, enabling simulations of real-world
phenomena encountered in rotating machinery. It allows
for the analysis of a system’s dynamic behavior and the
identification of potential sources of vibration [7]. FEA-
based models empower researchers to predict critical speeds,
mode shapes, and various rotor vibration behaviors, thereby
facilitating the identification of problematic modes [8]. FEA
is widely adopted for the precise characterization of dynamic
behavior in complex rotor systems [9]. It enables stress
and modal analysis while accounting for rotational inertia,
gyroscopic effects, and axial forces [10].
The nonlinear effects of bearing clearance and the

investigation of vibratory behaviors in a vertical disk rotor
supported by ball bearings are discussed in the context
of general linear and nonlinear rotor modeling and rotor
balancing [11]. Experimental validation confirms theoretical
predictions and numerical simulations through methods such
as modal analysis, vibration testing, and dynamic rotor
balancing [12]. In a separate study, researchers conducted
response analysis and examined transient vibrations of
rotor systems under random and uncertain-but-bounded
uncertainties, focusing on uncertainty quantification and
transient response analysis [13]. Another study delved into
the nonlinear dynamics of a rotor-ball bearing system with
Alford force, emphasizing dynamic modeling and analysis of
rotor systems supported by ball bearings [14].
Furthermore, a rotating machinery library for diagno-

sis was developed, incorporating models based on well-
established rotor dynamics theory. This library provides

specifications for various components of a rotary system,
including motors, couplings, shafts, rotors, and bearings [15].
Theoretical analyses have extensively focused on assessing
the impact of nonlinearity on vibration characteristics within
controlled rotor systems. Numerical methods have been
employed to meticulously scrutinize dynamic behavior and
discuss the impact of absorber parameters [16].

In parallel, extensive investigations into the transient
response of a speed-varying rotor subjected to sudden unbal-
ance have been conducted. This approach included deriving
time-dependent functions to model the loading process
accompanying sudden unbalance and analyzing transient
response characteristics across a spectrum of unbalanced
parameters [16]. Additionally, researchers have developed
theoretical models for nonlinear vibrations in flexible rotor-
bearing systems, incorporating diverse dynamic elements and
factors [17]. The database method in rotordynamic design has
garnered significant attention, enabling precise predictions
of bearing performance through nonlinear transient analy-
sis [18].
Analytical studies have extensively explored the transient

response of disk rotors, a pivotal aspect of rotor dynamics
with notable contributions dating back to the pioneering work
of Kirk and Gunter in 1972 [19]. Their research focused on
analyzing dynamic unbalanced response and transient motion
in single-mass disk rotors mounted on damped, flexible
supports with elastic bearings. Their approach involved
assuming synchronous precession and conducting a thorough
steady-state analysis of both the shaft and the bearing housing
motion. They further enhanced their study through numerical
integration of motion equations, employing a modified 4th-
order Runge–Kutta procedure [19]. In a study by [20],
the focus was on investigating the transient response of a
cracked rotor system. They developed a dynamicmodel based
on a simple hinge crack model and conducted a detailed
examination of the influence of factors such as unbalance and
variations in stiffness on the transient response.

In a study by Ishida et al. [21], focusing on vibration
suppression in nonlinear rotor disks and elastic shaft systems
using dynamic dampers, researchers addressed resonance
issues caused by machinery imbalance near critical speeds.
The rotor system under investigation featured a single-
row deep groove ball bearing, introducing nonlinear spring
characteristics due to bearing clearance. To mitigate this, the
study employed the Newton-Raphson method to optimize
dynamic damper parameters for the nonlinear rotor, enabling
passive vibration control. Researchers explored periodic
motions and bifurcation trees in a buckled nonlinear disk rotor
system [22]. Through numerical simulations, they examined
the dynamic behavior and stability of the system. Addi-
tionally, research dedicated to nonlinear vibration control
within a horizontally supported disk-rotor system was con-
ducted [23]. The methodology included employing second-
order approximate solutions and conducting bifurcation
analyses to gain valuable insights into the effects of controller
parameters.
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Furthermore, effective analysis of transient responses in
rotor systems can be achieved through the application of
interval approaches and uncertainty analysis, as demonstrated
by researchers [24]. Their strategy involved utilizing the
nonintrusive Chebyshev interval method to analyze the
transient response of rotor systems in the presence of
uncertainty. They introduced a hybrid analysis procedure
designed to mitigate calculation errors. Researchers [25]
directed their focus toward the nonlinear dynamic behavior
and stability of rotor/seal systems equipped with dynamic
vibration absorbers.

Brunton et al. generalize the sparse identification of
nonlinear dynamics (SINDy) algorithm to include external
inputs and feedback control [26], [27]. They also demonstrate
its application with model predictive control (MPC) using
an infectious disease control example [28]. The research
on active vibration control methods has gained prominence,
employing strategies and actuators to counteract unbalanced
forces [29]. Adaptive control strategies have been introduced
to enhance rotor balance control, especially under variable
speed conditions [30], utilizing feedback control algorithms
to continuously adjust balancing forces and minimize
vibrations. Various methods, including Active Force Control
(AFC), have been employed to implement active vibration
control in rotary systems, aiming to actively apply forces
to counteract unbalanced forces and reduce vibrations [31].
Additionally, passive vibration control devices like inverters
and dynamic vibration absorbers (DVA) have been integrated
into rotary systems to enhance suspension performance [32].
The proposed SINDy method of system identification

differs from existing techniques in the literature. Tradi-
tional methods such as the finite element method (FEM),
Modal Analysis, and Eigensystem Realization Algorithm
(ERA) each have strengths in certain domains [33]. FEM,
a numerical technique for solving complex engineering
problems by discretizing the system into elements, excels in
detailed structural and dynamic behavior analysis but requires
substantial computational resources and detailed modeling
of geometry and materials. Modal Analysis extracts modal
parameters from experimental or analytical models, suitable
for linear systems with known modal properties but less
effective for capturing nonlinear transient responses in rotary
systems. ERA, a data-driven method for identifying linear
state-space models from input-output data, reconstructs a
model by estimating state and input matrices, effective for
systems with small nonlinearities but challenging for more
complex dynamics [34].

In contrast, the SINDy method provides a data-driven
approach tailored for identifying nonlinear system dynamics
and capturing complex behaviors directly from measured
data. Leveraging sparse regression and model sparsity,
SINDy offers a framework for nonlinear system identifi-
cation, demonstrating efficacy in rotary system transient
motion analysis and control. Recent research, such as
uncertainty analysis and experimental validation of oscillator
equation identification using sparse regression by Ren et al.

[35], compares the performance of Least Squares Post-
LASSO (LSPL) with the original SINDy method (LSST).
LSPL outperforms LSST in terms of sparsity, convergence,
identified eigenfrequency, and coefficient of determination,
highlighting its practical potential in this domain.

The research by Bertsimas et al. [36] focuses on learning
sparse nonlinear dynamics through mixed-integer optimiza-
tion. They propose an exact formulation of the SINDy
problem using mixed-integer optimization (MIO-SINDy) to
achieve provably optimal solutions within seconds. This
approach demonstrates the effectiveness ofMIO in producing
sparse solutions with strong predictive power, surpassing
other widely used sparse learning techniques like Lasso. Such
advancements hold promise for accurately identifying and
learning sparse nonlinear dynamics, applicable across various
fields requiring complex dynamic system modeling.

Recent publications have explored a diverse range of
control strategies for rotor vibration suppression, including
energy harvesting and adaptive control algorithms [37].
Sliding Mode Control (SMC) has emerged as a robust
methodology for vibration suppression in various engineering
applications [37]. Its application has been investigated
in different contexts; for example, [38] studied robust
active vibration suppression in a flexible beam using a
sliding mode-based controller. Their research highlighted
SMC’s resilience to parameter variations and insensitivity
to unmodeled dynamics, effectively managing beam vibra-
tions. Experimental results demonstrated that the sliding
mode controller reduced beam vibration more rapidly
compared to proportional plus derivative (PD) control and
lead compensation. In another study, [39] proposed and
validated a robust nominal model-based sliding mode control
approach for vibration suppression in a flexible rectangular
plate. They implemented and validated this approach using
MATLAB® and Simulink®, illustrating its effectiveness in
vibration suppression. In [40], an overview of sliding mode
control technology for permanent magnet synchronous motor
systems is provided. It addresses topics such as chattering
suppression, high-order sliding mode control, and terminal
sliding mode control.

In [41], a practical terminal sliding-mode control method
is proposed to rapidly stabilize a second-order plant with
high precision, validated in real-time on a linear-motor-based
control system for servo systems.

In this research, we initially utilized linear Sliding Mode
Control (SMC) but revised our approach to Terminal
Sliding Mode Control (TSMC) for faster convergence and
enhanced performance. TSMC maintains robust sliding
mode stability even in the presence of nonlinearities and
model uncertainties, which is crucial for ensuring consistent
performance in rotary machines under transient response
vibrations. Developed as a robust control strategy, TSMC is
particularly effective for systems encountering uncertainties,
disturbances, and nonlinearities.

The main contributions of this paper lie in the realms of 1)
modeling and 2) vibration suppression for a typical vertical

119274 VOLUME 12, 2024



S. Piramoon et al.: Modeling and Vibration Suppression of Rotating Machines Using the SINDy and TSMC

shaft rotary machine during transient motion. To the best
of the authors’ knowledge, no physics-informed, data-driven
technique has been reported in the literature for modeling
the transient response of rotary machines. Therefore, our
approach and the outcomes of this research represent a novel
contribution to the field.

To describe the proposed approach, we begin with the
Lagrangian formulation of the equations of motion to identify
the existing nonlinear terms within the governing equations.
We then utilize these terms to establish a comprehensive
mathematical library for the SINDy algorithm. Following
this, we provide a concise overview of the mathematical
foundations of the SINDy algorithm, which we employ to
model the transient response of a two-degree-of-freedom
rotary disk system. This modeling process uses real measured
data for SINDy system identification. The framework of our
approach is shown in Figure 1. Subsequently, the model is
validated under various conditions, including acceleration
and deceleration transient modes, while also accounting for
induced rotor unbalancing and noise within the measured
signal. Following validation, a nonlinear controller based on
the terminal sliding mode control (TSMC) technique [42],
[43], [44] is proposed, utilizing the validated SINDy model.
The stability and performance of the closed-loop system
are then examined using a laboratory test rig. Finally,
we conclude the paper with some remarks.

II. NOTATIONS
Table 1 provides descriptions of the notations used in this
paper.

III. PHYSICS-BASED MODELING OF ROTARY MACHINES
In this section, we employ physical laws to derive the
equations of motion for the rotor system. The objective is
to identify the nonlinear terms in the governing equations,
construct a mathematical library, and utilize it in the data-
driven algorithm.

A. SYSTEM MODELING
The lateral motion of a vertical shaft rotor system can
be modeled by a two-degrees-freedom mass-spring-damper
system, as depicted in Figure 2. The schematic illustrates a
rotating imbalanced disk rotor, experiencing lateral vibrations
in the plane perpendicular to its axis of rotation—normal to
the plane.

Two reference frames are used to describe the intricate
motion of the rotor. The N -frame is the inertial reference
frame fixed in space, and the A-frame is a rotor-fixed frame
with its origin located at the center of geometry, point C .
The generalized coordinates, q(t) ∈ R3, is defined as q =

[x, y, β]T , where x(t), y(t) ∈ R represents the position of the
disk center C and is measured from a fixed point O in theN -
frame and β(t) ∈ R is the angular position of the disk. The
angle of vector OC ∈ R2 with the X -axis is γ ∈ R. Due to
the mass imbalance, the disk center-of-mass (CM) denotes by
G has an offset distance e with respect to the reference frame

TABLE 1. Notations used in this paper.

A. For simplicity, we assume vector CG is aligned with a1
in the body frame A. An AC electric motor applies torque
τm ∈ R to spin the rotor. A pair of perpendicular control
forcesUX ∈ R andUY ∈ R are applied to the disk to regulate
lateral plane vibration. For control of the lateral vibration, the
control force u(t) ∈ R2 is defined as u = [UX , UY ]T . Let’s
use the Lagrange method and derive the equations of motion
as follows,

d
dt

(
∂L
∂ q̇i

)
−

∂L
∂qi

= Qi, (i = 1, 2, 3), (1)

where L is the Lagrangian, L = T − V , T represents
the kinetic energy, and V represents the potential energy
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FIGURE 1. The framework for integrating physics-based and data-driven approaches.

of the system. Qi represents the generalized forces, and qi
represents the generalized coordinates. For the Lagrangian
L, we compute both the translational and rotational kinetic
energies of the rotor, given by T = Tr + Tt , where Tr is the
rotational kinetic energy and Tt is the translation part of the
total kinetic energy. The kinetic energy of the rotor can be
found from

T =
1
2
m

(
N V⃗ G

·
N V⃗ G

)
+

1
2
J̄ β̇2

=
1
2
m

[
ẋ2 + ẏ2 + e2 β̇2

+ 2e β̇(−ẋ sinβ + ẏ cosβ)
]
+
1
2

(
J − me2

)
β̇2, (2)

where m ∈ R+ and J ∈ R+ are the mass and the moment of
inertia of the rotor with respect to the center of geometry C .
The moment of inertia of the rotor with respect to the center
of mass G is denoted as J̄ . The relationship J = J̄ + me2

holds, where e is the distance between the center of geometry
C and the center of massG. The position and velocity vectors
can be found from

R⃗OG
= d⃗ + eâ1 = x Î + y Ĵ + eâ1, (3)

and the velocity of the center of mass is

N V⃗G
=

N d
dt

(N R⃗G) =
(
ẋ−e β̇ sinβ

)
Î

+
(
ẏ+ e β̇ cosβ

)
Ĵ . (4)
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FIGURE 2. Illustration of the top and front view of a
two-degrees-of-freedom model of a rotary disk. This model includes
imbalance mass, lateral nonlinear stiffness and damping, and control
forces along the X - and Y -axes.

The potential energy change due to gravity is zero.
By reference to (1), the equation of motion for the rotor of

Figure 2 can be written as,

6 :


ẍ = eβ̈ sinβ + eβ̇2 cosβ −

FsX
m

−
CX ẋ
m

+
UX
m

,

ÿ = −eβ̈ cosβ + eβ̇2 sinβ −
FsY
m

−
CY ẏ
m

+
UY
m

,

J̄ β̈ = τz,

(5)

where FsX ,FsY ∈ R represent nonlinear stiffness forces and
τz is given by

τz = τm − (τc + τv + τa), (6)

in which the Coulomb friction torque, τc, at the bearing is

τc = Cc sign(β̇), (7)

where Cc is the Coulomb friction coefficient. The
viscous damping torque,τv, at bearings is assumed to

be in the form of

τv = Cv β̇, (8)

where Cv is the viscous damping coefficient and the
aerodynamic damping torque, τa, a model which represents
the drag of air resistance with the surface of the rotor is

τa = Ca β̇ |β̇|, (9)

where Ca is the aerodynamic damping coefficient. The
driving torque applied by the motor, τm ∈ R is given by [47],

τm =
Kt
R
V −

KtKb
R

β̇, (10)

where V is the voltage, R is the motor resistance, and Kt ,
Kb ∈ R are the torque and back EMF constants which
are physical parameters associated with the motor. Because
our motor is powered by a constant voltage source during
acceleration, we can rewrite (10) as

τm = Cm1 − Cm2 β̇, (11)

and during deceleration, τm = 0.
By observation and measurement, we noticed that the

stiffness behavior is nonlinear. A system measurement was
conducted on the system shown in Figure 2, to identify
the mathematical model of the forces FsX , FsY . In the
following section, the nonlinear stiffness model is determined
by experiment.

B. MEASURING SYSTEM’S LATERAL STIFFNESS
We measured the elastic deflection of the rotor by applying
lateral force and measured the static displacement of the
rotor as shown in Figure 3. To this end, we use a Wagner-
FDX-50 digital force sensor (item 1 in Figure 3) to apply
force to the flexible shaft rotor and used a Mitutoyo-2046S
displacement indicator (item 2 in Figure 3) to measure the
displacement in an arbitrary direction. The results of force
versus displacement measurements are shown in Figure 4.
It was observed that the relation between the force and
displacement follows a cubic polynomial in an arbitrary
direction, i.e.,

Fs = K1d + K2d3. (12)

For the equivalent stiffness in the X - and Y -axes, the
relations x = d cos γ and y = d sin γ are employed. After
some algebraic manipulation, we obtain,

FsX = Fs cos γ = K1x + K2 x
(
x2 + y2

)
,

FsY = Fs sin γ = K1y+ K2 y
(
x2 + y2

)
. (13)

It is worth mentioning here that the experimental results
confirm that the damping forces are linear.

IV. DATA-DRIVEN MODELING OF ROTARY MACHINE
This section provides a brief review of the SINDy algorithm.
Then, by utilizing the equations of motion derived from the
physics-based approach, we construct a mathematical library
and reconstruct the governing equations.
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FIGURE 3. Experimental stiffness measurement using the Wagner-FDX-50
Digital Force Sensor 1⃝ for applied force measurement and the
Mitutoyo-2046S Displacement Indicator 2⃝ for displacement
measurement in the same direction.

FIGURE 4. The force vs. deflection plot of the rotor drive shaft.

A. A BRIEF OVERVIEW OF THE SINDY ALGORITHM
Sparse Identification of Nonlinear Dynamics (SINDy) is
a data-driven approach widely employed for discovering
the dynamics of complex systems. The SINDy algorithm
has demonstrated its versatility by successfully revealing
underlying dynamics in various contexts, including fluid
vortex shedding behind an obstacle [26] and other sci-
entific studies [2]. Its adaptability extends beyond time-
invariant systems, as it can effectively handle parameterized
systems and those with time-varying dynamics or external
forcing [2].

The SINDy algorithm employs a library of potential
functions that may appear in the system’s differential

equations, encompassing constants, trigonometric functions,
polynomials, and elementary functions. Through the appli-
cation of sparse regression techniques, SINDy meticulously
selects the most relevant terms from this library to construct
a concise model capturing the observed data dynamics [26].
It employs techniques such as L1 regularization and
compressed sensing to promote sparsity and estimate the
coefficients of the selected terms. This process facilitates
the extraction of a simplified yet accurate mathematical
model from high-dimensional and noisy data. This approach
facilitates the discovery of governing equations through a
data-driven method.

The typical workflow for applying SINDy involves several
key steps: preprocessing the available data (including filter-
ing, noise reduction, and feature extraction), constructing a
library of candidate functions, employing sparse regression
techniques to identify relevant terms and estimate their
coefficients, validating the resulting model using root mean
square error (RMSE) to compare measured and modeled
data, and ultimately using the identified nonlinear state-space
model for various purposes, such as analysis, prediction,
control, or optimization. In the previous section, Lagrangian
mechanics is employed to identify the general form of
the governing equations and build a mathematical function
library for the SINDy.

We sample Xm ∈ R(p+4)×n measurements, where
n ∈ N+ is the number of sensors or the number of states
from which we aim to derive their dynamical equations, and
p ∈ N+ represents equitime discrete measurement data.
Thesemeasurements are then arranged in amatrix where each
column represents a vector of measurements from a state or
a sensor, as follows:

Xm =



x1(t1) x2(t1) x3(t1) . . . xn(t1)

x1(t2) x2(t2) x3(t2) . . . xn(t2)

x1(t3) x2(t3) x3(t3) . . . xn(t3)

· · · · · · · · ·
. . . · · ·

x1(tp+4) x2(tp+4) x3(tp+4) . . . xn(tp+4)


. (14)

If h is considered as the time step between each mea-
surement, fourth-order central difference numerical differen-
tiation can be employed to compute the derivative in each
column of the matrix Xm. The fourth-order central difference
formula is given by

dxj
dt

≈
−xj(i+ 2) + 8xj(i+ 1) − 8xj(i− 1) + xj(i− 2)

12h
,

(15)

in which (j = 3, · · · , p − 2) is used to denote the numerical
derivatives of the matrix Xm. Then, the matrix of derivatives
is represented as follows:

Ẋm ≈
dXm

dt
∈ Rp×n. (16)

In real-time measurements, the time samples Xm may be
contaminated with noise. Depending on the nature of the
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noise, it might be necessary to filter both the data Xm and
its derivative Ẋm. We used Gaussian filtering, which involves
applying a Gaussian function to the measured signal to
convolve it, effectively reducing high-frequency noise while
preserving the overall shape and important features of the
data [45].

Next, we build a library of candidate functions for the states
X and time, highlighting the rotor angular velocity β̇ as a
crucial parameter for distinguishing a candidate function for a
rotary system. The mathematical representation is presented
as follows:

2(X, t, β̇) =
[
R1 R2 R3 . . . Rq

]
, (17)

where 2(X, t, β̇) ∈ Rp×q is a matrix of p × q candidate
nonlinear functions with q ∈ N+ equal to the number of terms
in the library, andR1, . . . ,Rq ∈ Rp×1 are column vectors of
nonlinear candidate functions. The idea is to form a system
of equations similar to the matrix system of linear equations
AX = b, where b matrix are the Ẋ terms and the A matrix
is the 2(X, t, β̇) library. The designed data-driven system is
formed by the assembly of the matrices,

Ẋm = 2(X, t, β̇) 4. (18)

Using the data matrix 2, there are q solutions computed
in the matrix 4 = [ξ1, ξ2, ξ3, . . . , ξq]T ∈ Rq×n,
where the superscript T denotes the transpose of a vector.
To find a model, we apply the least absolute shrinkage
and selection operator (LASSO), which solves the fol-
lowing convex l1-regularized sparse regression objective
function [48]:

ξk = argmin
ξ ′
k

(
∥Ẋmk − 2(X , t, β̇)ξ ′

k∥2 + λ∥ξ ′
k∥1

)
. (19)

Here, ∥ · ∥p denotes the p-norm of a matrix, Ẋmk is
the k-th column of Ẋ , and λ is a sparsity-promoting
parameter. LASSO identifies a sparse coefficient matrix
4 that selects the most important terms from the library
of candidate functions, thereby discovering the underlying
sparse dynamics of the system.

In SINDy, we assume that the underlying dynamics of the
system can be approximated by a sparse linear combination
of nonlinear basis functions, providing a mathematical tool
to analyze highly nonlinear systems, such as the transient
motion of rotary systems. A critical aspect of this technique
lies in identifying the appropriate mathematical library or
basis functions tailored to the specific problem at hand. Our
approach addresses this challenge by employing the Lagrange
equations of motion, grounded in physical laws. Additionally,
the performance of SINDy relies on the quality and quantity
of available data. Insufficient or noisy data can lead to poor
model identification and inaccurate predictions. Furthermore,
the effectiveness of SINDy can vary depending on system
complexity, dimensionality, and the nature of the underlying
dynamics. The reconstructed model from SINDy may not
always generalize well to unseen data or different operating

conditions. Overfitting to the training data and limited robust-
ness to perturbations are common challenges that affect the
model’s generalizability. During our investigation, we noticed
that incorporating natural frequencies within the SINDy
model not only improves the discoveredmodel’s accuracy but
also enhances the model’s resilience to noise, leading to supe-
rior performance in experiments. The following describes
the process of finding the natural frequencies of the rotor
system.

B. MEASURING SYSTEM’S NATURAL FREQUENCIES
Measuring the natural frequencies of a system is achieved
through the Frequency Response Function (FRF) technique.
This method involves analyzing the system’s response to an
applied force at various frequencies to determine its natural
frequencies and mode shapes. Natural frequencies are the
frequencies at which a structure vibrates, while mode shapes
describe the spatial distribution of vibrations within the struc-
ture. In this paper, we focus on measuring the rotor natural
frequencies and formulating them within the SINDy library
to determine the coefficients, which represent the weight of
each term in the library. Modal hammer testing is commonly
employed for identifying a system’s natural frequencies.
In experimental modal testing, sensors are utilized to
measure the structural response to excitation, and the natural
frequencies and mode shapes are derived from the collected
data [46].
To achieve this, we set up amodal test as shown in Figure 5.

The DAQ Spider-20 from Crystal Instruments was employed
in conjunction with a Dytran accelerometer sensor (Model
3056D11T), featuring a sensitivity of 50mV/g and a range of
100× g acceleration. Additionally, a modal hammer (Model
5800B2T) was used, which has a sensitivity of 100 mV/lbf
and a range of 50 lbf .
A practical guide provided by [46] outlines the computa-

tion point-to-point frequency response functions by analyzing
the response at point i when subjected to an input at point
j. This approach is conceptually similar to that of a single-
degree-of-freedom system, with the key distinction being
the summation of the effects of all modes. In the case
of a planar disk rotor, the frequency response function is
composed of a combination of single-degree-of-freedom
systems, accounting for the contributions of all system
modes. For the system’s frequency response function for a
specific input-output location ij, the following equation is
employed [46]:

hij(jω) = Lower residuals +

m∑
k=1

aijk
(jω − pk )

+
a∗
ijk

(jω − p∗
k )

+ Upper residuals, (20)

where, hij(jω) ∈ {C = a+ i b | a, b ∈ R, i2 = −1}, the
frequency variable ω (rad/s) ∈ R, the residuals aijk , a∗

ijk ∈ C
and system poles pk , p∗

k ∈ C, where (∗) is the complex
conjugate term. Figure 6 displays the band of interest, which

VOLUME 12, 2024 119279



S. Piramoon et al.: Modeling and Vibration Suppression of Rotating Machines Using the SINDy and TSMC

FIGURE 5. Experimental modal analysis of rotor system utilizing the
modal hammer model 5800B2T with sensitivity of 100 mV /lbf and 50 lbs
range 1⃝ for applied impact force in the X -axis. The Dytran 3056D11T
accelerometer has a sensitivity of 50 mV /g with 100 × g range sensor 2⃝.

is a selection of the first 35 modes of vibrations. The modal
testing results in the solution of the frequency response
function (20), identifying the natural frequencies of the
system for the SINDy library. These modes and residuals
are essential for refining the model and ensuring a more
accurate representation of the system’s behavior using the
SINDy algorithm.

FIGURE 6. Frequency response function plot of the rotor system derived
from the experimental modal testing.

C. RECONSTRUCTING THE ROTOR DIFFERENTIAL
EQUATIONS
Considering (5) and utilizing the measurements from previ-
ous sections, the system of differential equations for the rotor

system during acceleration, 6a, can be written as

6a :



Ẋ1 = X2,

Ẋ2 = (1/m)
{

− K1X1 − K2X3
1 −

C1X2 − K2X1X2
3+

m e
[
X2
6 cos(X5) + (1/J̄ )

(
Cm1 − Cm2X6−

Ccsgn(X6) − CvX6 − CaX6|X6|
)
sin(X5)

]
+

f (X6, t)
}
,

Ẋ3 = X4,

Ẋ4 = (1/m)
{

− K1X2 − K2X3
3 −

C2X4 − K2X2
1X3+

me
[
X2
6 sin(X5) − (1/J̄ )

(
Cm1 − Cm2X6−

Ccsgn(X6) − CvX6 − CaX6|X6|
)
cos(X5)

]
+

g(X6, t)
}
,

Ẋ5 = X6,

Ẋ6 = (1/J̄ )
[
Cm1 − Cm2X6 − Ccsgn(X6) − CvX6−

CaX6|X6|
]
,

(21)

in which the state vector of the system is defined as

X ≜ [x, ẋ, y, ẏ, β, β̇]T . (22)

The functions f (X6, t) and g(X6, t) represent the terms in
the form of eλit , (i = 1, · · · , 35), in the X and Y -axes,
respectively. These terms did not explicitly appear in (5).

Similarly, we can show that the system model for rotor
transient deceleration, 6d , can be written as:

6d :



Ẋ1 = X2,

Ẋ2 = (1/m)
{

− K1X1 − K2X3
1 − C1X2

−K2X1X2
3 + m e

[
X2
6 cos(X5)+

(1/J̄ )
(

− Ccsgn(X6) − CvX6−

CaX6|X6|
)
sin(X5)

]
+ f (X6, t)

}
,

Ẋ3 = X4,

Ẋ4 = (1/m)
{

− K1X3 − K2X3
3 − C2X4

−K2X2
1X3 + me

[
X2
6 sin(X5)

−(1/J̄ )
(

− Ccsgn(X6) − CvX6−

CaX6|X6|
)
cos(X5)

]
+ g(X6, t)

}
,

Ẋ5 = X6,

Ẋ6 = (1/J̄ )
[

− Ccsgn(X6) − CvX6 − CaX6|X6|
]
.

(23)

By leveraging the nonlinear terms in (21) and (23),
we construct a mathematical library for the SINDy algorithm.
The implementation of Lagrangian mechanics serves as a
framework for generating candidate functions for SINDy
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library. Its implementation provides a set of nonlinear func-
tions for performing sparse regression and model discovery
from rotor transient response data. The SINDy dictionary for
modeling lateral vibration in rotary systems is demonstrated
in the following mathematical expressions:

2(X, t, β̇) =

[
1 X1 X3

1 X2

X2
6 cosX5 X2

6 sinX5
X6 cosX5 X6 sinX5
Y1 Y 3

1 Y2
X1Y 2

1 X2
1Y1

X6 X2
6

sinX5 cosX5

eλ1t eλ2t eλ3t . . . eλk t
]

∈ Rp×q. (24)

The SINDy process for rotary system modeling is shown
in Figure 1. Next, the displacement of the disk center,
denoted as (x, y), is measured with a sampling rate of 1 kHz
during 10 − 15 seconds, resulting in a total of 10, 000 to
15, 000 samples. During the test, the lateral control forces are
set to zero, i.e., UX = UY = 0. Using this measured data, the
matrix Xm is formed as described in Subsection IV-A, and the
procedure outlined there is applied to reconstruct the system’s
governing equations. The outcome is a parsimonious model
generated through regression. In the following section, the
reconstructed model is validated using experimental data for
various cases.

V. MODEL VALIDATION
We utilize distinct sets of experimental data to evaluate
the accuracy and robustness of the derived SINDy model
in both startup (acceleration) and shutdown (deceleration)
scenarios, considering the presence of measurement noise
and imbalance masses. Figures 7 and 8 show the comparison
between the model prediction and experimental data during
startup and shutdown, respectively.

The root-mean-square error (RMSE) values for rotor
lateral displacement during transient acceleration, and decel-
eration in the X -direction are 0.081 and 0.078, and in
the Y -direction, they are 0.076 and 0.069, respectively.
These RMSE values indicate a small discrepancy between
the measured and predicted lateral rotor vibrations. Visual
inspection of the figures confirms a close match between the
overlapped signals. Furthermore, we conducted sensitivity
analyses to assess the tolerance for RMSE errors. These
analyses aimed to understand how variations in the SINDy
model parameters and measurement conditions impact
RMSE values. Specifically, we investigated the effects of
increasing rotor imbalance parameters and adding Gaussian
white noise to the signals as part of our sensitivity analysis of
the SINDy model. In practice, an SNR of 20 dB or higher
is often considered acceptable for many vibration analysis
applications.

FIGURE 7. Comparing the SINDy-modeled lateral displacement of the
rotor center with the measured data during acceleration in the X -axis.

FIGURE 8. Comparing the SINDy-modeled lateral displacement of the
rotor center with the measured data during deceleration in the X -axis.

To assess robustness in the presence of noise, a typical
20 dBmeasurement noise was introduced to recorded signals,
and the SINDy model was employed to identify system
parameters using these noisy measurements. Figures 9 and 10
show the X and Y components of the rotor’s center in
the presence of synthetic noise from the simulation and
experiment. The corresponding RMSE values are listed in
Table 2.
To investigate the accuracy and robustness of the SINDy-

derived model, we examine the SINDy model during rotor
shutdown (deceleration) for a balanced rotor and for two
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FIGURE 9. Comparing the SINDy model for rotor transient response with
the addition of a typical 20 dB Gaussian white noise to measured data
from a balanced rotor in the X -axis. Figures 9a (top) and 9b (bottom)
illustrate SINDy results with and without noise in the X -axis.

FIGURE 10. Comparing the SINDy model for rotor transient response with
the addition of 20 dB Gaussian white noise to measured data from a
balanced rotor in the X -axis. Figures 10a (top) and 10b (bottom) illustrate
SINDy results with and without noise in the Y -axis.

additional scenarios involving 2.5 grams and 5.0 grams of
induced imbalance loads.

Figures 11, 12, and 13 illustrate the comparison of the
SINDy model with imbalanced-mass measurements. The
corresponding RMSE values are presented in Table 2.

FIGURE 11. Comparison of SINDy model predictions for a balanced rotor
during deceleration in the X -axis (top) and Y -axis (bottom).

FIGURE 12. Comparison of SINDy model predictions for a balanced rotor
during deceleration in the X -axis (top) and Y -axis (bottom) with an
induced 2.5 grams imbalance.

After validating the derived data-driven model, the next
step is to design an active vibration control law to mitigate
the vibration.

VI. NONLINEAR CONTROLLER DESIGN BASED ON THE
TSMC TECHNIQUE
Following the framework outlined in Figure 1, the control
objective is to regulate the center of geometry position during
the startup and shutdown modes of operation. To achieve
this, we utilize the derived model and implement the terminal
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FIGURE 13. Comparison of SINDy model predictions for a balanced rotor
during deceleration in the X -axis (top) and Y -axis (bottom) with an
induced 5.0 grams imbalance.

TABLE 2. RMSE results of SINDy simulation versus actual measurement
for noise and imbalance limits.

sliding mode control technique, a robust nonlinear control
method chosen to accomplish our goal.

In the following, we utilize the derived model, which is
obtained offline, to design the control system. The system
model can be rewritten as

6SINDy :



Ẋ1 = X2,
Ẋ2 = f2(X , t) + 1X + UX ,

Ẋ3 = X4,
Ẋ4 = f4(X , t) + 1Y + UY ,

Ẋ5 = X6,
Ẋ6 = (1/J̄ )(Cm1 + Cm2X6

−CcX6 − CaX6 |X6| − CvX6),

(25)

where f2(X , t) and f4(X , t) functions are defined as

f2(X , t) =
1
m

{
− K1X1 − K2X3

1 − C1X2 − K2X1X2
3

+ me
[
X2
6 cos(X5) +

1

J̄

(
− Ccsgn(X6) − CvX6

−CaX6|X6|
)
sin(X5)

]
+ f (X6, t)

}
,

f4(X , t) =
1
m

{
− K1X3 − K2X3

3 − C2X4 − K2X2
1X3

+ me
[
X2
6 sin(X5) −

1

J̄

(
− Ccsgn(X6)

−CvX6 − CaX6|X6|
)
cos(X5)

]
+ g(X6, t)

}
,

(26)

and their coefficients are found by SINDy algorithm. The
1X , 1Y are uncertainty in the system with known upper
bound, ρ1 and ρ2, i.e. |1X | < ρ1 and |1Y | < ρ2. The
output of the system is the lateral displacement of the rotor
center (x, y), and UX ∈ R and UY ∈ R are control inputs as
shown in Figure 2. For such system, we consider two classical
TSMCmanifolds [41], [42], [43], [44] acting in perpendicular
directions to X - and Y -axes of the form:

Sx = X2 + C1 |X1|
( qp ) sgn(X1),

Sy = X4 + C2|X3|(
q
p ) sgn(X3). (27)

The parameters p and q are positive odd integers, with
p > q. The condition p > q ensures that the convergence
to the sliding surface is faster than linear, providing the
necessary nonlinearity to ensure finite-time convergence. The
sgn(.) function is the signum function. The coefficients C1 and
C2, belonging to R+, serve as design parameters and will be
adjusted during the fine-tuning process of the controller to
achieve optimal output performance. The manifold ensures
that when the system states X1 and X3 reach the sliding
surface S = 0, the system will converge to the equilibrium
point X1,X3 = 0 in finite time.

To find a control law that guarantees the stability of the
closed-loop system, we apply the Lyapunov stability theorem
and choose a quadratic candidate Lyapunov function in the
form of

V (X ) =
1
2
ST S, (28)

where S = [Sx , Sy]T , V (0) = 0, and the Lyapunov function
is positive definite in the region around the equilibrium point
except at the origin, i.e. V (x) > 0.

States X5 and X6 are associated with the angular displace-
ment and angular velocity of the rotor during its transient
motion. In our research, during both the acceleration and
deceleration phases of the rotor, the AC motor is equipped
with a separate speed controller that applies a constant
angular acceleration to the rotor β̈(t) = constant ∈ R.
When the angular acceleration remains constant, both
X5 = β(t) and X6 = β̇(t) become explicit functions
of time. The structure of the Lyapunov function V (X ) =

V (X1,X2,X3,X4) is based on the internal states of the system
acting in planar motion of the rotor which is sufficient to
ensure the stability of the closed-loop system.

The control law should satisfy the reaching condition,

SṠ ≤ −η1|Sx | − η2|Sy|, η1 > 0, η2 > 0, (29)
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and reach the sliding surface Sx = Sy = 0 in a finite-
time [42]:

treach =
1
C1

(
1 −

q
p

)−1
|x(0)|1−( qp ), (30)

where X (0) is the initial condition. The time derivative of
V (X ) can be found from

V̇ (X ) = Sx Ṡx + SyṠy. (31)

To this end,

Ṡx = Ẋ2 + C1
(
q
p

)
|X1|

(
q
p

)
−1
X2,

Ṡy = Ẋ4 + C2
(
q
p

)
|X3|

(
q
p

)
−1
X4. (32)

Then by enforcing the condition, V̇ (X ) < 0, we can write,

V̇ (X ) = Sx
[
Ẋ2 + C1

(q
p

)
|X1|

( qp )−1 X2
]

+ Sy
[
Ẋ4 + C2

(q
p

)
|X3|

( qp )−1 X4
]

< 0, (33)

and substituting Ẋ2 and Ẋ4 from (25), (33) can be rewritten as
follows:

V̇ (X ) = Sx
[
f2(X , t) + 1X + UX

+ C1
(q
p

)
|X1|

( qp )−1 X2
]

+ Sy
[
f4(X , t) + 1Y + UY

+ C2
(q
p

)
|X3|

( qp )−1 X4
]

< 0. (34)

The control signal U = [UX ,UY ]T has two parts in each
X -axis and Y -axis, respectively, as follows:

U = [UXn + UXr , UYn + UYr ]T , (35)

where UXn,UYn ∈ R are part of the control signal that
cancels the nominal part of the SINDy nonlinear function,
and UXr ,UYr ∈ R are the terms that guarantee the robustness
of the controller in the presence of 1X and 1Y for the
unidentified dynamics related to the disturbance. We can
separate the control vector U as follows:

UXn = −f2(X , t) − C1
(
q
p

)
|X1|

(
q
p

)
−1
X2,

UYn = −f4(X , t) − C2
(
q
p

)
|X3|

(
q
p

)
−1
X4. (36)

After substituting (36) into (34), we can write:

V̇ (X ) = Sx
(
1X + UXr

)
+ Sy

(
1Y + UYr

)
< 0. (37)

The positive constants κ1, κ2 are chosen such that they
satisfy

Sx
(
1X + UXr

)
≤ −κ1|Sx |,

Sy
(
1Y + UYr

)
≤ −κ2|Sy|. (38)

then (37) can be simplified as

V̇ (X ) ≤ −κ1|Sx | − κ2|Sy|. (39)

The UXr ,UYr part of control laws can be chosen as

UXr = −ρ1 sgn(Sx),

UYr = −ρ2 sgn(Sy). (40)

When S is positive (i.e., the system state is on one side
of the sliding surface), the signum function returns 1. In this
case, the control input U will be negative and proportional
to the magnitude of S. The larger the positive value of S, the
more negative and stronger the control inputU will be. When
S is negative (i.e., the system state is on the other side of the
sliding surface), the signum function returns -1. In this case,
the control input U will be positive and proportional to the
magnitude of S. The larger the negative value of S, the more
positive and stronger the control input U will be. When S
is exactly zero, the signum function returns 0, indicating no
control input. Thismeans that when the system state is exactly
on the sliding surface (i.e., the desired behavior is achieved),
there is no control action.

Using the absolute values of the left-side terms in (38),
we can further reduce and bound the range of the inequality
constraint. It can be expressed as follows:

|Sx | |1X | − ρ1 |Sx | ≤ −κ1 |Sx |,

|Sy| |1Y | − ρ2 |Sy| ≤ −κ2 |Sy|. (41)

Since we assumed |1X | < ρ1 and |1Y | < ρ2, then we can
write the inequality as

ρ1 > |1X | + κ1,

ρ2 > |1Y | + κ2, (42)

where ρ1, ρ2 are design tuning parameters. In order to reduce
the chattering in the control law, we replace the sgn(S) with
tanh (S/ϵ) function in which ϵ is a small positive number.

Substituting (40) and (36) into (35), the TSMC law can be
written as

UX = −

[
f2 + C1

(q
p

)
|X1|

( qp−1) X2 + ρ1 tanh
(Sx

ϵ

)]
,

UY = −

[
f4 + C2

(q
p

)
|X3|

( qp−1) X4 + ρ2 tanh
(Sy

ϵ

)]
.

(43)

The control laws derived in Equation (43) represent the
TSMC control law applied to the rotary system dynamics in
the X and Y directions.

VII. EXPERIMENTAL RESULTS
A. DESCRIPTION OF THE LABORATORY-SCALE ROTARY
SYSTEM
To validate the proposed SINDY-TSMC active vibration
control, we designed a test rig that incorporates a disc-
shaped rotor with multiple apertures designed to accom-
modate weights. These apertures allow for the intentional
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FIGURE 14. The image illustrates the mechanical and hardware assembly
of the test-rig system, showcasing the actuators and sensors in the X -
and Y -axes, along with the rotor chassis assembly.

displacement of the rotor from its geometric center. This
displacement is a key feature that amplifies the vibration
dynamics under investigation shown as the mass eccentricity
parameter e in Figure 2. Figures 14 and 15 show the test
rig assembly and its components. The system is driven
by a variable-frequency AC electric motor, coupled with
a gearbox and a damping plate, to effectively regulate
and control the rotation speed. During operational phases,
a linear speed profile is employed to initiate and conclude
rotary system operations, ensuring consistent acceleration
during startup and uniform deceleration during shutdown,
where β̈ = c and c ∈ R is a constant. This approach
effectively manages vibrations in scenarios where rotor
angular velocity exhibits time-dependent behavior, thereby
enhancing the operational stability and reliability of rotary
systems. To transmit the torque from the motor to the system,
a 6 mm steel shaft is employed, connected to the damping
plate via Lovejoy® couplings. These couplings are selected
for their excellent shock absorption properties and tolerance
for shaft misalignment.

To ensure unrestricted planar disc vibrations, a centrifugal
clutch mechanism is introduced to couple the rotor and
shaft. This mechanism effectively nullifies any misalignment
that may arise from manufacturing tolerances, ensuring
precise and consistent performance. The test rig itself is
securely mounted on an aluminum chassis, which provides
standardized screw mounting points for the placement of
sensors and actuators. This design ensures the stability and
versatility of the test setup, making it a robust platform
for conducting experiments and validating the proposed
control system. Table 3 describes each component used in
the active vibration control system and the assembly. The
hardware diagram of the system is shown in Figure 16. We
utilized Micro-Epsilon non-contact opto-NCDT-1420 laser
displacement sensors with a measuring rate of 4 kHz. These
sensors, equipped with an RS422 interface and powered by
24 volts, introduce no additional mass to the system. Control
is facilitated through a Quanser Q8 DAQ control board,

FIGURE 15. The image displays the front view mechanical assembly of
the rotor chassis components of the rotary test rig. An AC motor 1⃝ is
mounted on the chassis 2⃝ and applies torque to the drive system
mechanism involving the disk rotor 5⃝, which is mounted on a slender,
flexible shaft 4⃝. This shaft extends through the rotor and connects to the
actuator force transmission assembly, which, in turn, is connected to the
rotor bearing 6⃝. Subsequently, this assembly is linked to the bearing
housing at the top 3⃝ and at the bottom 7⃝. A safety shield 8⃝ covers the
front panel.

enabling real-time control via MATLAB® and Simulink®.
We tested the proposed control law and found that the
computations are real-time-friendly, with a processing time
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TABLE 3. Hardware components of the rotary test rig for evaluation of
SINDY-TSMC control system shown in Figure 14.

FIGURE 16. Hardware diagram for the SINDY-TSMC: The blue lines
represent signals originating from sensors and processed through
Spider-20 DAQ/EDM and Quanser analog reading. These signals then
pass through Matlab for SINDY-TSMC to generate control signals. The red
lines represent controlled signals, transferred to Quanser, and
subsequently transmitted via analog write to actuators. These actuators
apply control forces to the rotor. Blue lines correspond to measured
signals, while red lines denote controlled signals in the system.

of less than 1 ms on the Quanser board. The resolution of
the control board is 16-bit. Additionally, the input range
for both the input and the output analog voltage is ±10 V.
The QUARCTM software converts Simulink-designed

controller code into real-time C code executed on Windows.
The laser sensor voltage signals are translated into control
signals through analog channels and then sent via analog-
write channels to the VoltPAQ-X2 amplifier. These signals
exert mechanical force through actuators on the rotor drive
bearing beneath the rotor’s center, as depicted in Figure 2.
Additionally, the Crystal Instrument Spider-20 Dynamic
Signal Analyzer captures sensor signals, as illustrated in
Figure 16. Using Crystal Instruments Engineering Data
Management (EDM) software, the controller’s performance
is independently monitored. EDM’s real-time display reveals
the application of the control law’s desired force on the rotor,
providing convenient online vibration monitoring in both
time and frequency domains with recording capabilities.

B. REAL-TIME EXPERIMENTAL RESULTS
Figure 17 shows the computer simulation result of the
closed-loop control system during deceleration. The initial
condition at the start of control is marked as 1⃝, and the
vibration error reaches a finite-time state at 2⃝ is 0.55 s.
The specific time required for the system to reach the sliding
surface in TSMC can vary based on factors such as control
design, system dynamics, and initial conditions. Finite-time
stability is crucial in a rotary system where quick and robust
convergence to the desired state is imperative. After that,
the response remains in the small boundary layer around the
sliding manifold.

FIGURE 17. Comparing the closed-loop simulation and measured data
(open-loop) during the deceleration.

Figure 18 presents a comparison between the measured
responses of a balanced rotor in both time and frequency
domains under two control strategies during transient
response: a Proportional-Derivative (PD) controller, a stan-
dard technique widely used in various industrial applications,
and the proposed SINDY-TSMC controller. In PD control,
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FIGURE 18. Comparison of open-loop versus closed-loop transient
responses Between PD and SINDY-TSMC controllers for a balanced rotor.

FIGURE 19. Comparing the measured and closed-loop response of the
rotor with a 5.0 gram mass imbalance in the X -axis direction.

the proportional term reacts to the current error between
the desired setpoint and the actual output, generating a
control action proportional to the error, while the derivative
term anticipates future trends to dampen oscillations and
enhance system stability. Although PD control effectively
handles real-time error responses, it lacks robustness in man-
aging rapid variable frequency in rotor transient responses
and the nonlinearities dominant in rotordynamic systems.

FIGURE 20. The control signal UX utilized for controlling the transient
response shown in Figure 19.

FIGURE 21. Comparing the measured and closed-loop response of the
rotor with a 5.0 gram mass imbalance in the Y -axis direction.

FIGURE 22. The control signal UY utilized for controlling the transient
response shown in Figure 21.

Conversely, SINDY-TSMC represents an advanced nonlinear
technique tailored for such complex systems. We tuned
the PD gains Kp and Kd through a comprehensive trial-
and-error process to obtain the best possible performance.
Then, we adjusted the parameters of SINDY-TSMC, such
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FIGURE 23. The three-dimensional response of the closed-loop vibration
control and measured data during deceleration with a 5.0 grams mass
imbalance.

FIGURE 24. The replication of Figure 19 illustrates the transient curve,
providing comprehensive details about the response of four segments
along the X -axis direction in both steady-state and transient modes. This
information is particularly relevant to the principal frequency of the
system, showcasing the performance of TSMC active vibration control in
this region. Segment 1⃝ reflects the stability of the phase diagram before
the system reaches its principal frequencies. Segment 2⃝ is associated
with control results as the rotor enters the critical region, while segment
3⃝ presents control outcomes as the rotor passes through the principal
frequencies. Segment 4⃝ pertains to the end of the control process when
the rotor comes to a stop. The measured data are in mm − Peak and
show the amplitude of each segment.

as the C , ρ, p, and q controllers, to closely match the
initial performance of the PD controller, as shown in the
region S representing steady-state conditions. While PD
control significantly improves vibration, it cannot achieve
the performance level of SINDY-TSMC, as evident from the
measured response shown in regions T representing transient
response conditions. Quantitatively, the effectiveness of
vibration suppression can be compared by measuring the
peak amplitudes of the original measured signal in open-loop
and the tuned closed-loop controlled signals. In this case, the
peak amplitude of the open-loop signal is measured to be
1.242 mm. With the PD controller, vibration suppression in
closed-loop at the highest peak reaches 0.558 mm, whereas

FIGURE 25. The phase-plane diagram of segment 1⃝.

FIGURE 26. The phase-plane diagram of segment 2⃝.

the SINDY-TSMC controller, even at comparable tuning
levels, achieves 0.212 mm of suppression. This difference
in suppression percentages further underscores the superior
performance of the SINDY-TSMC controller in mitigating
vibrations of rotary systems. The percentage of vibration
suppression for the PD controller remains approximately
55.1%, compared to approximately 82.9% for the SINDY-
TSMC controller.

Next, the real-time simulation of the SINDY-TSMC
control system is evaluated using the hardware described
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FIGURE 27. The Phase-plane diagram of segment 3⃝. This segment
demonstrates a remarkable vibration suppression of 96% during the
rotor’s transition through the natural frequency of the system.

FIGURE 28. The phase-plane diagram of segment 4⃝.

in Figure 16. The test results for the closed-loop sys-
tem and the control signal in X -axis are presented in
Figures 19 and 20 while the test results for the closed-
loop system and the control signal in Y -axis are shown
in Figures 21 and 22.
Figure 23 presents a three-dimensional view of the rotor

center motion versus time during transient deceleration.
This motion, characterized by deviations from an ideal

TABLE 4. Numerical results of vibration peaks (mm) for the open-loop
and closed-loop active vibration control during rotor deceleration.

circular path, is influenced by a 5.0 grams mass imbalance
and involves the rotor passing through the system’s nat-
ural frequencies in a nonlinear pattern. When the rotor’s
rotational speed approaches the natural frequency of the
system, resonance occurs, resulting in amplified vibrations.
The uncontrolled motion of the rotor follows a gradually
increasing funnel shape, as seen in the figure. Figure 24 shows
the details of Figure 19. It can be seen that the SINDY-TSMC
suppresses the lateral transient vibration at the maximum
peak corresponding to the principal natural frequency of
the system and reduces the peak vibration in segment 3⃝
from 3.25 mm to below 0.17 mm. The peak value of the
response and the percent of vibration suppression are listed
in Table 4.
The phase-plane diagrams showcase the control’s impact

on vibration suppression during transient responses and are
presented in Figures 25–28. Overall, this experimental study
demonstrates the effectiveness of the SINDY-TSMC control
strategy in actively controlling lateral transient vibrations in
a rotor system.

VIII. CONCLUSION
This paper presents a physics-based data-driven approach
utilizing SINDy and experimental data to reconstruct the
nonlinear differential equations of a vertical-shaft rotary
machine. Following model validation, we designed a robust
nonlinear vibration suppression controller employing the
TSMC technique. Comparative evaluations with a standard
PD controller underscored the advantages of the SINDY-
TSMC in managing control errors near system resonance,
resulting in a robust control system tailored to transient
responses of rotary systems. Real-time tests validated the
proposed control system, demonstrating its efficacy in
reducing vibrations on a laboratory-scale rotary system.
These findings emphasize the potential applications of the
combined physics-based, data-driven modeling and terminal
sliding mode control technique, enhancing the performance
of vertical shaft rotary systems. In the future, we plan to
investigate the efficacy of learning-control techniques, such
as reinforcement learning, and compare the results with
our physics-informed, data-driven approach. Additionally,
we intend to implement our approach on a standard industrial
centrifugal machine to delve into practical challenges and
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refine our approach for the next generation of high-
performance centrifugal machines.
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