
Received 9 July 2024, accepted 21 August 2024, date of publication 26 August 2024, date of current version 10 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3450297

M0RV Model: Advancing the MuZero Algorithm
Through Strategic Data Optimization Reuse
and Value Function Refinement
XUEJIAN CHEN, YANG CAO , HONGFEI YU , AND CAIHUA SUN
School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China

Corresponding author: Yang Cao (caoyang821213@163.com)

This work was supported in part by the Basic Scientific Research Fund of Liaoning Provincial Education Department under
Grant LJKMZ20220754 and Grant LJKMZ20220723.

ABSTRACT This paper introduces a model, M0RV, that improves the MuZero algorithm through data
reuse and loss function optimization. It proposes reusing training trajectories generated byMonte Carlo Tree
Search (MCTS) after filtering through an evaluation function trace into the training process, and on this basis,
employs the Advantage-Value method to optimize the neural network loss function, ultimately optimizing
the training process. A comparative analysis is conducted between the baseline MuZero algorithm, its A0GB
algorithm-enhanced variant M0GB, and the further refined M0RV algorithm, across a spectrum of Atari and
intricate board games. Notably, M0RV outperforms its predecessors in both the Lunar Lander and Breakout
games, as well as in the board game Hex, under consistent steps parameters and unified reward benchmarks.
The empirical findings demonstrate that theM0RVmodel, in comparison to theMuZeromodel, substantially
enhances training efficacy, successfully fulfilling the objective of optimizing the training methodology.

INDEX TERMS MuZero, MCTS, game, training optimization.

I. INTRODUCTION
Board games, distinguished by their precise rulesets and
objectives, are quintessential for appraising intelligent
game-playing algorithm efficacy and are emblematic in
artificial intelligence research. In 1995, TD-Gammon [1]
pioneered the use of neural networks and self-play method-
ologies in backgammon, attaining parity with human intel-
lect. Subsequently, in 1997, Deep Blue [2] demonstrated
the prowess of tree search techniques by vanquishing a
human champion in chess. The year 2016 marked a milestone
as AlphaGo [3] amalgamated neural networks and tree
search techniques to secure an unequivocal triumph in Go,
a domain known for its intricate strategic depth, against
human competitors. In 2017, AlphaGo Zero [4], an evolution
of its predecessor AlphaGo, integrated a sophisticated
self-play mechanism, thereby effortlessly surpassing the
performance of the original AlphaGo. Concurrently, Alpha
Zero [5] expanded these techniques to a broader spectrum
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of board games, consistently exceeding human performance
benchmarks. In 2020, the MuZero [6] algorithm represented
a significant advancement over the Alpha Zero framework
by attaining superhuman performance across a spectrum
of challenging and intricate strategic game domains, all
achieved without necessitating an environmental dynamics
model.

In summation, across diverse gaming platforms, artificial
intelligence algorithms have exhibited astonishing efficacy
and adaptability [7], [8], [9]. Nevertheless, optimizing
algorithmic efficiency presents ongoing challenges and con-
straints. In recent years, many methods have been developed
to improve algorithm efficiency [10], [11], [12], [13],
including the continuous optimization of the training process
from Soft-Z [14] to A0C [15] to A0GB [16] as proposed by
scholars. Within the context of A0GB, a novel acceleration
of training via simulated game data from AlphaZero was
posited, yet specific enhancements for MuZero remain scant.
it is imperative to investigate the utilization of extant data and
enhancement of training velocity as methodologies to refine
the MuZero algorithm. This study, grounded in the context
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of board and Atari games [17], [18], [19], seeks to maximize
data utilization and quality to refine the MuZero framework.
We introduce two novel contributions:
(1) An examination of A0GB’s adaptability to MuZero,

adapting its enhancements to suit the unique learning
architecture and data format requirements of MuZero,
thereby extending the applicability of A0GB.

(2) An investigation into resource allocation within
MuZero’s deep reinforcement learning paradigm and
Monte Carlo Tree Search process, conserving and
repurposing high-fidelity simulation trajectories from
MCTS, enriching the data pool, and applying the
Advantage-Value [20], [21] approach to amplify
the predictive and decision-making acumen of the
algorithm.

The subsequent sections of this document are structured
as follows. Section II delineates the foundational background
and literature pertinent to the evolution from Alpha Zero to
MuZero models. Section III articulates the methodologies
proposed in this study. Section IV elucidates the experimental
design, the empirical findings, and a comprehensive analysis
thereof. Conclusively, Section V synthesizes the overarching
insights gleaned from this research and proposes trajectories
for future inquiries.

II. BACKGROUND
A. A0GB
A0GB is an algorithm that further optimizes the training
process based onAlphaZero. The optimization improvements
of A0GB primarily focus on two aspects:

Firstly, A0GB combines the data generated byMonte Carlo
Tree Search (MCTS) simulation with game training data to
improve the efficiency of acquiring training samples, thereby
accelerating the training process. Monte Carlo Tree Search
expands new nodes during the path selection process and
evaluates these nodes using a neural network to propagate
evaluation results (such as win rate, value) from leaf nodes
to the root node. Each node updates its statistical data,
including visit count and accumulated value, throughout the
process. The A0GB algorithm stores backup data for all
nodes. Eventually, these stored data are encapsulated into
neural network input format and added to the training process,
expanding the training samples.

Secondly, the A0GB algorithm improves the training
process of AlphaZero by using a more effective value target
function trained by neural networks. The role of the value
target in AlphaZero is to guide the action selection of
the neural network. For the value target in AlphaZero, the
effectiveness can be evaluated through Monte Carlo Tree
Search to choose the optimal value target. In the value target
function, the A0GB method discards the traditional approach
of obtaining the average value of child nodes as the value of
the root node. The value target value is modified to select the
maximum value among its child nodes. The value of a child
node is modified to the expected value of all leaf nodes of that
child node. This helps to address the issue of overestimation

or underestimation of action values caused by environmental
noise and selection randomness. The value function formula
contains two parts: immediate reward and long-term reward.
The long-term reward is estimated using the value function.
The value function formula of A0GB calculates the Q-value
of an action as the average of the expected values of all leaf
nodes reached during the simulation. The target value at time
step t is updated based on the immediate reward and the
discounted maximum Q-value of future actions, considering
the discount factor and the number of long-term reward
rounds. The value function formula of A0GB can be written
as Equation 1 and Equation 2.

Q (st , a) =
1
n

∑
l∈ leaf nodes of c

vl (1)

zt = rt + γ k ∗ max (Q (st , a)) (2)

where the value Q(st , a) is the sum of the expected values vl
of all its leaf nodes l, rt represents the obtained reward,
γ is the discount factor controlling the influence of long-
term rewards, and k denotes the number of long-term reward
rounds, zt denotes the target value of the neural network.

To evaluate the improvement effects of different value
targets on AlphaZero, A0GB compares the rewards obtained
during training under different value targets. Through
experimentation, it has been demonstrated that the improved
value target of A0GB significantly affects the training
time of the AlphaZero algorithm. In particular, A0GB’s
backup mechanism is particularly suitable for environments
that require rapid learning and adaptation, making A0GB
outperform traditional AlphaZero in performance.

B. ADVANTAGE-VALUE
The Advantage-Value algorithm is an important technique
in the field of deep reinforcement lteearning, which inte-
grates the core ideas of the Actor-Critic [24] method and
improves the stability and efficiency of the training process by
introducing an advantage function. In reinforcement learning
tasks, an agent learns action policies by interacting with the
environment, aiming to maximize long-term rewards. The
Actor-Critic method, as a fundamental framework, achieves
this by separating policy (Actor) and value evaluation (Critic)
to maximize long-term rewards. However, during training,
many issues arise. Firstly, updating the policy directly based
on overall rewards may result in high variance in rewards for
different actions, leading to high signal noise during the learn-
ing process. Secondly, evaluating action values in complex
environments may not be precise enough, affecting policy
optimization and resulting in inefficient and unstable learning
of the agent. Therefore, the advantage functionA(s, a) aims to
address these issues by reducing value variance and providing
more accurate action evaluations. The core of the advantage
function lies in distinguishing the advantage of each action
relative to the average action value, thereby finely adjusting
the policy to optimize long-term rewards.

A key problem addressed by the advantage function A(s, a)
is that in a given state, some actions may be better than
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average, while others may be worse. Focusing solely on
the overall value expectation may overlook differences in
values, leading to reduced learning efficiency. The advantage
function measures the improvement of taking action a in
state s relative to the average value of all possible actions
under the current policy by calculating the difference between
action value Q(s, a) and state value V (s). In the algorithm,
the calculation of the advantage function typically involves
estimating Q values and V values. Q value represents the
expected return after taking action a in state s. V value
represents the expected return in state s. Since directly
computingQ values and V values may be very complex, these
functions are usually obtained through neural networks in
practical applications. In the Advantage-Value algorithm, the
formula for the advantage function is as Equation 3:

A(s, a) = Q(s, a) − V (s) (3)

where A(s, a) is the advantage function value of taking action
a in state s. Q(s, a) is the expected return after taking action
a in state s. V (s) is the expected return in state s.
This approach allows the algorithm to distinguish which

actions are actually better than average, thus paying more
attention to these actions when learning the policy. Through
this mechanism, the algorithm can optimize the policy and
improve long-term rewards, as well as accelerate the learning
process by accurately evaluating the relative advantages of
each action.

C. MuZero
1) NEURAL NETWORKS IN MuZero
MuZero integrates aMonte Carlo Tree Search (MCTS)-based
planning algorithm with an intricately learned environmental
model. Unlike traditional approaches that rely on direct
environmental observations for input states, MuZero employs
a sophisticated internal state representation to simulate
transitions and rewards. It leverages a trio of networks: the
representation network, dynamics network, and policy-value
network, to construct and navigate dynamic environments
effectively, thereby enhancing action planning.

The representation network ingests known observational
data about the game state and transforms it into a latent
state representation. This representation encapsulates the
complex and nuanced dynamics of the game environment
in a comprehensive yet abstract manner, making it suitable
for downstream processing by the dynamics and policy-value
networks. The transformation is mathematically represented
as depicted in Equation 4.

St = hθ (O1, . . . ,Ot) (4)

where St is the latent state representation at time t, hθ is the
representation neteqwork parameterized by θ , and O1 to Ot
are the observed game states up to time t.

The dynamics network is designed to meticulously simu-
late the physical laws governing the environment. It processes
the current hidden state st and subsequent action at+1
as inputs, yielding the ensuing hidden state st+1 and the

immediate reward rt+1 as outputs. This framework allows
for a precise prediction of future states and rewards based on
the underlying mechanics of the environment. As depicted
in Equation 5.

rt+1, St+1 = gθ (St , at+1) (5)

The policy value network generates action policies and
evaluates the current state’s value, taking the current hidden
state St as input and outputting the policy pt and value vt .
As depicted in Equation 6.

pt , vt = fθ (St ) (6)

2) MONTE CARLO TREE SEARCH FOR MuZero
Monte Carlo Tree Search (MCTS) is an exemplary best-first
search algorithm characterized by its strategic exploration
of extensive state spaces [25]. Initiating from a specific
game state s, the algorithm iteratively constructs a decision
tree through self-simulated play, progressively refining
node information with each search iteration. This process
culminates in the identification of the most advantageous
action strategy amidst complex state configurations. Each
node within the tree embodies a distinct game state s, while
branches delineate potential actions a. Furthermore, each
node encapsulates critical metrics: visitation count N (s, a),
mean action value Q(s, a), strategy probability P(s, a),
immediate reward R(s, a), and state transitions S(s, a), col-
lectively facilitating a comprehensive and dynamic strategy
formulation.

The Monte Carlo tree search (MCTS) algorithm first
uses a representation network to obtain an initial hidden
state, denoted as s0, which serves as the root node of each
simulation.

1) Simulation: The algorithm follows the PUCT [26] rule
to traverse the tree from s0 to a leaf node, denoted
as sl , at each time step t = 0 . . . . . . l, ultimately
selecting the optimal action, denoted as at . As depicted
in Equation 7.

at = argmaxa

(
Q(s, a) + P(s, a)

√
N (s)

1 + N (s, a)

× (c1 + log
(∑

b N (s, b) + c2 + 1
c2

)))
(7)

Here, c1 and c2 are used to control the influence of the
prior probability P(s, ai) relative to Q(s, ai).

2) Expansion: If the action at leads to a new state st+1 that
already exists in the search tree, the algorithm proceeds
to the next iteration of the search. If st+1 is not in the
search tree, it is added as a new node to the tree.

3) Backup: The return R is used to update the visit
count N (s) and the average return Q(s) for all nodes
along the search path in a backward pass. The statistical
data for each edge is also updated by backpropagating
along the simulation path.

4) Evaluation: A neural network is used to predict the
total return R along the current path, and this value
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is stored in the corresponding node of the search tree.
As depicted in Equation 8 and Equation 9.

Q ( st−1, at) =
N ( st−1, at) · Q ( st−1, at)

N ( st−1, at) + 1
(8)

N (st−1, at ) = N (st−1, at ) + 1 (9)

MuZero combines Monte Carlo tree search (MCTS) with
a neural network to perform multiple simulations on the
game tree and use the network’s predictions to guide more
effective searches and update node information. The optimal
action strategy at can be found in the end. By continuously
updating the neural network based on the game outcomes, the
efficiency and accuracy of the search are further improved.
This entire process combines the advantages of MCTS and
neural networks to form an efficient decision-making and
optimization system.

3) TRAINING OF MuZero
The training process of MuZero involves two primary stages:
self-play training and fine-tuning. During self-play training,
MuZero engages in self-play games using Monte Carlo
Tree Search (MCTS) and experience replay to generate
training data. In the fine-tuning stage, the neural network
parameters are adjusted using policy gradient and value
function gradient algorithms to optimize the policy and value
outputs, respectively.

During the self-play training stage, MuZero uses
Monte Carlo tree search (MCTS) and experience replay
algorithms [27] to engage in self-play and update network
parameters based on the resulting game data. Using a
representation network, raw game states are transformed
into internal state representations, which are then used by
the dynamics and prediction networks to predict the next
state and reward, respectively. The value network is used to
predict the outcome of the game. MCTS algorithm is used
to explore the game tree during self-play, and decisions are
made using the PUCT algorithm based on the predictions
of the network and the results of the tree search. These
self-play data are saved in an experience replay pool, and
deep learning methods are used to train the network model
for accurate prediction of the next state and reward to make
better decisions.

In the fine-tuning stage, MuZero uses policy gradient
algorithms to adjust the network’s policy output and value
function gradient algorithms to adjust the network’s value
output. Through fine-tuning, MuZero can adapt better to
different game rules and environments, and demonstrate
higher levels of game intelligence.

The loss function of the MuZero algorithm is tripar-
tite, encompassing value loss, policy loss, and reward
and simulation loss. These components are synergistically
amalgamated to train the model, facilitating decision-making
within gaming environments. The formula is as follows:

L = Lvalue + αLpolicy + βLdynamics (10)

Lvalue = (vt − zt)2 (11)

Lpolicy =

∑
a

πt (st , a) logPt (st , a) (12)

Ldynamics = (ut − rt)2 (13)

Within this framework, Lvalue, Lpolicy, and Ldynamics repre-
sent the respective loss functions for value assessment, policy
formulation, and reward plus simulation dynamics. The
hyperparameters α and β regulate the respective proportions
of policy and reward/simulation losses. The variable vt
denotes the action value estimates derived from Monte Carlo
Tree Search (MCTS) sampling, while zt represents immediate
rewards and estimated target state values. Pt (st , a) delineates
the probabilistic outcomes for action sequences as dictated
by MCTS, contingent on the current and historical state
matrices. Similarly, πt (st , a) specifies the probabilities
associated with equivalent action sequences as allocated by
the policy network, reflecting the likelihood of selecting a
particular action sequence in accordance with the prevailing
policy orientation. The dynamics loss, Ldynamics, is pivotal
in sampling subsequent states S ′. Throughout the self-play
iterations, the network assimilates new transitions

(
s, a, s′, r

)
by sampling ensuing states and associated rewards, thereby
perpetuating its training and optimization.

The overall loss function is formulated as follows:

Lt (θ ) = (vt − zt)2 + α
∑

πtt (st , a) logPt (st , a)

+ β (ut − rt)2 + c∥θ∥
2 (14)

MuZero uses a model composed of neural networks
and MCTS to generate complete game trajectories in the
environment through self-play as training data. The network
is then trained with these data updates, generating new data
for further training and model updating until an optimal
performance model is obtained. Through self-play, MuZero
can generate data in the time allowed, solving the problem
of obtaining large amounts of data in complex environments
in deep reinforcement learning. By effectively updating
models using these data,MuZero achieves good performance,
illustrated in Figure 1. This ‘‘zero-data’’ trainingmode allows
MuZero to be applied to various environments without the
need for manual collection of large amounts of game data.

FIGURE 1. Muzero’s training process outline diagram.
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FIGURE 2. Overview diagram of research ideas.

FIGURE 3. The relationship between the five AlphaZero, MuZero, A0GB,
M0GB, and M0RV.

III. IMPLEMENTING MuZero ALGORITHM
OPTIMIZATION
In this chapter, we delineate the intricate optimization pro-
cesses integral to the MuZero algorithm. Initially, we present
the M0GB method, an advanced strategic optimization
construct that leverages the foundational aspects of MuZero
while integrating the innovative concepts inherent in A0GB.
Subsequently, we advance to the M0RV method, an aug-
mented adaptation of M0GB that assimilates the Advantage-
Value algorithm, further refining and optimizing the value
function. The detailed research ideas are shown in Figure 2.
The relationship between the five AlphaZero, MuZero,
A0GB, M0GB, and M0RV as shown in Figure 3.

A. M0GB
In this work, we detail that MuZero’s training data is derived
from self-generated game trajectories during self-play, which
serve to inform the neural network training. These are
termed real game trajectories herein, as depicted in Figure 4.
During action selection, MuZero employs Monte Carlo Tree
Search (MCTS) to perform move simulations. This involves
emulating opponent moves and engaging in self-play to
generate what we refer to as simulated game trajectories,
illustrated in Figure 5
In A0GB, the combination of Monte Carlo Tree

Search (MCTS) simulated game data with game training
data, and the modification of the value function, aims to
enhance the convergence speed and efficiency of trajectory
acquisition. This paper applies the improvement methods of
A0GB to AlphaZero in the MuZero framework, forming the

FIGURE 4. Action paths in real games.

FIGURE 5. Simulated game action paths in MCTS.

M0GB model. However, in AlphaZero, for each simulated
game, a specific target value is assigned to the final leaf node
state based on the game outcome (win, loss, or draw) in the
environment model, which guides the learning process of the
algorithm and helps optimize the performance of the neural
network. The learning framework of MuZero differs from
AlphaZero; while AlphaZero’s policy and value functions
depend on the state information of the environment model,
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MuZero does not require such information. In AlphaZero,
the target value comes directly from the results of Monte
Carlo Tree Search (MCTS), i.e., the expected returns
obtained based on the state information of the environment
model. In contrast, MuZero continuously optimizes network
parameters through self-training in its dynamic model,
which involves representation network, MCTS, policy value
network, and dynamics network. Due to these differences,
the A0GB algorithm applicable to AlphaZero cannot be
directly applied to MuZero and requires adjustments based
on MuZero’s data sampling method and the structure of the
value function.

Initially, we refined the data sampling methodology.
Temporal sequences in actual gameplay are denoted using
the superscript t , while those in simulated play are indicated
with subscript N . During data sampling, the observation
and extraction of simulated trajectories are critical. Within
the MCTS framework, observing these simulated paths
allows for the compilation of a sequence of actions,
observations, and rewards. This sequence, aligned with
the temporal length of simulation ‘N’, forms an ordered
set s0, a0, r1, s1, a1, r2, s2, . . . , sN−1, aN−1, rN , sN , where
sN−1, aN−1, rN , and sN respectively represent the observed
subsequent state and reward rN , sN after executing action
aN−1 in state sN−1. During training, this sequence is dissected
into three components: the action sequence a0, a1, . . . , aN−1,
the observation sequence s0, s1, s2, . . . , sN , and the reward
sequence r1, r2, . . . , rN .
Within the Monte Carlo Tree Search (MCTS) framework,

the action trajectory paths for simulated games differ from
those in actual games. MCTS iteratively simulates the current
game, selecting and evaluating actions to eventually generate
a new action Ot+1 for the real game. During training, copied
simulated paths are employed to generate data. Subsequently,
these paths initiate from the neural network’s latent states and
progress through the policy value network, yielding predicted
outcomes and historical rewards ut0, . . . . . . , u

t
N as well as

historical values zt0, . . . . . . , z
t
N . From MCTS, we derive a

simulated path trajectory of length N , commencing at s0 and
culminating at sN . Post-acquisition of the simulated path
trajectory, length adjustment is necessary to align the
simulated path’s length with the designated training path
length K . If the path length N exceeds the training path
length K , we truncate the simulated path from its origin to
a length of K for training data. This ensures adequate data
for training purposes. Conversely, if the path length N is less
than the training path length K , we discard the data.
In terms of the value function, we have adopted

and adapted the A0GB framework to refine MuZero’s
value function, transitioning from traditional value targets
to an enhanced objective derived from the maximal
value ascertained at the leaf node states, as depicted
in Equation 15.

zt = rt + γ k max

(∑
a

πt (st , a) (Qt (st , a))

)
(15)

As elucidated by the formula, following the principles
of A0GB, we have replaced the original formulation
of Qt (st , a) with the maximum value within the action value
estimate Qt (st , a).
By employing the A0GB approach within MuZero, it is

possible to significantly enhance the accuracy and learning
rate of the value function estimation. This method utilizes the
output from the dynamic programming network, employing
both the value function and policy as prior knowledge to
guide the expansion of the search tree. It then selects the
maximum value of the value function as the current value
function estimate.

FIGURE 6. M0GB’s training process outline diagram.

M0GB’s training process outline diagram as shown
in Figure 6. Utilizing the aforementioned techniques,
we have adapted the A0GB approach for application within
the MuZero framework, herein referred to as M0GB. M0GB
is designed to investigate the applicability and efficacy of the
A0GB algorithm specifically within the MuZero context.

B. M0RV
The M0RV algorithm represents an advancement over
M0GB, featuring further refinements in trajectory reuse
methodologies and loss function optimization.

FIGURE 7. M0RV’s training process outline diagram.
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1) OPTIMIZATION OF TRAJECTORY REUSE METHODS
Throughout theM0GB simulation process, all game data may
be subject to noise or inaccuracies, leading to unpredictable
quality of data. Moreover, during trajectory backup, the
trajectory data is merely truncated from the simulation’s
initial node to a length of K for training, not fully utilizing the
potential of simulated game data. Thus, we have augmented
the M0GB framework by introducing a simulation trajectory
evaluation function. This function computes the total returns,
action counts, value loss, and policy loss of a trajectory.
It also includes tailored methods for truncating simulated
game trajectories of various lengths. This enhanced version
of the M0GB algorithm is referred to as M0RV in this work.

M0RV’s training process outline diagram as shown in
Figure 7. The M0RV method’s trajectory reuse process is
delineated into three primary steps:

1) Appropriately padding or truncating simulated trajecto-
ries of varying lengths to standardize their length to K.

2) Assessing the quality of pathswithin the simulation tree
to extract valuable simulated trajectories.

3) Integrating the processed simulated trajectory data with
actual game trajectories to serve as training data for the
neural network.

Initially, upon acquiring the simulated path trajectory, it is
imperative to conduct length adjustment to ensure that the
length of the simulated trajectory aligns with the prescribed
training trajectory length K .

1) When the path length N exceeds the training trajectory
length K , we truncate the simulated trajectory from
the initial node to a length of K for use as training
data. This ensures sufficient data for training. As shown
in Figure 8 (a).

2) When the path length N is less than the training
trajectory length K, to guarantee a minimum greedy
path length of K, we propose three methods to address
the extension of the path, each with its advantages and
disadvantages: Method 1:

a) Adopt the MCTS Roll Out strategy to extend
the trajectory from the leaf node sN until the
path length reaches K . As shown in Figure 8 (b).
While this method ensures the length of the
trajectory, it does not guarantee the quality of
the trajectory produced during the MCTS Roll
Out process, presenting drawbacks for practical
training application.

b) Initiate additional simulations from the leaf
node sN to ensure a minimum greedy path length
of K . As shown in Figure 8 (c) This approach
allows for more simulations to guarantee both the
length of the training trajectory K and the quality
of the trajectory, albeit with a risk of premature
game termination within the final path K .

c) continuing to execute more simulations at the
leaf node would result in excessively high costs,
and there is a possibility of premature game

termination within the final path of length K .
As shown in Figure 8 (d). To address this
situation, we can backtrack the already executed
actions and add them as a head path to the
simulation path to ensure the minimum length
of K for the greedy path, and use K1 to
represent the true path extended to. As depicted
in Equation 16.

K = K1 + N (16)

This method can obtain more simulations to
ensure the minimum length of the greedy path,
but there is a possibility that the final path length
might be less than K1 + N < K . Consequently,
to synergize the advantages of both approaches,
we amalgamate Methods 2 and 3 to address the
issues presented in scenario 2

Subsequently, the total reward metric reflects the cumula-
tive rewards obtained within a trajectory, serving as a crucial
indicator for assessing trajectory quality. The number of steps
penalty takes into account the trajectory length, promoting
models to achieve favorable outcomes more efficiently. The
value loss represents the loss function of the value network,
aiding in the model’s improved learning of state value
functions. Similarly, policy loss corresponds to the policy
network’s loss function, facilitating the model’s acquisition
of superior strategies. As depicted in Equation 17.

score = totalreward − αnumsteps − βvalueloss − γ policyloss
(17)

A comprehensive score is computed by integrating these
metrics, reflecting the overall quality of the trajectory as
illustrated in Equation 7 [28], [29], [30]. This aggregate score
guides the data sampling process, prioritizing trajectories
with higher scores to enhance the quality of training
data. This approach effectively balances the trajectory’s
rewards, length, and learning efficiency, offering a more
nuanced method for assessing and selecting training data.
Consequently, it contributes to the improvement of training
data quality throughout the algorithm’s training process.
The total reward metric reflects the cumulative rewards
obtained within a trajectory, serving as a crucial indicator
for assessing trajectory quality. The number of steps penalty
takes into account the trajectory length, promoting models
to achieve favorable outcomes more efficiently. The value
loss represents the loss function of the value network, aiding
in the model’s improved learning of state value functions.
Similarly, policy loss corresponds to the policy network’s
loss function, facilitating the model’s acquisition of superior
strategies.

Ultimately, we integrate the processed simulated trajectory
data with actual game trajectories to form a composite dataset
for neural network training. This integration culminates in
the training of the M0RV by amalgamating the trajectories
from real and simulated games, enhancing the overall training
process.
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FIGURE 8. Four scenarios that may be encountered.

2) OPTIMIZATION OF THE VALUE FUNCTION
In MuZero, the objective of the value function is to
update it using a weighted sum of the average return
value and the action value based on the current policy.
In section III-A, the improvement of MuZero’s value target
function is proposed based on the idea of A0GB. However,
modifying the traditional value target to the maximum
expected value obtained from the leaf node state may
lead to the algorithm overly focusing on actions currently
evaluated as optimal, while neglecting other potentially
valuable actions or strategies, thus missing out on strategies
with greater long-term gains. To address these drawbacks,
the Advantage-Valuemethod is adopted to enhanceMuZero’s
value target function on this basis, thereby improving its loss
function. The Advantage-Valuemethod aims to better capture
the advantage of executing a certain action relative to the
average level, rather than greedily selecting the action with
the maximum value as in A0GB.

In the M0RV algorithm, the Advantage-Value method is
employed to optimize the policy function by maximizing
the expected advantage, denoted as A(s, a). In this context,
Qt (st , a) − V (st ) represents the advantage of taking action a
relative to the average performance. The value function V (st )
is utilized to assess the expected return for all possible actions
in state st , as depicted in equation 18.

V (st ) = E[Gt |st = s] (18)

In this context, V (st ) represents the expected return in
state st . Gt denotes the cumulative return starting from time
step t .
By combining the estimated value Qt (st , a) obtained

through MCTS search with the calculated expected
return V (st ), the advantage function A(s, a) can be derived,
as depicted in equation 19.

A(s, a) = Qt (st , a) − V (st ) (19)

Afterward, multiplying πt (st , a) by the advantage A(s, a),
which represents the average value for all possible actions in

that state, effectively weights the probability for each action.
This adjustment aims to prioritize more advantageous actions
bymaking themmore likely to be chosen. The optimization of
the policy loss function and value function is performed using
the advantage function A(s, a), as depicted in equation 20.

Lpolicy =

∑
a

πt (st , a)A(s, a)logPt (st , a) (20)

The objective of the policy loss function is to guide
policy learning by maximizing the expected advantage.
By multiplying action probabilities by their advantages
and taking the expectation, the loss function encourages
the model to prefer actions with higher advantages. This
encourages the policy function to more effectively explore
and exploit potential advantages in the environment.

Through this approach, the value target function zt is
updated accordingly, as depicted in equation 21.

zt = rt + γ k

(∑
a

πt (st , a)A(s, a)logPt (st , a)

)
(21)

where zt is the target value, rt is the immediate reward
obtained by a function that converts state st into a feature
vector, γ is the discount factor, and Qθ (st , a) represents the
action value estimation when taking action a in state st . The
actual action value of taking action a in state st , denoted
as π (a|st ), represents the probability predicted by the policy
network for action a in state st .

The total value loss function can be written in the following
form:

Lvalue =

(
vt − rt − γ k max

×

(∑
a

πt (st , a)A(s, a)logPt (st , a)

))2

(22)

In M0GB, there exists a problem of over-optimization,
where excessive reliance on maximum expected value may
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result in poor performance when faced with unknown or low-
probability events. By adopting theAdvantage-Valuemethod,
the variance in value function estimation can be reduced,
thereby addressing these shortcomings and achieving a more
comprehensive and balanced decision-making process. The
M0RV algorithm optimizes both the policy function and the
value function. This approach fully utilizes the advantage
function to guide policy learning, while also more accurately
estimating the value of actions through the value function,
thereby achieving effective optimization of the model.

IV. EXPERIMENTAL EVALUATION
This paper contrasts the performance of agents using the
original MuZero algorithm, the M0GB algorithm, and the
M0RV algorithm in various game environments. The average
reward serves as a signal of the learning efficiency of
the current agent’s algorithm during the training process,
with actions selected based on this average reward. Gradual
convergence of the average reward indicates an enhancement
in the agent’s ability to learn how to complete tasks more
effectively.

A. GAME ENVIRONMENT
To validate the effectiveness of the methodologies, we con-
ducted experiments with three selected games across board
games and Atari gaming environments: For Atari, we chose
the Lunar Lander and Breakout games [31], which require
precise control over magnitude and angle, characterizing a
relatively small state space. In contrast, for classical board
games, we selected Hex, known for its larger state space,
demanding long-term planning and strategic thinking. Our
primary focus lies in quantifying the rewards attained by the
algorithms and evaluating their effectiveness based on the rate
of convergence.

1) LUNAR LANDER
The lunar lander game is a classic reinforcement learning
environment within OpenAI Gym. It simulates the process
of a lunar lander landing on the surface of the moon. The
objective of the agent is to learn a policy that enables the
lunar lander to safely land. This poses a complex control and
optimization problem considering eight factors, including
velocity, angles, and others. The agent in the game can open
or close its engine, resulting in four types of actions: do
nothing, fire left orientation engine, fire main engine, and
fire right orientation engine. The state space consists of an 8-
dimensional vector, representing the horizontal and vertical
coordinates (x and y) of the lander, the linear velocities v(x)
and v(y), the angle θ , the angular velocityω, and two Boolean
values indicating whether each leg is in contact with the
ground. The reward function for the lunar lander takes into
account factors such as energy consumption, deviation from
the desired trajectory, and touchdown position. Specifically,
the rewards are as follows: Deduct 100 points if the lunar
lander crashes. Deduct 10 points if the lunar lander flies out of
the designated landing zone. Earn between 100 to 140 points

depending on the distance of the lunar lander’s touchdown
position from the center of the landing platform. Earn
100 points if the lunar lander comes to a complete stop. Earn
10 points for each leg in contact with the ground. Deduct
0.03 points for each frame the side engine is activated. Deduct
0.3 points for each frame the main engine is activated. This
comprehensive reward structure encapsulates the complex-
ities of the lunar landing task, providing incentives for the
agent to learn a successful landing strategy while considering
various operational constraints. As shown in Figure 9 (a).

2) BREAKOUT
Breakout is a game where a paddle is moved to rebound a
ball against a wall of bricks at the top of the screen, destroying
bricks to garner rewards. The player controls the direction and
angle of the ball to break the wall. The action states include
launching the ball initially andmoving the paddle left or right.
As shown in Figure 9 (b). In the game, players score varying
points by hitting bricks of different colors: red and orange
bricks yield 7 points, yellow and green 4 points, light green
and blue 1 point, with a total of 864 points available. This
environment challenges the player’s precision and strategy in
ball control and angle calculation to maximize the score.

3) HEX GAME
The International Computer Games Association (ICGA)
organizes the Computer Olympics, which includes the game
of Hex. A typical Hex board consists of 11 × 11 hexagonal
cells, with the top and bottom boundaries colored red
and the left and right boundaries colored blue. The red
coordinates (A-K) represent the horizontal range, while the
blue coordinates (1)-(11) represent the vertical range. The
game pieces are circular and come in two colors, either red
and blue or black and white. Each player takes control of one
color of pieces. As shown in Figure 9 (c).

The rules of Hex are as follows:
1) After the start of the game, players take turns placing a

single piece on the board, with each piece occupying a
hexagonal cell.

2) Two adjacent pieces of the same color are considered
connected to each other.

3) The first player to connect their two opposite bound-
aries with pieces of the same color is declared the
winner.

4) Draws are not possible in Hex.

B. EXPERIMENTAL PROCEDURE AND RESULTS
In this section, we first introduce the foundational setup for
experimental training and then proceed to present the final
results.

The lunar lander, brick breaker, and hex chess games are
comprehensively controlled during the training process by
setting training parameters. The maximum number of moves
for each game is set to 700, 2500, and 121, respectively.
Failure to complete the game within the specified number
of moves results in a game over and the end of the round.
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FIGURE 9. Three kinds of game interface.

The number of self-play games retained in the data pool
for each game type is 5000, 5000, and 10000, respec-
tively. During each neural network iteration, 2000, 2000,
and 10000 self-play iterations are executed, and 30, 100,
and 600 Monte Carlo Tree Search (MCTS) simulations are
performed for each decision during training. The reward
discount rate is uniformly set to 0.99. The initial learning
rate is set to 0.05 and gradually reaches a constant learning
rate as training progresses. For training in hex chess, the
Elo formula’s importance coefficient K is set to 1, with
initial Elo ratings set to 0. Other parameter settings are
consistent across all models and are not reiterated here.
Considering the difficulty of the games, limitations of
computational resources, and expectations regarding the
effectiveness of model training, specific game move limits,
iteration counts, and MCTS simulation numbers are chosen
to ensure comprehensive and systematic control during the
training of lunar lander, brick breaker, and hex chess games.
Setting a maximum number of moves helps prevent infinite
loops in the games, while selecting specific iteration and
MCTS simulation counts balances model performance and
computational resource consumption.

The training results for the lunar lander game for M0RV,
M0GB, and MuZero are depicted in Figure 10(a), while
the training results for the brick breaker game are shown
in Figure 10(b). Performing a third-order polynomial fitting
on the results of the lunar lander and brick breaker games
enables a clearer observation of the trend of reward acquisi-
tion for each algorithm. From the results of the third-order
polynomial fitting, it is evident that during the initial stages
of training across all game types, M0RV achieves higher
rewards compared to M0GB and MuZero. As training
progresses into the middle stages, M0RV maintains the
reward gap. Ultimately, M0RV outperforms both M0GB and
MuZero in terms of reward acquisition.

For the Hex game, we employed the Elo rating system
for an effective evaluation of the training outcomes. The Elo
rating system is a widely used method in chess and other
competitive games to calculate players’ relative skill levels.
Throughout the training process, at every 1000th training
iteration, the three agents under training were pitted against
an already trained AlphaZero Hex program to derive their Elo
scores. The specific results are depicted in Figure 11.

C. ANALYSIS OF RESULTS
The experimental results are shown in Table 1.

In the lunar lander game training, when the player’s reward
reaches 200, it can be considered that the spacecraft has com-
pleted the basic landing task. From the reward fitting curves,
the order of reaching 200 during the training process is
M0RV, M0GB, and MuZero. In terms of reward acquisition,
the overall training average rewards for M0RV, M0GB, and
MuZero are 99.14, 79.00, and 71.32, respectively. These data
indicate that M0RV learns faster than the M0GB algorithm in
the same training setup. The mean absolute errors (MAE) of
the fitting curves for M0RV, M0GB, and MuZero are 18.12,
17.43, and 20.06, respectively. M0GB has the lowest MAE,
with a difference of only 0.79 between M0RV and M0GB.
In games with relatively small state spaces, the stability
gap is smaller, and M0RV’s stability performance meets
expectations.

In the brick breaker game training, when the player’s score
reaches 864, it can be considered that the agent has completed
the brick breaker task. From the reward fitting curves,
the models’ order of reaching a score of 864 during the
training process is M0RV, M0GB, and MuZero. Regarding
reward acquisition, the overall training average rewards for
M0RV, M0GB, and MuZero are 553.00, 495.23, and 459.30,
respectively. These data indicate that M0RV learns faster than
the M0GB algorithm in the same training setup. The MAE of
the fitting curves for M0RV, M0GB, and MuZero are 84.12,
94.48, and 97.61, respectively. M0RV has the lowest MAE,
with a difference of 10.36 betweenM0RV andM0GB.M0RV
exhibits superior stability performance.

Based on the outcomes observed in the Hex game, the final
Elo ratings stand as follows: MuZero exhibits a median Elo
rating of -451.28, with a concluding Elo rating of 407.67.
Meanwhile, M0GB showcases a median Elo rating of -35.46,
culminating in a final Elo rating of 416.37. On the other
hand, M0RV demonstrates a median Elo rating of 51.37,
concluding with the highest final Elo rating of 433.31 among
the three algorithms. Throughout the initial matches, due
to insufficient training, none of the algorithms managed
to surpass the baseline program, leading to a consistent
decline in scores. However, MuZero achieved its first victory
against the baseline program after 589,486 training steps,
maintaining a streak of consecutive victories after 757,401
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FIGURE 10. Training results of Lunarlander and Breakout.

TABLE 1. Results for the several games tested.

FIGURE 11. Training results of HEX.

training steps. Similarly, M0GB secured its initial victory
against the baseline program after 506,108 training steps
and maintained its winning streak after 724,205 training
steps. Likewise, M0RV celebrated its first triumph against the
baseline program after 459,479 training steps and continued
to dominate after 642,781 training steps. Subsequently,
M0RV’s prowess surpassed that of the baseline program.
Thus, ultimately, M0RV emerged with the highest Elo rating
among the three algorithms.

The M0RV algorithm enhances the evaluation of sim-
ulated trajectories by introducing a composite evaluation
function. This mechanism optimizes the data sampling
process by ensuring the prioritization of high-quality tra-
jectories. It addresses the instability in model learning
caused by the noise and randomness disparities in the
training dataset of M0GB. The composite evaluation function
not only improves the quality of training data but also
balances the rewards, lengths, and learning efficiency of
trajectories. Additionally, the M0RV algorithm employs the
Advantage-Value method to optimize the value function of
the neural network loss function, mitigating the problem of

over-optimization. Over-reliance on the maximum expected
value can lead to poor performance when facing unknown,
low-probability events, and complex action spaces. Through
trajectory reuse optimization and value function improve-
ment, the M0RV algorithm effectively enhances model
training speed. Experimental results demonstrate superior
performance of theM0RV algorithm over traditional methods
in various simulated gaming environments, especially in
terms of Elo rating improvement and reward convergence
speed.

Overall, the effectiveness of theM0RV algorithm surpasses
that of MuZero and M0GB algorithms. This is mainly
attributed to the reuse of high-quality MCTS trajectories
and optimized value functions. It provides richer and
higher-quality training data for neural networks while accel-
erating the model convergence process. In contrast, MuZero
relies solely on self-play-generated data, resulting in slower
convergence. The experiments fully demonstrate that reusing
high-quality training trajectories generated by Monte Carlo
Tree Search (MCTS) during the training process, M0RV
integrates the strengths of MuZero and M0GB and further
optimizes the value function using the Advantage-Value
method, achieving the goal of optimizing the training process
and accelerating training. The introduction of the M0RV
algorithm effectively addresses the issues present in the
M0GB algorithm, improving both the quality and utilization
efficiency of training data and optimizing the value function,
thereby achieving significant performance improvements in
multiple games. These improvements showcase the potential
of deep reinforcement learning in addressing complex
tasks.

The current study focuses on a limited number of games,
including Lunar Lander, Breakout, and Hex, to validate
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the effectiveness of the proposed M0RV algorithm. While
these games cover a range of complexities and state space
sizes, further evaluations on a wider array of games with
varying characteristics are necessary to fully understand the
generalizability of the M0RV model. To extend the study,
future work should evaluate the M0RV algorithm on a
broader range of games with varying complexity and state
space sizes. This will test its robustness and adaptability
across diverse gaming environments. Additionally, exploring
real-world applications, such as in intelligent transportation,
smart manufacturing, and healthcare, could harness the
model’s training efficiency and decision-making capabilities
in complex, real-time decision-making scenarios.

V. CONCLUSION
The development of intelligent agents capable of autonomous
planning and intelligent decision-making in complex envi-
ronments is a central issue in the field of artificial intelligence.
The MuZero algorithm provides a new approach to this
problem by enabling intelligent decision-making without
prior knowledge of the environment model. However, there
is still room for improvement in terms of data utilization
and training efficiency. To address this issue, this paper
proposes optimizations based on the MuZero algorithm, with
the following specific contributions:
(1) Building upon the MuZero and A0GB algorithms,

this paper introduces the M0GB algorithm. Firstly, the
M0GB algorithm enhances the efficiency of acquiring
game trajectory data for training by combining sim-
ulated game data and real game data within Monte
Carlo Tree Search (MCTS). Secondly, it improves
the value objective function in MuZero, thereby
enhancing the value loss function. This is achieved
by transitioning the value objective function from the
traditional average computation of value targets to the
maximum value target obtained from leaf node states,
thus addressing issues arising from environmental
noise and the randomness of action selection causing
overestimation or underestimation of action values.
The M0GB algorithm aims to explore the applicability
of the A0GB algorithm in MuZero and its optimization
effects.

(2) Building upon theM0GB algorithm and theAdvantage-
Value algorithm, this paper proposes the M0RV
algorithm. Firstly, addressing the issue of the quality
of simulated game trajectory data in M0GB, the
M0RV algorithm presents a more comprehensive
method for truncating and supplementing simulated
game trajectories when dealing with their lengths.
Before incorporating the training data, it evaluates the
quality of trajectories using a composite evaluation
function that considers factors such as total return,
steps, value loss, and policy loss. These two methods
for ensuring data quality effectively enhance the
quality and utilization efficiency of training data.
Secondly, addressing the issue of over-optimization

of the value objective function in M0GB, the M0RV
algorithm utilizes the Advantage-Value algorithm to
optimize the loss function in M0GB. By introducing
an advantage function, the optimized loss function
effectively captures the advantage of current actions
relative to the average level.

To validate the effectiveness of the proposed methods,
this paper compares the training performance of the original
MuZero algorithm, the improved M0GB algorithm, and the
further optimized M0RV algorithm on Atari games and
complex board games. The M0RV algorithm demonstrates
superior improvement rates in overall reward values for
Lunar lander and Breakout games, as well as higher Elo
score improvement rates for HEX games compared to
the MuZero algorithm and M0GB algorithm. Experimental
results indicate that the M0RV model significantly enhances
training efficiency compared to theMuZero model, achieving
the goal of optimizing the training process.

The M0RV model, through its innovative approaches to
strategic data reuse and value function refinement, presents a
substantial advancement over existing reinforcement learning
algorithms. The practical implications of this model in real-
world scenarios, such as intelligent transportation, smart
manufacturing, healthcare, energy management, and finan-
cial markets, highlight its potential to revolutionize various
industries. As artificial intelligence technologies continue to
evolve, the M0RVmodel and its derivatives will undoubtedly
play a pivotal role in addressing complex decision-making
problems across diverse application domains.
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