
Received 26 July 2024, accepted 22 August 2024, date of publication 26 August 2024, date of current version 5 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3450105

Beyond Von Neumann Architectures: Exploring
Algorithmic Opportunities via Octantis
ANDREA MARCHESIN 1, (Member, IEEE),
ALESSIO NACLERIO 1, (Graduate Student Member, IEEE),
FABRIZIO RIENTE 1, (Member, IEEE), AND MARIAGRAZIA GRAZIANO 2
1Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
2Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Andrea Marchesin (andrea.marchesin@polito.it)

The work of Andrea Marchesin was supported by TIM S.p.A. through the Ph.D. Scholarship.

ABSTRACT Today, one of the problems the scientific community is called upon to tackle is the well-
known von Neumann bottleneck, which concerns the limitation in the bandwidth between the CPU and
memory in a digital electronic system. Among the various solutions under study, the concept of Logic-in-
Memory (LiM) has been proposed: a memory device that embeds simple computational elements between
the different cells to define a distributed processing system. The present work introduces an extended
version of Octantis, a novel open-source software useful for exploring LiM architectures. To achieve this
goal, the internal structure of Octantis takes inspiration from the one of standard High-Level Synthesis
tools, distinguishing itself from them for the target topology addressed. It analyses user-defined standard-C
algorithms and determines which LiM architecture would be best suited to implement it. At its output, the tool
provides a VHDL description of the synthesised circuit along with a custom test-bench. The earlier version
of Octantis efficiently synthesised rather simple user-defined C algorithms. The version discussed here has
been improved by extending the allowed complexity of input C-codes, like addressing nested loops and
non-trivial data dependencies, and introducing hardware-specific optimisations to meet resource constraints.
Several case studies have been considered to validate the newly implemented techniques and to analyse the
capabilities of the tool in implementing data-intensive algorithms. The results demonstrate that Octantis can
produce architectures that comply with the LiM topology while significantly reducing the exploration space
to meet specific hardware requirements, such as memory dimensions and maximum logic integration. This
methodology provides initial insights into potential LiM units that can be adopted in customised designs,
making it a valuable tool in researching alternative electronic devices.

INDEX TERMS Algorithmic-level explorations, circuit design, Logic-in-Memory (LiM), von Neumann
bottleneck.

I. INTRODUCTION
The great technological achievements of the Semiconductor
Industry that have characterised the last few decades have
enabled the development of even more powerful and compact
electronic devices. Moore’s law has been a reference for the
scaling trend of the technological node (i.e., the minimum
size that can be reached in the manufacturing process of
integrated circuits), with all the benefits that have been

The associate editor coordinating the review of this manuscript and

approving it for publication was Rahim Rahmani .

there for all to see. However, as the transistors got smaller,
many problems arose that began to harm the prosperous
performance increase. Therefore, electronic designers had to
strive in order to find solutions to let the benefits prevail over
emerging critical issues [1].

Considering the traditional structure of modern electronic
devices, two elements of great importance are always present:
the CPU and the memory. It is their combination that
enables computation on data sets. Such systems implement
a reference architecture, known as ‘‘von Neumann’’ [2].
However, the continuous communication between processing

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 120005

https://orcid.org/0000-0002-8194-7161
https://orcid.org/0009-0009-8655-1324
https://orcid.org/0000-0003-4147-1098
https://orcid.org/0000-0002-8721-9990
https://orcid.org/0000-0001-5924-5457


A. Marchesin et al.: Beyond Von Neumann Architectures

units and memory significantly weighs in terms of latency
and power consumption. The increasing popularity of data-
intensive applications, such as AI workloads, make this
drawback clearer and more significant. Furthermore, the
technological disparity between processing and memory
units has culminated in system architectures where the
cost of data transfer significantly surpasses that of data
elaboration in terms of energy consumption [3]. This critical
condition is known in the electronic field as ‘‘von Neumann
bottleneck’’ [4].
In order to address this problem, research is active on

several fronts, and many proposals have been presented over
the years. Among them, there are Logic-in-Memory (LiM)
architectures [5], [6], [7], [8], [9], [10], [11] that try to
overcome the limitation in bandwidth by reorganising the
processing system itself. In particular, the LiM principle pro-
poses integrating simple logic elements within the memory
array to pre-process the information stored therein so that the
CPU only executes the most complex operations. It decreases
the data amount transferred between the memory and the
CPU while increasing the concurrency in information pro-
cessing. As a result, the overall execution time is drastically
reduced, as well as the power consumption of the whole
system [12]. Promising results have also been obtained by
implementing LiM architectures on beyond-CMOS solutions
[13].

However, LiM architecture design is not straightforward,
and it may become challenging when addressing complex
algorithms. Furthermore, the design space to be exploredmay
be vast, thus offering many possible LiM architectures imple-
menting the same algorithm. In order to help designers tackle
these challenges, an open-source C++ software named
Octantis has been developed. The tool helps the designer
understand if a C-described input algorithm could benefit
from a Logic-in-Memory implementation. By implementing
the standard flow usually adopted by High-Level Synthesis
tools, the software automatically designs a LiM architecture
that is tailored to implement the user-provided input C
code, characterised at the gate-level using VHDL. It is
intended to remain independent of any specific technology,
thereby broadening the scope of research and development
opportunities. The program additionally produces a test
bench that enables verification of the circuit behaviour
through external simulators. Octantis is accessible to anyone
interested [14] with the aim of sharing its details and opening
its development to external contributors. It’s hoped that the
program can inspire the definition of other similar tools for
high-level exploration of alternative electronic systems for
data processing.

The LiM topology taken as reference by Octantis com-
prises Application Specific Integrated Circuits (ASICs)
composed of regular arrays of memory cells enriched with
the logic gates necessary to execute a definite sequence
of logic and arithmetic operations. This type of memory
can be compared to a register-based architecture in digital
electronics, where each memory row represents a temporary

FIGURE 1. Abstract representation of a portion of an XNor-Net
implemented through the LiM topology. The scheme depicts only the
main elements composing the array and the logical connections to track
the information flow throughout the array.

register of a more complex computational device. An exam-
ple of a synthesized LiM architecture is provided in Figure 1.
The architecture here depicted can implement a portion
of an XNor-Net belonging to a more complex Binarized
Convolutional Neural Network, as proposed in the literature
[15]. In the context of the cited research work, multiplication
is approximated by applying the XNor operation between
the data stored in the memory and a fixed weight during
the convolution process. The unit consists of six rows of
memory cells, each associated with an address and five
bits wide. The free inputs of the integrated logic gates
are all connected to the data stored in the first row, thus
implementing the approximated multiplication operation.
The algorithm executes in parallel during a single clock cycle.

The overall circuit is suitably controlled by a control unit
that manages memory locations for reading and writing data.
The unit also manages information flow through the available
processing elements to execute the necessary in-memory
operations.

The LiM design represents a compromise architecture
between a super-pipelined hardware accelerator and a
memory device, which supports the primary processing unit
to reduce computational efforts when running data-intensive
algorithms. Representative examples of this topology can be
found in [13], [15], [16], and [17].

The purpose of this article is to discuss the advancements
of theOctantis reference structure, whose preliminary version
has been introduced in a previously published work [18], and
to present it as the first stable release made available on a
public repository. The present work expands what has been
presented in [18]. In particular, the current work introduces:
1) enhancements enabling processing more complex

C-described algorithm;

120006 VOLUME 12, 2024



A. Marchesin et al.: Beyond Von Neumann Architectures

2) new optimisation techniques introduced to reduce the
resources required for a LiM unit.

Nonetheless, for sake of completeness, a thorough presen-
tation and explanation of the inner functioning of Octantis is
also provided. The paper is organised as follows. Section II
presents the research background on open-source HLS tools
and design automation tools for processing in memory sys-
tems that have already been proposed in literature. Section III
introduces the methodology employed by Octantis’ design
flow and outlines how it explores LiM implementations
starting from general C-described algorithms. Here, the
newly developed expansions to the tool’s functionalities are
also examined. Section IV presents validation tests conducted
to demonstrate the effectiveness of Octantis in translating
the design of some LiM architectures present in the
literature at the algorithmic level. Furthermore, this section
discusses practical test-cases in the field of Image Processing
(ImP), which are known to be data-intensive applications.
The examples here illustrate the tool’s effectiveness and
how the new optimisations introduced impact the results.
Finally, the conclusion and future perspectives are provided
in Section V.

II. RESEARCH BACKGROUND AND RELATED WORK
The concept of High-Level Synthesis, also known as
behavioural synthesis, aims to translate a behavioural model
into hardware implementations like ASIC or FPGA designs
leveraging advanced optimisation techniques. Manual imple-
mentation of traditional optimisation strategies is expensive,
as are complete verification procedures [19].

Since the early 2000s, the modern Electronic Design
Automation (EDA) Industry has expressed a growing interest
in the field of HLS, looking upon it as a way to accelerate
and improve the design process of integrated circuits. The
development history of these tools has been marked by
alternating fortune [20] but today, many commercial HLS
tools are available on the market (e.g. Xilinx’ ‘‘Vitis’’
[21], Mentor Graphics’ ‘‘Catapult’’ [22] and Intel HLS
Compiler [23]). They adopt a new paradigm of automated
synthesis in which the project of an optimised integrated
circuit is always accompanied by a verification infrastructure,
reducing the design time and increasing the productivity of
designers. Moreover, the refinement of behavioural models
has contributed to the achievement of more throughput- and
energy-efficient HLS designs [24].

To be fair, it is important to point out that the actual HLS
tools prove practical to tackle certain kinds of applications
where the solution space is suitably limited. In particular,
they are now widely considered for designing circuits with a
regular structure, such as memories and Intellectual Property
blocks [19], whose synthesis can be customised by end-users
through a set of parameters. Other HLS tools are also
of interest for prototyping purposes, especially aimed at
FPGAs [25], [26]. Great examples of past applications
of this software can be found in the design of wireless
communication networks to develop chips compliant with 3G

and 4G standards [27]. Nonetheless, althoughmanual designs
take more time, they still offer superior solutions compared to
HLS-based ones.

Considering that the structure of LiM architectures is
regular and that the associated design constraints foresee
specific optimisation techniques, the development of a tool
inspired by the HLS methodology seemed a good choice
for designing LiM prototypes and exploring new algorithmic
opportunities. Current commercial tools are protected by
patents and many of the adopted implementation choices
are not accessible. Therefore, open-source projects have
been considered as a reference in the definition of Octantis.
In particular, LegUp [28] and Bambu [29].
LegUp is a High-Level Synthesizer, developed by Univer-

sity of Toronto researchers since 2011, intended to design
custom FPGA accelerators. Formally, it started as a C-to-
Verilog HLS, based on the LLVM compiler infrastructure.
Along with the input algorithm to be synthesised, it is
also necessary to provide the tool with a configuration file
to define all the design constraints. The synthesis process
produces a complete project of a hardware accelerator that
can be implemented inside SoC boards equipped with FPGA
modules. Specific support for commercial boards is given.
The tool also generates a testbench, useful to verify the
correct behavior of the accelerator.

Bambu is a C-to-HDL tool developed at the Politecnico
di Milano since 2013, whose purpose is to produce an ASIC
optimised for implementing an input algorithm. Also, this
tool produces a complete architecture and a test-bench to
verify the functional correctness of the project. Moreover,
Bambu can produce two different versions of an output
design, compliant with VHDL or Verilog standards.

Octantis implements the general structure of tradi-
tional high-level synthesisers [30], from which it inherits
many techniques. However, differently from state-of-the-
art tools, it particularly addresses the design of LiM
architectures, adopting advanced optimisation strategies
specific to their topology, presented in the Introduction.
Hence, the obtained design, described at an architectural
level, can be further optimised and implemented con-
sidering traditional electronic devices but also alternative
technologies, opening up the possibility of delving into
beyond-CMOS solutions. This can be made possible by
finalising the design with CAD programs developed for
such applications, as the one discussed in [31]. In this
regard, the program is useful for exploring, from a research
perspective, possible alternatives for future electronic
devices.

Considering the literature associated with the automated
design of processing in memory systems, to which the LiM
principle belongs, several tools have been proposed over the
years [32], [33], [34]. These tools mainly focus on logic
synthesis from Boolean functions, optimising translation
into a sequence of instructions for execution on memristive
memory arrays [35]. While these tools have proven valuable
for mapping operations on a reference memory architecture,

VOLUME 12, 2024 120007



A. Marchesin et al.: Beyond Von Neumann Architectures

Octantis stands out for its exploration of implementations
that refer to a different topology of processing-in-memory
systems. Octantis is capable of accepting higher-level algo-
rithms as input, which are typically more complex and
expressive than previous software can manage. Moreover
it returns a complete LiM architecture description that is
technology-independent. As previously introduced, Octantis
is a first-analysis support tool to identify opportunities for
LiM implementation at the algorithmic level, providing
solutions that can be potentially applied to different target
technologies. For this reason, the discussion in the following
sections intends to present the exploration capabilities of
Octantis at the architectural level. Therefore, the final imple-
mentation of the produced solutions in specific technologies
will not be detailed, as they are not part of this work. For an
insight on how these architectures can be mapped on beyond
C-MOS technologies and, in particular, on the pNML (i.e.,
perpendicular Nano Magnetic Logic) one, please refer to the
example in [13].
The tool has been developed as C++ software built

using the LLVM compiler infrastructure, with some of its
components derived from it. The core of the program is
implemented as an LLVM Pass named ‘‘OctantisPass’’, and
comprises several modules that enable the C code provided
by the user to be transformed into the final architecture in a
step-by-step process.

At the beginning, the input C algorithm is fed to Clang, the
front-end of the LLVM compiler framework. Clang translates
the input C code to a byte code translatable to assembly-like
language known as LLVM Intermediate Representation (IR)
[36]. Then, it is processed by specific passes already inte-
grated within the LLVM framework. After that, OctantisPass
is invoked, and after undergoing some further algorithmic
optimisations, the resulting LLVM IR is mapped onto a LiM
array using the standard 4-staged LiM synthesis flow that
includes allocation, scheduling, binding and code generation.
These stages are fundamental building blocks of any tradi-
tional high-level synthesiser [30], but their implementation
on Octantis targets the generation of a LiM architecture that
complies with the description provided above.

The overall structure of Octantis, illustrated in Figure 2,
highlights all the main modules of the program by making
explicit their interrelationships and how they relate to
the LLVM environment. The first version of Octantis [18]
implemented the primary design flow for generating simple
but complete LiM architectures from a reduced set of input
C instructions. It established the tool’s workflow’s central
elements and was designed to be modular, allowing for easier
code maintenance and expanding its capabilities through
incremental updates.

In order to provide a comprehensive analysis, the rest of
the article will initially offer a general outline of Octantis,
emphasising the algorithmic decisions taken in defining its
modules. Then, the discussion will focus on the expansions
of the functionalities introduced in this work and the related
details will be thoroughly argued.

FIGURE 2. Graphical representation of Octantis structure and working
flow. It highlights the grouping of the main modules developed and
incorporated into the program within the blue rectangle. The wider purple
box denotes that the tool has been defined within the LLVM framework,
adopting its formalism and inheriting generic compilation strategies.

III. OCTANTIS STRUCTURE
The aim of this section is to present an in-depth analysis of
Octantis primary modules in order to clarify the complete
design flow and methodology adopted by the tool. Although
some of the discussed features were already available in the
first version of the tool presented in [18], they are examined
in detail for the sake of completeness. Additionally, the novel
implementations in this work are showcased. It is important
to notice that the internal organization of the tool remains
unchanged, and the new strategies have been implemented
by expanding the capabilities of some pre-existing modules.

A. INPUT C CODE SPECIFICATIONS
As previously introduced, the usermust provideOctantis with
a C-described algorithm that must consist of a single function
that implements the algorithm to be mapped onto a LiM
array. However, to make it more appropriate for hardware
design, the description of the input algorithm allows limited
expressiveness, similar to that of established HLS tools.
In particular, the constraints on the user-defined input code
can be summarised in the following statements:
• Dynamic data allocation and management are not
allowed.
◦ The input algorithm will run on a LiM unit,

a hardware component with a defined amount of
physical resources.

• Recursive function calls are not allowed either.
◦ The input code should avoid complexities that

would make the synthesiser work more difficult,
which, in some cases, would be unable to optimise
the mapping properly in a LiM architecture.

120008 VOLUME 12, 2024



A. Marchesin et al.: Beyond Von Neumann Architectures

• The input datamust be defined through integer variables.
◦ The architectures to be synthesised are capable

of efficiently processing information expressed as
integers and floating-point data is not yet supported.

In addition to these, one suggestion more related to the
reference topology of LiM architectures is also introduced:
• Multiplications and divisions should be avoided.
◦ The complexity of the hardware components

required to implement these operations is known,
which makes it difficult to introduce them into
a memory array. As will be detailed in the
following sections, these operations can be forcibly
integrated into the synthesised LiM unit only with
approximations.

The tool also requires a configuration file to be provided.
It specifies information on the design constraints and the
optimisations to be adopted during the exploration process.

B. PRE-PROCESSING OF THE C ALGORITHM THROUGH
CLANG AND GENERIC LLVM OPTIMIZATIONS
The general structure of a high-level synthesiser, common to
all compilers, consists of two main elements: the front-end
and the back-end. The former represents the input interface
of the program, and it has to deal with a very abstract
representation of the algorithm. It performs lexical and
syntactic analyses to ensure the formal correctness of the
provided code, and ultimately elaborates it into a standard
format, with a lower abstraction level and independent
of both the input source and the output target. The
latter considers this intermediate code and produces an
optimised ‘‘translation’’ into the format compatible with
the destination architecture. The separation between these
two components refers to the re-usability principle, keeping
constant the front-end component for a specific source
code language and the back-end component for each target
architecture.

As the front-end performs standard analyses on the input
code, it has been decided to integrate an existing one into
Octantis. The choice fell on Clang [37], which is the front-end
compiler of the LLVM framework, one of the most popular
open-source compilation tools available.

After Clang’s verification checks, the algorithm provided
by the user is translated into LLVM intermediate repre-
sentation, where it undergoes processing via specific tools
integrated within the LLVM framework (e.g., mem2reg,
simplifycfg, licm, and loop-simplify passes), which aim
to implement high-level optimisations. These strategies are
designed to simplify the algorithm without interfering with
the subsequent phases of code processing. The application of
these optimisations is defined within the input configuration
file.

The resulting code is fed to OctantisPass, where advanced
optimisations are applied. These custom optimisations are
specifically beneficial for the LiM architecture exploration
process.

C. OCTANTIS ALGORITHMIC OPTIMIZATIONS
PERFORMED ON THE USER-DEFINED C CODE
The input C-code provided by the user may require pro-
cessing through algorithmic optimisation techniques in order
to identify opportunities for parallelisation, thereby enabling
LiM implementations. Specifically, Octantis implements
strategies that are aimed at identifying and optimising loops.

Loops play a significant role in algorithms as they are
commonly used to express parallel and compact codes. They
can be classified based on the data dependencies that relate
to the variables involved. More specifically, a loop can be
categorised as either an independent or dependent loop. The
previous version of Octantis was only capable of handling
single independent loops. The work presented in this paper
significantly expands the algorithmic optimisations stage
of the tool. In its current version, Octantis can identify
nested loop structures within the C-described algorithm and
distinguish their respective category. Then, specific strategies
are introduced to handle and optimise both dependent and
independent loops. As a result, the enhancement of this
module allows the tool to support the analysis of more
complex algorithmic constructs. The details of the adopted
optimisations will be provided below.

1) INDEPENDENT LOOPS OPTIMIZATIONS
An independent loop is comprised of iterations that are
not correlated with each other. As a result, each iteration’s
execution can be easily mapped to parallel processing units,
and out-of-order processing is also allowed. In this favourable
scenario, the maximum execution speed can be expressed as:

Max speed − up : S(I ,N ) =
I
⌈I/N⌉

(1)

where the variable I represents the number of iterations
that characterise the cycle, and N is the number of parallel
processing units available.

In the case of independent loops, Octantis tries to
parallelise the execution of the given algorithm by applying
Loop Spreading and Loop Unrolling techniques concurrently.
The former targets nested loops and aims to allocate them to
parallel processing units, while the latter tries to condense
multiple iterations to reduce the total number of iterations
in a loop. The diagram depicted in Figure 3 serves as a
conceptual representation of these optimisation strategies.
It is important to note that their effectiveness is contingent
upon the dependencies in the input code. Therefore, it is the
responsibility of the end-user to provide a high-quality input
C code that is arranged in a manner that avoids dependent
loops to the greatest extent possible. In doing so, the
aforementioned techniques can be applied, and instructions
executed in parallel, resulting in the full exploitation of the
potential of a LiM implementation.

2) DEPENDENT LOOPS OPTIMIZATIONS
A dependent loop is characterised by the presence of
dependencies among different iterations of the same loop.

VOLUME 12, 2024 120009



A. Marchesin et al.: Beyond Von Neumann Architectures

FIGURE 3. Intuitive examples of the two algorithmic strategies
implemented in Octantis to optimise loops execution: in (a) Loop
Spreading and in (b) Loop Unrolling.

These dependencies are commonly known as Loop-Carried
Dependencies and represent a significant obstacle to the
parallelisation opportunities of the input algorithm. The
violation of logical relations imposed by these dependencies
can lead to incorrect results, emphasising the need for caution
when handling them. However, addressing loop-carried
dependencies is a complex task.

Octantis, in its current version, supports the detection of a
particular kind of dependency that arises from accumulations.
These operations involve adding together all elements of
a set, usually an array, and storing the resulting sum in a
single variable. This results in dependencies between loop
iterations, preventing the ability to run different iterations in
parallel. Octantis has been designed to identify and denote
its presence for further processing. While accumulations
cannot be entirely parallelised, they can still be optimised by
mapping them efficiently onto a LiM array. This optimisation
is implemented during the Binding section, as it is closely
linked to the available hardware. More information regarding
this optimisation will be provided in the corresponding
section.

D. ALLOCATION
Octantis parses the information provided by the configuration
file to define all the characteristics required for the LiM Unit
to be properly designed. In particular, the size of the memory
and the word-length of the data to be stored and processed
within the architecture. This information will prove essential
during the code generation phase.

E. SCHEDULING
One of the most important contributions to the entire
exploration process is attributable to the scheduling phase.

The derived results, in fact, have a strong impact on
all three figures of merits characterising the final LiM
architectures: latency, occupied area and static and dynamic
power consumption.

The implemented scheduling algorithm analyses the
sequence of instructions of the optimised input code and
defines their allocation to build a complete Data Flow Graph
(DFG) of the overall algorithm. The chosen strategy is the
As Soon As Possible (ASAP) approach which prioritises the
performance of the explored architectures. As the name
suggests, this algorithm executes each operation immediately
upon the availability of its input operands.

Algorithm 1 Pseudo-code of the DFG building process

DFG: data-flow graph containing all detected instructions
useful for the implementation of the input C code
instNd: instruction node already present inside the DFG
newInstNd: new instruction node to be inserted in theDFG
instList: list of LLVM IR instructions
destOp: destination operand of an instruction node in the
DFG
srcOp: source operands of an instruction node in the DFG

Input: list of LLVM IR instructions
Output: DFG whose nodes contain useful information
about the LLVM IR instructions they correspond to

function dfgBuilder(instructionList)
for all inst ∈ instList do

if inst is valid then
Check if inst is related to an accumulation
Analyze Aliases of operands used by inst
Create node newInstNd containing information
about inst
for all instNd ∈ DFG do

if newInstNd srcOp == instNd destOp then
if checkForNegLogic(instNd, newIn-

stNd) then
Change instNd operator to its nega-
tive (i.e. xor→ xnor)

else
Insert newInstNd in DFG
Insert edge connecting instNd and
newInstNd

end if
else

Insert newInstNd in DFG
end if

end for
end if

end for
end function

In order to work correctly, the scheduler needs to under-
stand the semantics of the different LLVM IR instructions,
evaluate the logical relationships between them, perform opti-
misations and produce the final DFG. As for addressing the

120010 VOLUME 12, 2024



A. Marchesin et al.: Beyond Von Neumann Architectures

increasing complexity, DFG building process now incorpo-
rates suitable analyses that support more complex algorithmic
structures. The DFG building process is described with the
pseudo-code presented in Algorithm 1, and it takes into
consideration four key aspects:

• Analysis of the allowed instructions

◦ As previously discussed, Octantis can consider only
a subset of C instructions, the ones that make sense
for the synthesis of a LiM unit. If an unsupported
instruction is identified in the LLVM IR code, the
scheduler provides an error message to the user
describing the details of the incompatibility found
and stops the synthesis process. Multiplications
and divisions lead to generating an information
message, as they will be implemented through
hardware shifters, which introduce approximations
of the final results. Valid instructions are inserted
into the DFG as a node with relevant infor-
mation. A special case is accumulations, which
are recognised by the algorithmic optimisation
stage to inform the scheduler about its presence.
As a consequence, the DFG building process can
condense the accumulation-related information into
a single node, referred to as accumulation node.

• Alias analyses

◦ This operation is directly due to LLVM intermedi-
ate representation language. Its formalism, in fact,
allows the presence of multiple aliases for a single
data stored in memory. To optimise the exploration
process, the scheduler must keep track of these
variables to reduce redundancies and simplify the
subsequent processing steps of Octantis.

• Analysis of the data dependencies

◦ In order to effectively implement the ASAP
algorithm, the scheduler must consider the depen-
dencies between instructions and determine the
degree of mobility of each operator. This refers to
the specific time intervals in which an operation can
be executed without violating the logical sequence
of the algorithm. By analysing these factors, the
scheduler can allocate the execution of instructions
to maintain the algorithm’s logical flow.

• Advanced logic substitution

◦ ANSI C language and LLVM intermediate repre-
sentation do not support the full set of Boolean
operators, unlikeHardware Description Languages
(HDLs). For instance, the NAND operation is not
available, despite being a commonly used logical
operation. Instead, it is implemented by exploiting
a sequence of other instructions. In LLVM interme-
diate representation, a NAND operation is achieved
by performing two subsequent AND, as outlined
below:

LLVM IR Code Octantis operation
%9 = and i32 %7, %8 %10 = %7 nand %8
%10 = and i32 %9, −1

Therefore, the scheduler analyses the algorithm
provided by the user to identify typical patterns for
describing specifically negative logic operators (i.e.
NAND, NOR, XNOR). Upon detecting the related
patterns, the scheduler replaces the corresponding
instructions with a unique and equivalent negative
logic operation. In Algorithm 2, the checkForNeg-
Logic function implements the explained analysis.

Algorithm 2 Pseudo-code of the negative logic substitution
analysis

instNd1: a DFG instruction node
InstNd2: a DFG instruction node whose first source
operand is equal to the destination operand of instNd1

Input: two DFG nodes, namely instNd1 and instNd2. The
first source operand of instNd is equal to the destination
operand newInstNd.
Output: boolean value indicating if the operations related
to the two input nodes represents a negative logic bitwise
operation pattern

function checkForNegLogic(instNd1, instNd2)
if instNd1 operation is bitwise then

if instNd1 operation == InstNd2 operation then
if second source operand of InstNd2 == -1 then

Return True
end if

end if
end if

end function

Upon completion of the building process of the DFG,
each node within it represents an LLVM IR instruction
(or an accumulation that will be later mapped onto a LiM
Array). Moreover, if a data dependency is detected between
two instructions, the corresponding nodes are linked by an
edge.

After the construction of the DFG, the data structure is
traversed to assign each node with an appropriate starting
time, according to the ASAP algorithm. The pseudo-code of
this process is provided in Algorithm 3.

Algorithm 3 Pseudo-code of the ASAP Scheduling process

DFG: data-flow graph containing all detected instructions
useful for the implementation of the input C code
instNd: DFG node related to an LLVM IR instruction
sTime: starting time of a node in the DFG
maxParentStartTime: max starting time among all parent
nodes of instNd
parentNds: list of parent nodes of instNd

VOLUME 12, 2024 120011



A. Marchesin et al.: Beyond Von Neumann Architectures

Input: DFG produced by the dfgBuilder function
Output: DFG whose nodes have been annotated with the
starting times devised by the ASAP scheduling algorithm

function asapScheduler(DFG)
for all instNd ∈ DFG do

if all parentNds have an assigned sTime then
sTime of instNd← maxParentStartTime + 1

end if
end for

end function

F. BINDING
The primary function of the binder is to execute the mapping
of input operators, each assigned to specific time slots,
to hardware units that are capable of executing them.
To achieve this, it analyses the DFG generated by the
scheduler and organises the information into two distinct data
structures, namely the LiMUnit and the Finite StateMachine:
• The LiM Unit is equipped with the necessary memory
rows and logic elements that are properly connected to
enable the execution of the user-defined algorithm.

• The Finite State Machine (FSM) regulates the behaviour
of the designed architecture over time, providing all the
signals required to time the operations.

The obtained solution complies with the reference
topology of LiM architectures, discussed in the Introduc-
tion. However, with respect to the previous work [18],
the binder is enhanced with the introduction of several
hardware-dependent optimisation strategies. These optimi-
sations are applied to reduce the complexity of the system
and its required resources. Given the crucial role of these
strategies in achieving favourable exploration results, the
following section will provide detailed information regarding
the choices adopted in their implementation.

1) HARDWARE-DEPENDENT OPTIMIZATION STRATEGIES
The binder mapping process involves traversing the DFG
generated by the scheduler. Each node in the DFG contains
information regarding the corresponding LLVM IR instruc-
tion, including its source operands, the type of operation to
be performed, and its starting time.

Algorithm 4 Pseudo-code of the Binder Mapping Process

Input: DFG produced by the dfgBuilder function and
annotated with starting times by the asapScheduler func-
tion
Output: LiM Array that implements the algorithm defined
by the user
functionMappingProcess(DFG)

for all node ∈ DFG do
if operation of node is load then

Insert memory row in LiM Array
else if operation of node is accumulation then

Accumulate(node)

else
HdOpt(node)

end if
end for

end function

As presented in Algorithm 4, during the through passing,
different strategies are employed according to the type of
operation associated with the node. The nodes visited first
usually represent load operations involving the algorithm
input operands. Therefore, the binder starts to directly
populate the LiM Array with the necessary memory rows
for storing these input data. Subsequently, the process goes
over the nodes that entail actual calculations. The type
and starting time of each node are obtained, and the LiM
Array rows containing the two source operands, referred
to as source LiM rows, are identified. Here, a specific
function handles the definition of additional hardware
operators required to implement the operation, attempting
to produce the most compact, yet performing, LiM Array.
The pseudo-code of the optimisation procedure is reported
in Algorithm 5. The primary objective of the algorithm is to
analyse the two source LiM rows and evaluate two specific
conditions:
• Check if either of the source LiM rows already integrates
the operator required by the DFG node instruction.
In this case, if the operator is not used by any other
instruction at the same time, the corresponding LiM row
is chosen to perform the instruction indicated by the
node.

• If the previous condition is not met, the algorithm checks
if at least one source LiM row integrates fewer operators
than a pre-defined amount, identified as MAX_OP in
Algorithm 5. If this is the case, the selected source LiM
row is equipped with the necessary operator.

If neither of the above conditions is met, a copy of one of the
two source LiM rows with the required operator is inserted
inside the LiM Array. In all cases, the LiM row that contains
the needed operator will receive the other source LiM row’s
content as input.

The optimisation strategy discussed is used to achieve three
purposes:

1) The number of memory rows must be minimised
while ensuring the correct implementation of the input
algorithm.

2) It is crucial to set boundaries to the number of logic
elements within the single memory cells, as it is a
challenging aspect to implement from a technological
perspective, as observed in the literature presented in
the Introduction section.

3) In order to contain interconnections complex-
ity, data locality per subsequent operations is
preserved. Indeed, interconnections represent a
delicate design aspect as they directly impact
data integrity, power consumption, and overall
performance.

120012 VOLUME 12, 2024



A. Marchesin et al.: Beyond Von Neumann Architectures

Algorithm 5 Pseudo-code of the Hardware-Dependent
Optimisation Strategy

MAX_OP: maximum number of operators that can be
integrated into a single LiM Row

srcRow1: LiM row storing the first source operand
srcRow2: LiM row storing the second source operand
destRow: destination LiM Row
op: logic element to be integrated (or already present)
within the cells of one of the two source rows
sTime: starting time for the operation retrieved from the
scheduled DFG node

Input: a node of the DFG
Output: The function handles the mapping of the input
node operation onto the LiM Array that is being synthe-
sised. It also returns the destination LiM row

function HdOpt(node)
Get operation source operands from node
Get srcRow1 and srcRow2 storing the source operands
Get op and sTime from node
destRow← newly generated LiM row
if srcRow1 contains op inactive at sTime then

Exploit op of srcRow1
Connect srcRow2 to op of srcRow1
Connect output of srcRow1 op to destRow

else if srcRow2 contains op inactive at sTime then
Exploit op of srcRow2
Connect srcRow1 to op of srcRow2
Connect output of srcRow2 op to destRow

else if srcRow1 has less operators than MAX_OP then
Integrate op into srcRow1
Connect srcRow2 to op of srcRow1
Connect output of srcRow1 op to destRow

else if srcRow2 has less ops than MAX_OP then
Integrate op into srcRow2
Connect srcRow1 to op of srcRow2
Connect output of srcRow2 op to destRow

else
Create srcRow1Copy, copy of srcRow1
Integrate op into srcRow1Copy
Connect srcRow2 to op of srcRow1Copy
Connect output of srcRow1Copy op to destRow

end if
Return destRow

end function

In addition, a specific optimisation strategy has been inte-
grated into the Binder to handle accumulations, as introduced
in Section III-C. This strategy is designed to identify the set
of operands that constitute the so-called Initial Accumulation
Set, which is the group of operands that must be summed
together, and their corresponding LiM source rows. To obtain
the final result, the content of these rows must be added in

a Reduction Tree manner, as illustrated in Figure 4. With
reference to the example in Figure 4, the reduction process
begins with the initial accumulation set, whose operands are
stored in the rows indicated by the leftmost nodes. Within
this group of source rows, four couples are identified and
the associated additions are mapped onto the array using
the function already presented in Algorithm 4. Consequently,
four destination LiM rows are inserted in the LiM Array to
store the output of these operations. The destination rows are
assigned a level equal to 1, indicating intermediate results of
the accumulation. It is noteworthy that the two source LiM
rows may possess different levels. In such cases, the resulting
destination LiM row will have a level equal to the higher of
the two source LiM row levels incremented by one. The set
of all destination LiM rows undergoes the same reduction
process, which is executed until the final result is obtained.

The Reduction Tree mapping strategy allows to speed up
the overall execution time of this kind of operation, which is
equal to log2 N , where N is the number of elements of the
initial accumulation set.

Algorithmic details on the handling of accumulations can
be found in Algorithm 6.

FIGURE 4. Reduction tree employed in the mapping of accumulations
onto a LiM Array. Each node represents a different memory row, with the
number within denoting its level in the Reduction Tree. These memory
rows may contain an initial accumulation set operand, an intermediate
result, or the final result.

Furthermore, Octantis implements an additional opti-
misation technique to further improve the mapping of
accumulations. The technique is presented in Algorithm 7
and it involves identifying redundant information in the
accumulation set and specifically recognising when pairs
of memory rows have already been summed. This strategy
avoids the insertion of unnecessary operations in the LiM
Array, and their result is shared among the involved sum
operations. The LiM rows belonging to the final set are
accumulated using the Reduction Tree strategy described
before.

Algorithm 6 Pseudo-code of the Accumulation Mapping
Process
initAccSet: set of source LiM rows storing the initial
accumulation set operands

VOLUME 12, 2024 120013



A. Marchesin et al.: Beyond Von Neumann Architectures

redAccSet: set of source LiM rows storing the reduced
accumulation set operands
sTime: starting time of an addition within the reduction
tree
coupleRowsList: list composed of couples of LiM rows
whose addition has already been mapped onto the LiM
Array
lSrc1: level associated to srcRow1 in the reduction tree
lSrc2: level associated to srcRow2 in the reduction tree
lDest: level associated to destRow in the reduction tree
lvl: level associated to a row in the reduction tree

Input: a DFG node whose operation is accumulation
Output: the input accumulation node is mapped onto the
LiM Array

function Accumulate(node)
Get the initial accumulation set operands.
Get source LiM rows storing the initial accumulation
set operands
Add source LiM rows to initAccSet
redAccSet ← AccumulationOpt(initAccSet,
coupleRowsList)
while redAccSet is not empty do

(srcRow1, srcRow2) ← couple of LiM rows in
redAccSet with the lowest level
sTime← max(lSrc1, lSrc2)
tmpAccNode ← temporary addition node with
srcRow1 and srcRow2 as source LiM rows and
starting time equal to sTime
Insert couple (srcRow1, srcRow2) in
coupleRowsList
destRow← HdOpt(tmpAccNode)
lDest← max(lSrc1, lSrc2) + 1
Insert destRow in redAccSet
Remove srcRow1 from redAccSet
Remove srcRow2 from redAccSet

end while
end function

Algorithm 7 Pseudo-code of the Optimisation Strategy for
Accumulations

initAccSet: set of source LiM rows storing the initial
accumulation set operands
redAccSet: set of source LiM rows storing the reduced
accumulation set operands
destRow: LiM row storing the result of an already mapped
addition between a couple of source LiM rows

Input: coupleRowsList (defined in Algorithm 6) and
the set of LiM rows storing the operands of the initial
accumulation set

Output: reduced set of LiM rows

function AccumulationOpt(initAccSet)
existCouples← true
redAccSet← initAccSet
while existCouples do

existCouples← false
for all couple ∈ redAccSet do

if couple ∈ coupleRowsList then
Get destRow related to couple
Remove couple from redAccSet
Insert destRow in redAccSet
existCouple← true

end if
end for

end while
Return redAccSet

end function

The application of the described optimisation is most
beneficial whenever Octantis has to synthesise algorithms
exploiting many accumulation sets that share several
operands. Indeed, in these cases, the probability of finding
additions that have already been mapped is much higher. The
implementation of this optimisation technique ensures that
the execution time for the accumulation is kept in the order of
log2 N , but with a reduction of the number of source operands
N, while reducing the LiM Array area occupation.

In conclusion, the binding operation yields a LiM array
and its corresponding FSM, effectively concluding the design
process. These two units are further elaborated in the final
module of Octantis, enabling them to be represented in the
desired file format.

G. CODE GENERATION
The final phase of the exploration process incorporates all the
information gathered in the preceding steps to generate the
required set of files in VDHL. The code generator produces a
LiM array, a Control Unit, and a test-bench for verifying and
characterising the behaviour of the solution. The test-bench
is available as a complete functional test template in VHDL
file format, and the user is only required to provide details
regarding the data vectors to be applied.

More details of the final LiM Unit are defined during this
last stage. Specifically, the interconnections betweenmemory
cells are defined, and multiplexers are introduced to ensure
the correct dispatching of various signals.

Upon completing the output files production, it is possible
to further evaluate the solution generated by Octantis with
other EDA tools and implement it in a specific target
technology. This will provide relevant information about
the circuit’s performance, spatial utilisation, and power
consumption. The adoption of a standard HDL representation
for the output architectures enhances the interoperability
between Octantis and tools capable of synthesising the

120014 VOLUME 12, 2024



A. Marchesin et al.: Beyond Von Neumann Architectures

solutions at a circuit level. In the current version of the work,
the responsibility for these implementation choices lies with
the end-users

IV. RESULT
In order to validate the proposed methodology, several
tests have been conducted. They can be divided into two
categories. The former encompasses primary tests have been
performed to validate the resulting architectures with the LiM
topology of reference. The latter considers more complex
algorithms that have been taken as examples to look at the
potential of this exploration process. Since Image Processing
(ImP) algorithms have been already demonstrated highly
compatible with LiM implementation [38], they have been
chosen as test cases. For each test, a specific C code has
been defined, along with an associated configuration file to
specify the word-length of data and to adopt the most suitable
optimisations available to improve the final results.

After running Octantis, the LiM architectures obtained
have been characterised in terms of memory composition,
memory dimension and execution time. As previously pointed
out, the LiM unit synthesised by Octantis is technology-
independent, and these metrics are extracted by considering
the final architecture as a classical register-based architecture.
The LiM design produced by Octantis is generally composed
of different types of rows. The term memory composition
refers to an analysis of the different types of LiM rows
synthesised by the tool. For instance, a memory row where
XOR gates are integrated is referred to as ‘‘Xor Row’’.
A memory row without additional logic is called ‘‘Simple
Memory Row’’. The memory dimension is calculated as
the product of the number of LiM rows and the bit-width
of a single row. The total execution time is equivalent to
the number of clock cycles necessary to perform a logic
simulation of the algorithm. During the binding phase, this
metric is extracted and it is exploited for the definition of the
FSM. It is indicated with the Tclk notation in the following
text and tables. To ensure reproducibility, the materials used
to conduct the experiments have been made available in the
online open repository [14] along with Octantis source code.

A. VALIDATION OF THE PROPOSED METHODOLOGY
Regarding the validation procedure, three algorithms have
been taken as a reference, particularly those proposed in [13],
[15], and [16]. Reference C codes and proper configuration
files have been defined. An extract of the results obtained
by Octantis is collected in Table 1, expressed in terms of
integrated logic in the memory array. They are compared
with the characteristics of the architectures proposed in the
articles.

All the produced architectures have resulted completely
equivalent to the reference ones, and two out of three are the
same also in terms of integrated hardware. The last test case,
the one considering [13], has shown a limited overhead as
the architecture proposed by the authors had been manually
designed with the adoption of customised optimisation

techniques, not implemented within Octantis. It is important
to highlight that the optimisation phases introduced in the
new version of Octantis did not further improve the results
obtained for these three algorithms with respect to [18]. This
was expected, however, as the complexity of these algorithms
is relatively low, thus allowing the first version of the tool
to already reach an optimal solution. In conclusion, the
validation through these preliminary tests revealed success.

B. IMAGE PROCESSING ALGORITHMS: EXPLORING LIM
IMPLEMENTATIONS
The field of ImP is a branch of Computer Vision, which
involves the execution of specific operations on digital
images, according to given algorithms, with the aim of
modifying them to improve their quality or extract meaning-
ful information. However, Image Processing algorithms are
known to be computationally intensive, and their execution
time can be significantly important if appropriate parallelisa-
tion techniques are not employed.

In this regard, Logic-in-Memory architectures may repre-
sent an alternative solution to address the performance issues,
thanks to their intrinsic parallel computation capabilities,
as pointed out in [38]. A subset of typical operations present
in ImP algorithms has been identified to be effectively
mapped onto a LiM architecture. In particular, accumulations
and bit-wise operations have been recognised as critical
processing elements in a vast number of algorithms. They
are used to modify the initial image directly (e.g., for the
implementation of local filters), generate intermediate data
structures needed for further elaboration stages or extract
regions of interest using masks. Bit-wise operations are also
commonly employed in image encryption, where XOR and
XNOR operators are primarily considered.

With the purpose of highlighting the potential benefits
deriving from a Logic-in-Memory implementation, three
algorithms [39], [40], [41] have been considered to be run on
customised LiM architectures designed via Octantis. After a
thorough analysis of the algorithms, it has been determined
that only a portion of the first two algorithms was suitable for
LiM implementation, which has been subsequently processed
through Octantis. Instead, the third algorithm was entirely
implemented using LiM architecture. These algorithms have
been selected to evaluate the exploration capabilities of
Octantis and its ability to benefit from dedicated and efficient
hardware acceleration. The optimisations that have been
implemented in the tool have been thoroughly examined to
determine their effectiveness, and the derived results will be
detailed in the following.

The first algorithm investigated is the multi-image encryp-
tion algorithm presented in [39] by Huang, Z.J et all.
The last stage of the algorithm has been considered for
LiM implementation, which involves performing the XOR
operation between two intermediate 256 × 256 images
to obtain the final output cyphertext image. The XOR
operation is employed in the proposed encryption scheme

VOLUME 12, 2024 120015



A. Marchesin et al.: Beyond Von Neumann Architectures

TABLE 1. Results of the preliminary tests conducted on Octantis to validate the proposed architectures compared to the LiM topology.

to improve the robustness against chosen-plaintext attacks.
In the reference work, tests have been conducted considering
four 256× 256 grayscale images as inputs. According to the
algorithm’s specifications, the size of the two intermediate
images on which the XOR operation must be performed is
the same as the input ones.

To implement this algorithm on LiM architecture, two
matrices representing the intermediate images have been
declared in the C code given in input to Octantis. Since
grayscale images have been considered, Octantis configura-
tion file has been characterised to generate a memory with
a word-length of 8 bits, and loops optimisations have been
enabled. Two nested for-loops have been exploited to visit
the two matrices in row-first order and perform the XOR
operation between their elements with position (i, j). Several
syntheses through Octantis have been run with different
matrices size, namely 2× 2, 4× 4, 8× 8, 16× 16, 32× 32,
64× 64, 128× 128 and 256× 256.

As expected, regardless of the size of the images, Octantis
design process has recognised the opportunity of unrolling
the two nested loops, allowing the concurrent execution of all
needed XOR operations. This parallel implementation results
in a very low execution time of just one clock period for all the
size cases. The produced memory size is such that it contains
both the input images and the output image, and it increases
along with the matrices size. The memory rows are classified
based on the type of integrated logic they feature. ‘‘Simple
memory’’ rows do not present additional logic, while ‘‘Xor’’
ones feature an XOR gate. The memory rows related to
one of the two input images integrate XOR logic gates to
perform the logic operation, and they are classified as ‘‘Xor’’
rows. Octantis exploits the optimisation strategy explained
in Algorithm 5 to equip already-instantiated memory rows
with XOR gates. Figure 5 shows, on a semi-logarithmic scale,
how the number of ‘‘Simple memory’’ and ‘‘Xor’’ rows,
as well as the total amount of memory rows, increases by
changing the matrices size. As expected, it can be easily
noticed that they all present the same exponential behaviour.
Although this algorithm allows to get a glimpse of the
benefits enabled by the optimisation strategy presented in
Algorithm 5, the next benchmark examines them in more
detail.

In reference to the second test, a proposed multi-image
encryption algorithm presented in [40] Li, X et all has been

FIGURE 5. Number of ‘‘Simple memory’’ and ‘‘Xor’’ rows for each
Octantis’ synthesis run with a different images size.

considered. The algorithm involves the generation of the
‘‘XOR-Image’’ as a central operation. This is achieved by
applying the XOR operator to a set of images in order to
obtain the respective ‘‘scrambled’’ versions. The operation
can be expressed using Equation 2,

XORImage(i, j) = IMG0(i, j)⊕ IMG1(i, j)⊕ . . .

. . .⊕ IMGn−1(i, j)⊕ IMGn(i, j) (2)

where IMGk denotes the k-th scrambled image. Usually,
images are represented as matrices of pixels, and a specific
pixel can be identified using the (i, j) index. As a result,
the XOR-Image is obtained by applying the XOR operation
to the pixels at the same position of all scrambled images.
Meanwhile, an XOR-Key must be generated for each
scrambled image to decrypt the images. The key for the
k-th image is produced by performing the XOR operation on
all the scrambled images, except the k-th one, as shown in
Equation 3:

XORKeyi (i, j) = IMG0(i, j)⊕ IMGi−1(i, j)⊕ . . .

. . .⊕ IMGi+1(i, j)⊕ IMGn(i, j) (3)

The algorithm has been implemented through a C code
provided in input to Octantis along with the configuration
file. The word length parameter has been set to 8 bits since
grey-scale images were used. However, the sizes of the six
input images has been changed with respect to the ones

120016 VOLUME 12, 2024



A. Marchesin et al.: Beyond Von Neumann Architectures

TABLE 2. Overall memory reduction achieved by the optimisations strategies introduced within Octantis synthesis flow for algorithms proposed in [40]
and [41].

TABLE 3. Memory composition of the resulting LiM design produced by Octantis for the multi-image encryption algorithm proposed by Li, X et all [40].

TABLE 4. Memory dimension, LiM density and total execution time of the LiM design produced by Octantis for the multi-image encryption algorithm
proposed by Li, X et all [40].

indicated in the reference paper. In order to observe the
effects of the optimisation strategy described in Algorithm 5,
multiple syntheses have been run with different images sizes,
namely 2 × 2, 4 × 4, 8 × 8 and 16 × 16. For each test
case, two syntheses have been performed. The first has
been run disabling the mentioned optimisation, generating
designs referenced as non-optimised SI LiM architectures,
where SI stands for Scrambled Images. The second has
been issued enabling the optimisation strategy of reference,
and the synthesised designs are referenced as optimised
SI LiM architectures. Hence, 8 LiM design have been
generated byOctantis. It is worth noting that, regardless of the
sizes, each image’s processing is independent of the others,
allowing for parallel execution and efficient utilisation of a
Logic-in-Memory implementation.

Results in Table 2 show that the optimisation technique
allowed achieving a 7.4% reduction in the total amount
of memory rows by integrating 2-to-1 multiplexers for all
input images size cases. In Table 3, a detailed breakdown
of the memory composition for both optimised SI and non-
optimised SI LiM architectures is provided. Similarly to the
previous algorithm, the memory rows are classified based on
the type of integrated logic they feature. In this benchmark,
‘‘Xor with 2-to-1mux’’ rows are synthesised, and they feature

an XOR gate with one input from a 2-to-1 1-bit multiplexer.
The optimisation strategy was capable of substituting several
‘‘Xor’’ LiM rows with ‘‘Xor with 2-to-1 mux’’ ones, thus
enabling their reuse. As a consequence, the number of
memory rows equipped with logic decreased, as well as
the total amount of memory rows.Table 4 also reports
memory dimension and LiM density metrics. The latter is
an indicator of the produced architecture’s compactness, and
it is calculated as the ratio between logic-equipped rows
and simple memory ones. As shown in Table 4, a slight
decrease in LiM density has occurred for optimised SI
designs. However, the overall memory dimension reduction
is more significant. As regards the overall execution time,
for all the different test cases, it is equal to 5 Tclk , due
to the need for five XOR operations to calculate the (i, j)
pixel of the XOR-Image. Furthermore, it is interesting to
notice that the same memory reduction is achieved for all the
different images size cases. This consistency can be attributed
to the optimisation process identifying the same subset of
‘‘Xor’’ rows to be equipped with 2-to-1 multiplexers in each
case. Hence, the linear growth of this subset throughout
the cases led to the same reduction for all of them. As a
result, measures adopted by Octantis synthesis flow have
proved to provide an optimal solution regarding the area

VOLUME 12, 2024 120017



A. Marchesin et al.: Beyond Von Neumann Architectures

TABLE 5. Memory composition of the LiM design produced by Octantis for the summed area table algorithm [41].

TABLE 6. Memory dimension, LiM density and total execution time of the LiM design produced by Octantis for the summed area table algorithm [41].

occupation while keeping complexity and execution time
contained.

The last algorithm to be addressed is the Summed Area
Table (SAT) algorithm. It is a pre-processing technique used
to generate the Integral Image, which is a data structure
where each pixel PIM (i, j) corresponds to the sum of all
the pixels above and to the left of the same pixel in the
input image Pinput (i, j). This algorithm has gained popularity
due to its prominent use in the Viola-Jones object detection
framework [41]. Since implementing the SAT algorithm
needs many accumulations, it represents a good test case to
evaluate the potential of Octantis optimisation on reduction
trees.

An appropriate C code has been defined, and Octantis
configuration file has been set with a parallelism of 8 bits,
considering that each pixel value is represented on 8 bits.
Similar to the previous benchmark, various sizes for the
input images have been selected, namely 2 × 2, 4 × 4,
8 × 8 and 16 × 16. Two syntheses have been issued for
each of them to evaluate the effects of Octantis optimisation
described in Algorithm 7. Results reported in Table 2 prove
the effectiveness of the optimisation technique. It allowed
achieving a reduction up to 93,2% in the total amount
of memory rows. The memory composition details of the
resulting 8 LiM architectures are shown in Table 5. As it
can be noticed, the introduced optimisation has enabled
significant reductions in the number of both simple and logic-
equipped rows. At the same time, as reported in Table 6, it also
allowed for increasing the LiM density, leading to a more
compact design. As a consequence, a relevant reduction in
the overall memory size has occurred. The overall execution
time of the algorithm remains unchanged, as the optimisation
technique aims to identify memory rows whose insertion
can be avoided while keeping the execution time almost
unaltered. Therefore, Octantis’ optimisation techniques have

revealed effective in improving the implementation of the
SAT algorithm on a LiM architecture, without compromising
its execution time.

Upon analysing the results obtained from the preliminary
tests conducted on Image Processing applications, it can
be concluded that the intrinsic characteristics of LiM are
highly compatible with this type of algorithm, particularly
due to its highly parallelisable nature. Octantis synthesis
flow effectively recognises parallelisation opportunities, and
combines them with the newly introduced hardware-oriented
optimisation techniques. As highlighted throughout this
section, the enhanced synthesis capabilities of the tool allow
achieving significant reductions in area occupation while
keeping the same overall execution time. This demonstrates
the potential of Octantis in effectively handling Image
Processing applications and, more in general, data-intensive
algorithms.

C. SYNTHESIS OF OCTANTIS-GENERATED LIM
ARCHITECTURES WITH SYNOPSYS DESIGN COMPILER
As previously discussed, Octantis synthesizes a
technology-independent LiM architecture, providing design-
ers with a VHDL description of it. Ultimately, a specific
target technology is required to effectively implement these
LiM units. Beyond-CMOS technologies are particularly
promising for LiM architectures due to their intrinsic logic
and memory capabilities. However, as discussed in section II,
design automation tools for in-memory architecture available
in literature mainly focus on logic synthesis for memristive
arrays. Hence, tools capable of extracting area, power, and
latency metrics for beyond-CMOS-based LiM architectures
are currently lacking.

While Octantis aims to integrate with such tools in the
future, commercial EDA synthesis tools can be used in
the interim. This allows for the implementation of LiM

120018 VOLUME 12, 2024



A. Marchesin et al.: Beyond Von Neumann Architectures

TABLE 7. Power and area metrics obtained with synopsys design compiler for the Octantis-generated VHDL design of the multi-image encryption
algorithm in [39].

TABLE 8. Power and area metrics obtained with synopsys design compiler for the Octantis-generated VHDL design of the multi-image encryption
algorithm in [40].

TABLE 9. Power and area metrics obtained with synopsys design compiler for the Octantis-generated VHDL design of the summed area
table algorithm [41].

architectures using standard CMOS technology, thereby
enabling a preliminary evaluation of Octantis’s synthesis
capabilities. Consequently, the VHDL descriptions generated
by Octantis for the algorithms have been synthesized
using Synopsys’ Design Compiler with the 45 nm Nangate
open-cell library.

For the multi-image encryption algorithm showcased in
[39], Octantis generated a VHDL description for each LiM
design of image sizes ranging from 2×2 to 256×256 pixels.
However, only the ones corresponding to sizes from 2× 2 up
to 32 × 32 were synthesized by imposing a 100 MHz clock
frequency, extracting power and area metrics. As expected,
both area and power increase with larger input images,
as reported in Table 7.

As regards themulti-image encryption algorithm presented
in [40], the VHDL designs produced by Octantis for both
non-optimised SI and optimised SI architectures have been
fed to Synopsys Design Compiler imposing a 100MHz clock
frequency. Power and area metrics have been obtained and
they are reported in Table 8. Moreover, Table 10 displays
percentage reductions obtained in thesemetrics. Results show
that the optimised SI LiM architectures demonstrates up
to 6% savings in both area and power compared to the
non-optimised counterparts. Moreover, it is interesting to
highlight how area and power percentage savings remain
nearly unchanged for all input images sizes, as happened
for memory reduction in the previously discussed Table 4.

Hence, this confirms that the effectiveness of the introduced
optimisation strategy does not depend on the input image size.

The same procedure has been applied to the Summed Area
Table (SAT) algorithm. Octantis generated VHDL designs for
both non-optimised SAT and optimised SATLiM architectures
with input image sizes 2 × 2, 4 × 4 and 8 × 8. Designs
have been synthesized using Synopsys Design Compiler with
a 100MHz clock frequency, and the extracted area and power
metrics are presented in Table 9. Due to the complexity of the
synthesis process, results for larger image sizes were omitted
as they do not influence the aims of this discussion. The
objective of these tests is not to demonstrate the effectiveness
of a LiM implementation using standard CMOS technology
but to evaluate the impact of the optimisation strategy
adopted by Octantis. The application of the accumulation
optimisation strategy has resulted in significant savings,
achieving up to 82,2% reduction in area and 82,0% in power
consumption, as it can be noticed in Table 2. Differently
from the previous benchmark, the strength of the introduced
optimisation increased along with the dimension of the input
image.

The evaluation conducted in this section demonstrates the
capability of Octantis to produce a VHDL description for the
synthesized LiM architectures that is suitable for standard
CMOS technology implementation. Exploiting Synopsys’
Design Compiler to synthesise Octantis-generated LiM
designs made it possible to prove the effectiveness of the

VOLUME 12, 2024 120019



A. Marchesin et al.: Beyond Von Neumann Architectures

TABLE 10. Power and area reduction enabled by the optimisations strategies introduced within Octantis synthesis flow for algorithms proposed in [40]
and [41].

introduced optimisation strategies. These allowed to achieve
significant reductions in both area occupation and power
consumption. In conclusion, the obtained results allowed
assessing the quality of Octantis synthesis flow and its
optimisation strategies.

V. DISCUSSION AND CONCLUSION
The tests conducted are aimed at verifying the methodology
adopted by Octantis and its recent expansions. The results
described in this paper are necessary to validate the produced
architectures with respect to the reference LiM topology
and, at the same time, demonstrate the validity of the
exploratory approach implemented on specific application
fields. As previously mentioned, the LiM principle addresses
performance enhancement when running data-intensive algo-
rithms. Themore an algorithm is parallelisable and composed
of binary operations, the more it can benefit from a LiM
implementation. Among these, some ImP algorithms exhibit
characteristics that suggest a profitable execution through
computational units so conformed.

Octantis synthesis capabilities have proved effective
in identifying parallelisation opportunities and applying
hardware-oriented optimisation techniques. In particular,
these optimisation strategies allowed for achieving better LiM
designs in terms of area occupation without compromising
execution performance. As Octantis provides a VHDL
description of the generated LiM architectures, syntheses
using Synopsys’ Design Compiler with the 45nm Nangate
open-cell library have been successfully carried out to further
validate the effectiveness of Octantis. The generated LiM
architectures exhibited significant reductions in both area
occupation and power consumption, thus highlighting the
importance of the newly introduced optimisation techniques.
As pointed out during the discussion, these findings represent
preliminary results, as the tool focuses on exploring innova-
tive implementation technologies, and further analyses will
be conducted in this direction in the future.

The results obtained have proved to be promising and of
interest for further investigation. It is important to highlight
how the quality of the solutions provided by Octantis must
be assessed in a subsequent phase of the exploration process,
as well as the choice of the target technology to be considered,
which broadens the exploration prospects to above-CMOS
solutions. To emphasise the importance of this approach at the
design stage, it should be noted that it is possible to configure

the behaviour of Octantis and introduce several constraints to
guide the synthesis process.

The tool has been made available in its first release to share
all the details about the implementation choices adopted to
develop the LiM explorer and open up the possibility for
external contributions. Nonetheless, the samemodules can be
considered to derive other similar applications.

Octantis is constantly growing, experimenting with more
complex design strategies and advanced optimisations. For
instance, polyhedral analyses and optimisation techniques
enabled by Polly [42] within the LLVM framework are
being considered. Octantis parallelisation and synthesis
capabilities could highly benefit from the related analysis
and optimisation strategies. The program allows a designer to
explore beyond von Neumann’s solutions to tackle everyday
problems and seek a glimpse into a possible future for
electronic computing devices.

REFERENCES
[1] (2018). 2018 Edition of International Roadmap for Devices and Systems

(IRDS). [Online]. Available: https://irds.ieee.org/editions/2018
[2] M. D. Godfrey and D. F. Hendry, ‘‘The computer as von Neumann planned

it,’’ IEEE Ann. Hist. Comput., vol. 15, no. 1, pp. 11–21, Aug. 1993.
[3] O.Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, ‘‘Processing

data where it makes sense: Enabling in-memory computation,’’ Micro-
processors Microsyst., vol. 67, pp. 28–41, Jun. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933118302291

[4] J. Backus, ‘‘Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs,’’ Commun. ACM, vol. 21,
no. 8, pp. 613–641, Aug. 1978, doi: 10.1145/359576.359579.

[5] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, ‘‘TOP-PIM: Throughput-oriented programmable process-
ing in memory,’’ in Proc. 23rd Int. Symp. High-Perform. Parallel Distrib.
Comput. (HPDC). New York, NY, USA: Association for Computing
Machinery, Jun. 2014, pp. 85–98, doi: 10.1145/2600212.2600213.

[6] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, ‘‘A scalable processing-
in-memory accelerator for parallel graph processing,’’ in Proc. ACM/IEEE
42nd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2015, pp. 105–117,
doi: 10.1145/2749469.2750386.

[7] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, ‘‘Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerging
non-volatile memories,’’ in Proc. 53rd ACM/EDAC/IEEE Design Autom.
Conf. (DAC). NewYork, NY, USA: Association for ComputingMachinery,
Jun. 2016, pp. 1–6, doi: 10.1145/2897937.2898064.

[8] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, ‘‘Ambit: In-
memory accelerator for bulk bitwise operations using commodity DRAM
technology,’’ in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), in -50 ’17. New York, NY, USA: Association for Computing
Machinery, Oct. 2017, pp. 273–287.

[9] M. Imani, S. Gupta, and T. Rosing, ‘‘Ultra-efficient processing in-memory
for data intensive applications,’’ in Proc. 54th Annu. Design Autom. Conf.
(DAC). New York, NY, USA: Association for Computing Machinery,
Jun. 2017, pp. 1–6, doi: 10.1145/3061639.3062337.

120020 VOLUME 12, 2024

http://dx.doi.org/10.1145/359576.359579
http://dx.doi.org/10.1145/2600212.2600213
http://dx.doi.org/10.1145/2749469.2750386
http://dx.doi.org/10.1145/2897937.2898064
http://dx.doi.org/10.1145/3061639.3062337


A. Marchesin et al.: Beyond Von Neumann Architectures

[10] S. Angizi, Z. He, F. Parveen, and D. Fan, ‘‘RIMPA: A new reconfigurable
dual-mode in-memory processing architecture with spin Hall effect-driven
domain wall motion device,’’ in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI (ISVLSI), Jul. 2017, pp. 45–50.

[11] J. Chen, W. Zhao, Y. Wang, Y. Shu, W. Jiang, and Y. Ha, ‘‘A reliable 8T
SRAM for high-speed searching and logic-in-memory operations,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 6, pp. 769–780,
Jun. 2022.

[12] D. Fan and S. Angizi, ‘‘Energy efficient in-memory binary deep neural
network accelerator with dual-mode SOT-MRAM,’’ in Proc. IEEE Int.
Conf. Comput. Design (ICCD), Nov. 2017, pp. 609–612.

[13] G. Santoro, G. Turvani, and M. Graziano, ‘‘New logic-in-memory
paradigms: An architectural and technological perspective,’’ Microma-
chines, vol. 10, no. 6, p. 368, May 2019, doi: 10.3390/mi10060368.

[14] A. Marchesin and A. Naclerio, VLSI-Nanocomputing/Octantis: Ver-
sion 1.0.0. Genève, Switzerland: Zenodo, 2023, doi: 10.5281/zen-
odo.10017506.

[15] A. Coluccio, M. Vacca, and G. Turvani, ‘‘Logic-in-memory computation:
Is it worth it? A binary neural network case study,’’ J. Low Power Electron.
Appl., vol. 10, no. 1, p. 7, Feb. 2020.

[16] M. Andrighetti, G. Turvani, G. Santoro, M. Vacca, A. Marchesin, F. Ottati,
M. Ruo Roch, M. Graziano, and M. Zamboni, ‘‘Data processing and
information classification—An in-memory approach,’’ Sensors, vol. 20,
no. 6, p. 1681, Mar. 2020, doi: 10.3390/s20061681.

[17] A. Coluccio, U. Casale, A. Guastamacchia, G. Turvani, M. Vacca,
M. R. Roch, M. Zamboni, and M. Graziano, ‘‘Hybrid-SIMD: A modular
and reconfigurable approach to beyond von Neumann computing,’’ IEEE
Trans. Comput., vol. 71, no. 9, pp. 2287–2299, Sep. 2022.

[18] A. Marchesin, G. Turvani, A. Coluccio, F. Riente, M. Vacca, M. R. Roch,
M. Graziano, and M. Zamboni, ‘‘Octantis: An exploration tool for beyond
von Neumann architectures,’’ in Proc. 16th Int. Conf. Design Technol.
Integr. Syst. Nanosc. Era (DTIS), Jun. 2021, pp. 1–5.

[19] A. Takach, ‘‘High-level synthesis: Status, trends, and future directions,’’
IEEE Des. Test., vol. 33, no. 3, pp. 116–124, Jun. 2016.

[20] G. Martin and G. Smith, ‘‘High-level synthesis: Past, present, and future,’’
IEEE Design Test Comput., vol. 26, no. 4, pp. 18–25, Jul. 2009, doi:
10.1109/MDT.2009.83.

[21] Xilinx. (2024). Vitis Software Platform. [Online]. Available:
https://www.xilinx.com/products/design-tools/vitis.html

[22] S. D. I. Softw. (2022). Catapult High-level Synthesis and Verification.
[Online]. Available: https://eda.sw.siemens.com/en-U.S./ic/catapult-high-
level-synthesis

[23] Intel. (2024). Intel High Level Synthesis Compiler. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/software/programmable/
quartus-prime/hls-compiler.html

[24] H. Almorin, B. Le Gal, J. Crenne, C. Jego, and V. Kissel, ‘‘High-
throughput FFT architectures using HLS tools,’’ in Proc. 29th IEEE Int.
Conf. Electron., Circuits Syst. (ICECS), Oct. 2022, pp. 1–4.

[25] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
‘‘High-level synthesis for FPGAs: From prototyping to deployment,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[26] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, ‘‘A survey
and evaluation of FPGA high-level synthesis tools,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp. 1591–1604,
Oct. 2016.

[27] Y. Guo, D. McCain, J. R. Cavallaro, and A. Takach, ‘‘Rapid industrial
prototyping and SoC design of 3G/4G wireless systems using an
HLS methodology,’’ EURASIP J. Embedded Syst., vol. 2006, pp. 1–25,
Dec. 2006.

[28] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, ‘‘LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,’’ ACM
Trans. Embedded Comput. Syst., vol. 13, no. 2, pp. 1–27, Sep. 2013.

[29] C. Pilato and F. Ferrandi, ‘‘Bambu: Amodular framework for the high level
synthesis of memory-intensive applications,’’ in Proc. 23rd Int. Conf. Field
Program. Log. Appl., Sep. 2013, pp. 1–4.

[30] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, ‘‘An introduction to
high-level synthesis,’’ IEEE Design Test Comput., vol. 26, no. 4, pp. 8–17,
Jul. 2009.

[31] F. Riente, U. Garlando, G. Turvani, M. Vacca, M. Ruo Roch, and
M. Graziano, ‘‘MagCAD: Tool for the design of 3-D magnetic cir-
cuits,’’ IEEE J. Explor. Solid-State Comput. Devices Circuits, vol. 3,
pp. 65–73, 2017.

[32] F. Wang, G. Luo, G. Sun, J. Zhang, J. Kang, Y. Wang, D. Niu, and
H. Zheng, ‘‘STAR: Synthesis of stateful logic in RRAM targeting high
area utilization,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 40, no. 5, pp. 864–877, May 2021.

[33] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled,
and S. Kvatinsky, ‘‘SIMPLER MAGIC: Synthesis and mapping of in-
memory logic executed in a single row to improve throughput,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10,
pp. 2434–2447, Oct. 2020.

[34] D. Bhattacharjee, L. Amaru, and A. Chattopadhyay, ‘‘Technology-aware
logic synthesis for ReRAM based in-memory computing,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 1435–1440.

[35] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, ‘‘MAGIC—Memristor-aided logic,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899,
Nov. 2014.

[36] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim. (CGO), Mar. 2004, pp. 75–86.

[37] L. D. Group. Clang: A C Language Family Frontend for LLVM. Accessed:
Mar. 2024. [Online]. Available: https://clang.llvm.org/index.html

[38] M. Cofano, M. Vacca, G. Santoro, G. Causapruno, G. Turvani, and
M. Graziano, ‘‘Exploiting the logic-in-memory paradigm for speeding-
up data-intensive algorithms,’’ Integration, vol. 66, pp. 153–163,
May 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S016792601830556X

[39] Z.-J. Huang, S. Cheng, L.-H. Gong, and N.-R. Zhou, ‘‘Nonlinear optical
multi-image encryption scheme with two-dimensional linear canonical
transform,’’ Opt. Lasers Eng., vol. 124, Jan. 2020, Art. no. 105821.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0143816619305597

[40] X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong,
and H. Chen, ‘‘Multiple-image encryption via lifting wavelet transform
and XOR operation based on compressive ghost imaging scheme,’’ Opt.
Lasers Eng., vol. 102, pp. 106–111, Mar. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0143816617307832

[41] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade of
simple features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 1, Dec. 2001, pp. 1–11.

[42] T. Grosser, A. Groesslinger, and C. Lengauer, ‘‘Polly—Performing
polyhedral optimizations on a low-level intermediate representation,’’
Parallel Process. Lett., vol. 22, no. 4, Dec. 2012, Art. no. 1250010, doi:
10.1142/s0129626412500107.

ANDREA MARCHESIN (Member, IEEE) receiv-
ed the B.Sc. and M.Sc. degrees in electronic
engineering from Politecnico di Torino, Turin,
Italy, in 2018 and 2020, respectively, where he is
currently pursuing the Ph.D. degree in electrical,
electronics and communications engineering.

He is involved in research projects on both
quantum computing algorithms and platforms
and advanced logic-in-memory architectures. His
research interests include quantum world, digital

designs, and CAD tools development for the exploration of innovative
electronic systems.

VOLUME 12, 2024 120021

http://dx.doi.org/10.3390/mi10060368
http://dx.doi.org/10.5281/zenodo.10017506
http://dx.doi.org/10.5281/zenodo.10017506
http://dx.doi.org/10.3390/s20061681
http://dx.doi.org/10.1109/MDT.2009.83
http://dx.doi.org/10.1142/s0129626412500107


A. Marchesin et al.: Beyond Von Neumann Architectures

ALESSIO NACLERIO (Graduate StudentMember,
IEEE) received the B.Sc. and M.Sc. degrees in
electronic engineering from Politecnico di Torino,
Turin, Italy, in 2019 and 2022, respectively,
where he is currently pursuing the Ph.D. degree
in electrical, electronics and communications
engineering.

His research interests include the investigation
of beyond Von-Neumann architectures and the
development of techniques for automating the

mapping of suitable algorithms on such architectures.

FABRIZIO RIENTE (Member, IEEE) received the
M.Sc. degree (magna cum laude) in electronic
engineering and the Ph.D. degree from Politecnico
di Torino, in 2012 and 2016, respectively.

He was a Postdoctoral Research Associate with
the Technical University of Munich, in 2016. He is
currently a Postdoctoral Research Associate with
the Politecnico di Torino. His primary research
interests include device modeling and circuit
design for nano-computing, with a particular

interest in magnetic QCA. His interests also cover the development of EDA
tools for beyond-CMOS technologies, with the main focus on physical
designs.

MARIAGRAZIA GRAZIANO received theD.Eng.
and Ph.D. degrees in electronics engineering from
Politecnico di Torino, Italy, in 1997 and 2001,
respectively.

Since 2002, she has been an Assistant Professor
with Politecnico di Torino. Since 2008, she has
been an Adjunct Faculty Member with the Uni-
versity of Illinois at Chicago (UFL), Chicago, IL,
USA. Since 2014, she has also been a Marie-Curie
Fellow with London Centre for Nanotechnology.

She works beyond CMOS devices, circuits, and architectures for traditional
and quantum processing systems.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

120022 VOLUME 12, 2024


