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ABSTRACT This paper considers the distributed cooperative control problem for a linear stochastic
multi-agent system (MAS). The optimal cooperative control design for each agent is challenging due to
the limited neighboring information, contingent upon the MAS network topology. A synthesized distributed
control-estimation framework is proposed to address the computationally tractable suboptimal solution.
In particular, a distributed estimator extends MAS information beyond neighboring agents, allowing
interactions with non-neighboring agents. The proposed control-estimation law is theoretically verified and
further validated using numerical simulations.

INDEX TERMS Distributed control, optimal control, multi-agent systems, cooperative control.

I. INTRODUCTION
Distributed cooperative control has been vital in many
networked multi-agent systems (MASs) with diverse appli-
cations over the past decades [1], [2], [3]. In addition to the
theoretical foundations of the MAS’s cardinal characteris-
tics [4], [5], [6], a wide range of MAS applications have
been investigated, including but not limited to formation
maneuvers [1], sensor networks [7], distributed comput-
ing [8], etc. The key to enabling these applications is the
inter-agent interaction specified by the embedded distributed
control law [3]. Difficulties in distributed cooperative control
have been investigated in the MAS operational context,
such as controlling individual agents with limited local
information [9], [10], [11], uncertain system and network
dynamics [12], [13], [14], [15], [16], [17], [18], [19], [20],
and stochastic characteristics [21].

Despite extensive research on distributed control for
cooperative MAS, their optimality remains a challenging
problem. Designing an optimal controller with network
topology constraints is NP-hard [22], and the optimal
controller may not be linear even for linear MAS dynamics
under Gaussian noise and quadratic cost [23]. To solve this
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problem, some preliminary studies have attempted to derive
sufficient conditions in terms ofMAS network topology [24],
[25], [26], [27] and/or the global cost [28], [29], [30],
whereby the optimal distributed control problem is tractable.
However, these conditions enforce a specific form of network
topology and cost function, resulting in restrictive problem
formulation. Optimal MAS control laws for more general
network topological constraints and cost functions have been
developed in [31] and [32]. However, they are limited to
single and double integrator dynamics for each agent, which
is not applicable to general MAS dynamics.

To circumvent the complications that arise from general
MAS problem formulation (i.e., network topology, cost func-
tion, and agent dynamics), other approaches have proposed
approximation techniques that address suboptimal distributed
control laws [33], [34], [35], [36], [37]. In addition, other
researchers have merely considered the local cost function
from the perspective of individual agents; without accounting
for the global cost function [38], [39], [40]. Consequently,
the aforementioned studies are prone to degrade the overall
performance of the entire MAS. Furthermore, most subop-
timal results lack theoretical performance guarantees with
reference to the global optima.

Within the scope of linear control structures, another line
of work has focused on reformulating the original optimal

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 119577

https://orcid.org/0000-0003-4325-3262
https://orcid.org/0000-0002-6084-8236
https://orcid.org/0000-0002-0663-3365


H. Lee, C. Kwon: Suboptimal Linear Distributed Control-Estimation Synthesis for Stochastic MAS

distributed control problem into a convex optimization
problem, in which the resulting optimal control law is linear.
Different parameterization techniques, such as Youla [41],
system-level [42], and input-output [43], have shown a
tractable way to find the optimal solution under the notion of
quadratic invariance (QI), which is a sufficient and necessary
condition for exact convex reformulation [44]. However,
as in the aforementioned works [26], [29], the QI condition
poses a restriction on the class of problems, whereas non-QI
cases are intractable. Various approximation techniques, such
as convex relaxation [45] and restriction [46], have been
introduced for those that are not under the notion of QI.
Nevertheless, these methods entail additional difficulties in
determining feasible solutions. Recently, a gradient descent-
based method was proposed to achieve optimal control for
non-QI cases [47]. However, this method is valid under a
new notion, called uniquely stationary, which hardly resolves
general structural input constraints. Therefore, computing
the optimal linear distributed control law for general MAS
dynamics with arbitrary network topology remains a signifi-
cant challenge.

In this paper, the linear distributed cooperative control
problem for stochastic linear MAS without specific con-
straints on network topology is solved from the perspective
of joint distributed control and estimation design. The key
idea is to augment the information for each agent using
a distributed estimation algorithm. This enables individual
agents to interact beyond their neighbors based on the
estimated information, which in turn relaxes the network
topological constraints for the distributed control law design.
Compared to recent work in which the estimator comple-
ments decentralized control [48], our problem substantially
differs in MAS dynamics and information-sharing patterns.
More importantly, to the best of the authors’ knowledge,
our approach for the first time leverages the information of
non-neighboring agents for control, offering a novel pathway
in the development of an optimal distributed control law.

It is worth noting that this work is founded on a
series of previous works [49], [50], [51]. The proposed
distributed estimator was initially introduced, focusing on
the estimation of non-neighboring agents [49]. Based on this
distributed estimator, [50] attempted to augment distributed
control by exploiting non-neighboring estimation infor-
mation. The resulting distributed estimation-based control
showed impressive performance, but its optimal design
was out of focus. Finally, [51] tackled the distributed
estimation-control synthesis problem, which optimally inte-
grates and designs a distributed estimator and controller.
In this paper, we take a step further by synthesizing a new
and advanced control-estimation framework along with the
rigorous proof of the theoretical performance guarantee that
was unattainable in the previous method [51]. Furthermore,
the computational complexity of the proposed framework
is significantly reduced. In contrast to [51], which needs to
solve the optimization problem for each agent, the method we
propose here forms a single optimization problem regardless

of the number of agents. This makes our framework
especially well-suited for large-scale MAS applications,
where scalability is a crucial factor. The contributions of this
paper are as follows.

1) Reformulating the primal optimal distributed control
problem into a joint control-estimation problem by
synthesizing a distributed estimator and controller for
the individual agents.

2) Establishing an iterative optimization framework to
compute the suboptimal distributed control-estimation
law for a general stochastic linear MAS.

3) Verifying the theoretical performance guarantee relative
to the global optima and numerically validating its
effectiveness through comparative simulations with
existing work.

The structure of this paper is organized as follows: Section II
introduces the problem setup including the MAS dynamics
and cost function targeted for optimal distributed control.
Section III presents the design of a suboptimal distributed
control-estimation law, and Section IV presents theoretical
performance verification. Numerical simulations are pre-
sented in Section V. Section VI discusses the conclusions and
directions for future research.
Notation: R and N are the symbols for the set of all

real numbers and natural numbers, respectively. E[x] is
the expectation of random variable x, and E[x|y] stands
for the conditional expectation of x given y. ⊗ is the
Kronecker product of the two matrices. Ip is the identity
matrix, and 0p is the zero matrix, each with dimensions
of p × p. 1p ∈ Rp is a vector with all entries equal to
1. ∥ · ∥2 and ∥ · ∥F represent Euclidean and Frobenius
norms, respectively. The expression D = blkdg(D1, · · · ,Dn)
signifies a block-diagonal matrix composed of the individual
matrices D1, · · · ,Dn. diag(c1, · · · , cn) denotes a diagonal
matrix where the entries are c1, · · · , cn. The transpose of a
matrix D is denoted as DT, and its trace is represented by
Tr(D). The notation x = [xT1 · · · x

T
N ]

T represents a vector x
formed by concatenating the transposes of individual vectors
xi,∀i ∈ 1, · · · ,N , followed by taking the transpose of the
resulting row vector to form a column vector. For a symmetric
matrix X = XT, X ≻ 0 and X ⪰ 0 represent positive definite
and positive semidefinite, respectively.

II. PROBLEM FORMULATION
A. DYNAMICAL STOCHASTIC MULTI-AGENT SYSTEM
MODEL
Let us consider a MAS that includes N homogeneous
stochastic linear time-invariant agent dynamics described by

xi(k + 1) = Axi(k)+ Bui(k)+ wi(k),∀i ∈ {1, .., N } (1)

where xi ∈ Rn and ui ∈ Rp are the state and control
inputs of the ith agent, respectively. wi is the process noise
of a white Gaussian nature, whose covariance is a positive
definite covariance matrix 2i ≻ 0, and k ∈ N represents
the discrete-time index. Matrix pair (A,B) represents the
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dynamics of each agent and satisfies the controllability
condition. Correspondingly, the dynamics of the entire MAS
are as follows.

x(k + 1) = Ãx(k)+ B̃u(k)+ w̃(k)

Ã = (IN ⊗ A) , B̃ = (IN ⊗ B)

x(k) =
[
xT1 (k) · · · x

T
N (k)

]T
, u(k) =

[
uT1 (k) · · · u

T
N (k)

]T
w̃(k) =

[
wT
1 (k) · · ·w

T
N (k)

]T (2)

Over a finite time horizon, the stacked vectors of the states
and inputs of the entire MAS are denoted as follows.

x = [x(0)T . . . x(T )T]T ∈ RNn(T+1)

u =
N∑
i

(IT ⊗MT
i )ui ∈ RNpT

ui = [ui(0)T . . . ui(T − 1)T]T ∈ RpT (3)

where Mi = [0p · · · Ip · · · 0p] ∈ Rp×Np is the block matrix
filled ith block entry with Ip, and 0p in the other block
entries. In addition to the dynamics of the provided agents,
the inter-agent network topology can be represented by a
graph model. The individual agents and network connections
between them are defined as a set of nodes V = {1, 2 . . N }
and edges E ⊆ V × V , respectively. Subsequently, (i, j) ∈ E
indicates that the ith agent has network connectivity with
the jth agent. A = [aij] ∈ RN×N is an adjacency matrix
that expresses the network connectivity of the entire graph
model, where its element aij = 1 if (i, j) ∈ E , and
aij = 0 otherwise. D = diag(

∑
j a1j · · ·

∑
j aNj), and L =

D − A are the degree and Laplacian matrices, respectively.
The network graph considered in this paper is a directed
graph. This assumption is based on the authors’ previous
works [49], [50], [51], and can apply to both communication
and sensing-based networks. In these networks, agents may
have different capabilities in observing each other, leading
to directed network connections. The set of ith agent’s
neighboring agents and its cardinality are defined as �i
and |�i|, respectively. Given L, the ith agent acquires noisy
measurements of its neighboring as follows [49].

zij(k) = aij
(
xj(k)+ vij(k)

)
, ∀j ∈ V (4)

where vij is the measurement noise of white Gaussian
nature with covariance ξij ≻ 0 . Furthermore, Zi(k) =[
zTi1(k) · · · z

T
iN (k)

]T
and vi(k) =

[
vTi1(k) · · · v

T
iN (k)

]T
are the

measurements and noise sets of the ith agent, respectively.
One can rewrite the MAS dynamics (2) over the finite time
horizon in a static form using (3) as follows [47].

x = P11w+ P12u

P11 = (I − DĀ)−1, P12 = (I − DĀ)−1DB̄

Ā = IT+1 ⊗ Ã, B̄ =
[
IT ⊗ B̃
0Nn×NpT

]
D =

[
0Nn×NnT 0Nn×Nn
INnT 0NnT×Nn

]
(5)

where w = [x(0)T w̃(0)T . . . w̃(T − 1)T] ∈ RNn(T+1).
Moreover, individual agents interact with their neighbor-
hoods according to embedded control laws. Without loss of
generality, a control input for each agent is designed using the
following linear output feedback control law [47].

ui = (IT ⊗Mi)FZi,(0:T−1) = (IT ⊗Mi)FC(x+ vi),∀i ∈ V
(6)

where vi = [vi(0)T . . . vi(T )T]T ∈ RNn(T+1), Zi,(0:T−1) =
[Zi(0)T · · · Zi(T − 1)T] ∈ RNnT ,∀i ∈ V , and C =

[INnT 0NnT×Nn]. Here, F ∈ F denotes the control law matrix
which is our design parameter, and F ⊂ RNpT×NnT is a
subspace that ensures F to be a causal feedback policy
by forcing zero to the entries corresponding to the future
outputs, it also imposes the structural constraint induced by
the network topology of the MAS.

B. SYNTHESIZED DISTRIBUTED CONTROL-ESTIMATION
PROBLEM
Given the dynamical MAS model with the embedded linear
control law (6), the objective of the distributed cooperative
control of the MAS can be expressed as the following
problem.
Problem 1: Optimal linear distributed control law subject

to network topological constraints [47]

min
F∈F

E
[
xTQx+ uTRu

]
subject to (5), (6), ∀i ∈ V

where Q ∈ RNn(T+1)×Nn(T+1)
⪰ 0, and R ∈ RNpT×NpT

≻

0 denote the associated weight matrices. The formulated
quadratic cost function is widely used to express different
cooperative behaviors of MAS, such as consensus [52],
formation [5], rendezvous [53], etc. Notably, quadratic state
cost plays a vital role in regulating disparities among agent
states, enabling the coordination of relative states to align
with specific task objectives.

Problem 1 is highly non-convex because of the structural
constraints encoded in the subspace of the control law matrix
F [33]. To address this challenging problem, we utilized
the notion of virtual interaction. This notion involves
incorporating estimation-based feedback control using the
previously proposed distributed estimator in [49] to emulate
interactions between non-neighboring agents as if they had
access to each other’s information. Correspondingly, a virtual
network topology is defined as the network connections
associated with these virtual interactions regardless of the
actual network connections of the MAS. Notably, the
capability of our proposed distributed estimator to estimate
the entire MAS provides significant flexibility in designing
the virtual network topology. Among arbitrary design choices
for virtual networks, we adopt a fully connected virtual
network topology to simplify the analysis and, remove any
constraints on the virtual interactions.
Definition 1: Given the measurement set of the ith agent

up to time k , the state estimate of the MAS from the ith
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agent’s perspective and the corresponding estimation error
covariance are denoted by ix̂(k) := E

[
x(k)|Zi,(0:k)

]
, and

ii6(k) := E
[(
x(k)− ix̂(k)

) (
x(k)− ix̂(k)

)T
|Zi,(0:k)

]
,∀i ∈

V , respectively.
The state estimate of the MAS from the perspective of the

ith agent is given by the following Kalman-like filter.1

ix̂(k) = ix̂−(k)+ Li(k)
(
HiZi(k)− Hiix̂−(k)

)
(7)

where ix̂−(k) := E
[
x(k)|Zi,(0:k−1)

]
is the predicted state

estimate from the ith agent’s perspective. Li ∈ RnN×n|�i|

denotes the estimator gain, whereasHi ∈ Rn|�i|×nN is used to
exclude the state entries of the non-neighboring agents of the
ith agent from MAS such that Hi = [h1 h2 · · · h|�i|]

T
⊗ In

where hm ∈ RN , m = 1, 2, . . . , |�i| are the non-zero
column vectors of matrix diag(ai1, ai2 . . . ., aiN ). Note that
the innovation term

(
HiZi(k)− Hiix̂−(k)

)
, only measures the

neighboring agents’ state information due to the network
topological constraint.

By virtue of the virtual interaction through the distributed
estimator (7), we amend the distributed control law (6) to
accommodate the MAS state estimate information, that is the
estimation-based feedback control law.

ui = (IT ⊗Mi)FC ix̂, ∀i ∈ V (8)

where ix̂ = E
[
x|Zi,(0:k)

]
is the stacked vector of the state

estimates over the time horizon up to k . The resulting control
input space is no longer constrained by the network topology.
Alternately, the control performance relies upon the accuracy
of the estimator whose design parameter is the estimator gain,
Li, ∀i ∈ V .

Optimizing the cost of Problem 1 subject to a general
network topology is intractable [22], [54], [55]. Accordingly,
we focus on reformulating the original linear distributed
control problem into a joint control-estimation problem.
We then simultaneously optimize the distributed control and
estimation law according to the linear structures (8) and (7),
which are widely adopted in MAS problems [34], [35].
Problem 2: Virtual interaction based optimal linear dis-

tributed control-estimation law

min
F∈F̃,ϒi,∀i∈V

J (F , ϒ1, · · · , ϒN )

subje ct to (5), (7), (8)

where J (F , ϒ1, · · · , ϒN ) := E
[
xTQx+ uTRu

]
and ϒi :=

{Li(k)|k = 0, · · · ,T } is the set of estimator gains over the
time horizon T for the ith agent.
Remark 1: Unlike F, the subspace F̃ ⊂ RNpT×NnT is

associated only with the causality of the control policy
without any structural constraints [47].

Despite the absence of the structural constraint, Problem 2
is still non-trivial to solve, as the controller and estimator
mutually affect each other [49]. To resolve this problem,

1Kalman-like filter is referred to as recursive linear estimation which
minimizes the estimation error covariances.

we sequentially design distributed control laws and estimator
laws using an iterative optimization framework. The overall
optimization procedure is shown in Figure. 1.

FIGURE 1. Synthesized suboptimal linear distributed control-estimation
design procedure.

Specifically, at the l th iteration, two design steps are
sequentially executed such that i) distributed estimator design
computes a set of estimation laws ϒ

(l)
i ,∀i ∈ V based on the

distributed control law computed from the previous iteration;
and ii) distributed control law design optimizes the control
law F (l), with the given state estimation errors induced by
the estimation laws from the foregoing distributed estimator
design step. Finally, the control and estimation laws at the
current iteration are checked for convergence and are applied
to the next iteration. Once the optimization process converges
under the pre-set stopping conditions, we get the suboptimal
linear distributed control-estimation law represented by F∗
and ϒ∗i ,∀i ∈ V . Throughout the optimization process,
we make use of information from the entire MAS to improve
overall costs. This includes considering interactions beyond
proximity, particularly those influenced by non-neighboring
agents. It’s worth noting that while our design approach
leverages information from the entire MAS to enhance
cooperative behavior and optimize overall performance, the
deployment of the MAS performs in a distributed manner,
as detailed in forthcoming assumptions.
Assumption 1: In the deployment of the distributed MAS,

the ith agent is initialized with the information about the
dynamics of MAS and the distributed estimation law, i.e.,
A,B,F∗, and ϒ∗i . Subsequently, this information is utilized
as prior knowledge for state estimation and incorporated dur-
ing the initialization of the algorithm, remaining unchanged
throughout the distributed operation.

These assumptions are not critical from both theoretical
and practical standpoints, and can be readily applied in real-
world scenarios [1], [2], [3]. Moreover, leveraging priorMAS
information, as commonly applied in existing works [50],
[51], has been shown to enhance performance and achieve
sophisticated functionalities. In contrast, scenarios that do
not utilize prior information focus more on robustness than
optimality [12], [13], [14].

III. ALGORITHM DEVELOPMENT
This section describes the detailed procedure of the proposed
control-estimation synthesis for the finite time horizon
case.
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A. DISTRIBUTED ESTIMATOR DESIGN
The objective of the distributed estimator design step is to
optimize the estimator gains for individual agents, ϒ (l)

i ,∀i ∈
V . Note that the whole design procedure is done offline
wherein the agent dynamics (A, B), neighboring agents (�i),
and the control law designed in the previous iteration F (l−1)

information can be exploited for the estimator design. For
brevity, F (l−1) is denoted as F in this subsection. Based on
the Bayesian estimation framework in (7), individual agents
exploit the estimation error when updating their state estimate
of the entire MAS, ix̂(k),∀k ∈ {0, · · · ,T }.
Definition 2: The MAS state estimation error and its

covariance from the ith agent’s perspective are denoted
by ie(k) := x(k) − ix̂(k), and ii6(k), respectively.
The concatenated estimation errors from different agents’
perspectives and their covariance are defined as e(k) =
[1e(k)T · · · N e(k)T]T ∈ RNnN , and 6(k) := E[e(k)e(k)T] ∈
RNnN×NnN . The counterparts of the predicted state estimate
ix̂−(k), such as iie−(k), ii6−(k), e−(k), 6−(k) are defined in
a similar manner [49].

With the given information, the ith agent can construct an
estimation-based control input, as follows.

ui(k) = Mi

k∑
s=0

Fsk ix̂(s) (9)

where block matrix Fsk ∈ RpN×nN represents the feedback
gain matrix at time step k applied to ix̂(s). By applying (9)
to Definition 2, we can rewrite the dynamics of MAS (2) as
follows.

x(k + 1) = Ãx(k)+ B̃Fkkx(k)+
k−1∑
s=0

B̃Fskx(s)

−

k∑
s=0

˜̃BM̃F̃ske(s)+ w̃(k) (10)

where M̃ = blkdg(M̄1, . . . , M̄N ) ∈ RNpN×NpN is a block
diagonal-matrix with M̄i = MT

i Mi ∈ RpN×pN . F̃sk =
IN ⊗ Fsk , ˜̃B = 1TN ⊗ B̃. The predicted MAS state estimate
can be written as

ix̂−(k + 1) = Ã ix̂(k)+ B̃Fkk ix̂(k)+
k−1∑
s=0

B̃Fsk ix̂(s) (11)

Then, one can obtain the predicted estimation errors, e−(k +
1), by concatenating ie−(k + 1),∀i ∈ V after calculating
ie−(k + 1) by subtracting (11) from (10). Additionally,
the predicted estimation covariance, 6−(k + 1), can be
determined based on e−(k+1). Note that 6−(k+1) consists
of block-matrices where the off-diagonal block-matrices,
ij6−(k + 1) = E[ie−(k + 1)je−T(k + 1)],∀i ̸= j ∈ V , are
the cross-covariances between two different agents’ predicted
state estimates, and the diagonal block-matrices, ii6−(k +
1),∀i ∈ V , are the predicted estimation error covariance
from the ith agent’s perspective. Updating the predicted state

estimate through (7), the estimator gain Li is designed in a
spirit similar to Kalman filtering such that it minimizes the
trace of the updated estimation error covariance, which yields

Li(k + 1) = ii6−(k + 1)HT
i (Si(k + 1))−1 (12)

where Si(k + 1) = Hi(ii6−(k + 1) + iξ )HT
i , and

iξ =

blkdg(ξi1, ξi2, . . . ξiN ). Subsequently, the updated estimation
error covariance 6(k + 1), is computed. Furthermore, the
cross-covariance between the predicted and updated state
estimates over different time steps, i.e.,E[e−(k+1)e(s)T] and
E[e(k + 1)e(s)T],∀s < k , can be computed. Starting with the
initial error covariance conditions 6(0), one can recursively
update ix̂(k), 6−(k), and 6(k) given the optimized Li(k)
over the finite time horizon T . This completes the design
of the linear distributed estimators for individual agents
parameterized by the estimator gains ϒi, ∀i ∈ V . And
the resulting estimation error covariance information will be
used for the distributed controller design, presented in the
next subsection. The key result regarding the stability of the
proposed distributed estimator is presented by the following
lemma and theorem.
Lemma 1: The distributed estimation error covariances

ii6(k),∀i ∈ V for all k are positive definite and bounded if
the following system is observable [50].

x̄(k + 1) = Lx̄(k) ∈ RN

Z̄i(k) = H̄ix̄(k) ∈ R|�i|, ∀i ∈ V (13)

where H̄i = [h1 h2 · · · h|�i|]
T
∈ R|�i|×N is an observer

matrix that gathers the measurements from the ith agent’s
perspective, i.e., those that are neighboring agents of the ith

agent. The row vectors of H̄i consist of hq ∈ RN , q =
1, 2, . . . , |�i|, which are non-zero column vectors of the
matrix diag(ai1, ai2 . . . ., aiN ).
Theorem 1: Given the MAS dynamics (2) and the dis-

tributed estimator (7), the proposed distributed estimator is
stable in the sense of Lyapunov if (13) is observable.
Proof. The proof is referred to in [50]. ■
Remark 2: When operating the MAS with a network

topology satisfying the network observability condition in
Theorem 1, the designed distributed estimator processes
only the neighboring measurements available to each agent.
Nevertheless, each agent can estimate MAS states, including
non-neighboring agents.
Remark 3: The estimation error covariance is subject to

the network topology L. However, directly representing the
estimation error covariance as the function of the network
condition is non-trivial, as it also depends on F and
ϒi,∀i ∈ V .

B. DISTRIBUTED CONTROL LAW DESIGN
This subsection describes the design procedure of the
distributed control law for solving Problem 2, with the aid
of a distributed estimator embedded in individual agents.
Note that F is now the design parameter to be optimized,
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eventually be F (l) at the l th iteration, whereas the estimator
design is based on F (l−1).
Definition 3: The concatenated estimation errors over

time from the ith agent’s viewpoint are denoted as ie :=
x − ix̂. The estimation error covariances from individual
agents’ perspectives over time horizon T are defined as

6ii := E[ieieT],∀i ∈ V , and the covariance between
different agents’ perspectives 6ij := E[iejeT],∀i ̸= j ∈ V .
These covariances can be constructed using the results of the
previous estimator design procedure.

Recalling (3) and (8), the estimation-based control input
of the entire MAS over the time horizon T can be written in
terms of the estimation errors as follows.

u =
N∑
i

MiFC ix̂ = FCx−
N∑
i

MiFC ie (14)

where Mi = IT ⊗ (MT
i Mi),∀i ∈ V . By substituting (14)

into (5), the state and the input vector are rewritten in terms
of the disturbance and the estimation errors as follows

x = (I − P12FC)−1P11w

− (I − P12FC)−1P12
N∑
i

MiFC ie

u = FC(I − P12FC)−1P11w

− (I − FCP12)−1
N∑
i

MiFC ie. (15)

Substituting (15) into the quadratic cost function, and using
the following fact for any matrix P,

E[wTPw] = Tr(P6w)+ µT
wPµw,

E[ieTP je] = Tr(P6ij),

Tr(PTP) = ∥P∥2
F
,

the global cost of MAS in Problem 2 can be expressed by

J (F , ϒ1, · · · , ϒN )

= ∥Q
1
2 (I − P12FC)

−1
P116

1
2
w∥

2
F

+ ∥R
1
2 (I − FCP12)

−1
FCP116

1
2
w∥

2
F
+

∑
i,j

∥Q
1
2P12

× (I − FCP12)
−1
(MiFC6ijCTFTMT

j )
1
2 ∥

2
F

+

∑
i,j

∥R
1
2 (I − FCP12)

−1
(MiFC6ijCTFTMT

j )
1
2 ∥

2
F

+ ∥Q
1
2 (I − P12FC)

−1
P11µw∥

2
2

+ ∥R
1
2 (I − FCP12)

−1
FCP11µw∥

2
2 (16)

where 6w := E[(w − µw)(w − µw)T] ∈ RNn(T+1)×Nn(T+1),
µw := E[w] ∈ RNn(T+1). A comparable derivation is detailed
in [47].

As seen in (16), the optimization variables, i.e., F and
ϒi,∀i ∈ V , are the latent variables of 6ij,∀i, j ∈ V . This
implies that the cost of the joint control-estimation problem

is difficult for a single optimization, motivating the sequential
iterative optimization framework. Inspired by the Alternating
Direction Method of Multipliers (ADMM) [56], we alternate
the target optimization variables and sequentially optimize
the distributed control and estimation laws. It is worth noting
that we optimize the estimator gain instead of the estimation
error covariance because the latter depends on the distributed
control and estimation laws. This ensures a straightforward
and interpretable optimization process. The overall steps of
this iterative optimization start by optimizing the distributed
estimator gains ϒi,∀i ∈ V with an arbitrarily initialized
distributed control law F as mentioned in the distributed
estimator design step. This results in optimized estimator
gains and the corresponding estimation error covariance,
6ij,∀i, j ∈ V . Subsequently, given that the estimation
error covariance in (16) is fixed as constant, we optimize
only F without adjusting ϒi,∀i ∈ V . Once the new
distributed control law is obtained, we repeat the process.
This sequential iterative optimization continues until the
predefined convergence rule is satisfied.

The cost function with constant 6ij,∀i, j ∈ V , is prob-
lematic owing to its non-convex combination. To this end,
we approximate different estimation error covariances using
their upper bounds.
Definition 4: The estimation error covariances of all

agents are bounded above by 6max defined as follows.

6max =

6max(0, 0) · · · 6max(0,T )
...

. . .
...

6max(T , 0) · · · 6max(T ,T )


where

6max(k, s) := E[ĩe(k) j̃eT(s)]
ĩ, j̃ = argmax

i,j∈V
∥E[ie(k) jeT(s)]∥F

such that ∥6max(k, s)∥F ≥ ∥E[ie(k) jeT(s)]∥F ,∀, i, j ∈ V
[57].

Substituting all 6ij,∀i, j ∈ V with 6max , the original
cost (16) can be approximated in a form compatible with
convexification, although the result would be a conservative
solution. Amidst the iterative optimization framework, the
control law optimization for the approximated cost at the l th

iteration can be expressed as follows.
Problem 3: Optimal distributed control with maximum

estimation error covariance between agents.

min
F (l)∈F̃

J (l)apx(F (l))

where

J (l)apx(F (l)) = ∥Q
1
2 (I − P12 F (l)C)

−1
P116

1
2
w∥

2
F

+ ∥R
1
2 (I − F (l)CP12)

−1
F (l)CP116

1
2
w∥

2
F

+ ∥Q
1
2 (I − P12 F (l)C)

−1
P12 F (l)C6

(l) 12
max∥

2
F

+ ∥R
1
2 (I − F (l)CP12)

−1
F (l)C6

(l) 12
max∥

2
F
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+ ∥Q
1
2 (I − P12 F (l)C)

−1
P11µw∥

2
2

+ ∥R
1
2 (I − F (l)CP12)

−1
F (l)CP11µw∥

2
2 (17)

where 6
(l)
max is the upper bound error covariance at the l th

iteration.
Now, the cost function (17), which is still non-convex with

respect toF (l), can be reformulated into an equivalent convex
formulation in view of QI [47].
Definition 5: A subspace K̃ is called QI with respect to W

if and only if K̃WK̃ ∈ K̃,∀K̃ ∈ K̃ [44].
Remark 4: By Definition 5, it is trivial to show that

the subspace F̃ is QI with respect to CP12, because
F (l)CP12F (l)

∈ F̃, ∀F (l)
∈ F̃. Note that this is generally

not the case if the control input is subject to the structural
constraint. However, our problem can achieve QI owing to
the distributed estimator embedded in each agent.
Definition 6: Let us introduce a new optimization variable

8 ∈ RNpT×NnT , and formulate the cost function J̃ (l) :
RNpT×nNT

7→ R,∀i ∈ V with respect to 8(l) as

J̃ (l)(8(l)) = ∥Q
1
2 (I + P128(l)C)P116

1
2
w∥

2
F

+ ∥R
1
2 8(l)CP116

1
2
w∥

2
F
+ ∥Q

1
2P128(l)C6

(l) 12
max∥

2
F

+ ∥R
1
2 8(l)C6

(l) 12
max∥

2
F
+ ∥R

1
2 8(l)CP11µw∥

2
2

+ ∥Q
1
2 (I + P128(l)C)P11µw∥

2
2 (18)

and the non-linear mapping h : RNpT×NnT
7→ RNpT×NnT as

follows.

h(8) = (I +8CP12)−18 (19)

Lemma 2: Given the non-linear mapping in (19), which
establishes a bijective correspondence between F and 8,
we have that F = h(h−1(F)). Thus, the cost function J̃ (l)

in (18) is equivalent to J (l)apx in (17).
Proof. The proof follows from the definition of h and
utilization of the matrix inversion lemma, as demonstrated in
Lemma 1 of [47]. ■
Then, from Theorem 1 in [47], the equivalent convex

problem of Problem 3 can be formulated as follows.
Problem 4: Equivalent convex problem for optimal dis-

tributed control with maximum estimation error covariance
between agents.

min
8(l)∈h−1(F̃)

J̃ (l)(8(l)) (20)

Finally, Problem 4 can be solved through convex program-
ming, and F (l) is obtained from the optimized 8(l) by taking
the inverse mapping h−1 of (19).

C. CONVERGENCE CHECK
Once the control law and estimator are optimized at the
current iteration, i.e., F (l), and ϒ

(l)
i , ∀i ∈ V , we evaluate

them to decide whether to move on to the next iteration or

terminate the iteration. First, a set of optimized variables is
retained over the iterations as follows.

S :=
{
s(l)

∣∣∣∣s(l) = (
F (l), ϒ

(l)
1 , · · · , ϒ

(l)
N

)
, l ∈ N

}
The iterative optimization process ends if i) the num-
ber of iterations exceeds the threshold number Nmax , or
ii) the following stopping condition is met, which implies the
convergence of the consecutive iteration.

△J (l, l − 1) ≤ ϵstop (21)

where △J (l, l − 1) := |J (F (l), ϒ
(l)
1 , · · · , ϒ

(l)
N ) −

J (F (l−1), ϒ
(l−1)
1 , · · · , ϒ

(l−1)
N )|. The threshold ϵstop is set

sufficiently small. By substituting F (l), and ϒ
(l)
i ,∀i ∈ V

into (16), the cost at the l th iteration is computed. Once
the iteration terminates, the resulting optimized distributed
control-estimation laws are given by

F∗ = F (κ), ϒ∗i = ϒ
(κ)
i , ∀i ∈ V

where κ = arg min
∀l∈|S|

J (F (l), ϒ
(l)
1 , · · · , ϒ

(l)
N ) (22)

A comprehensive overview of the proposed iterative sub-
optimal linear distributed control-estimation law design
procedure is presented in Algorithm 1. In the runtime
phase, the designed F∗ and ϒ∗i are embedded into each
agent to execute the distributed control and estimation. The
runtime operation of the individual agents is summarized in
Algorithm 2.
Remark 5: The proposed distributed control-estimation

synthesis is performed in the offline design phase before the
deployment of theMAS. Themain computational complexity
of the design (Algorithm 1) is from the convex optimization
in solving Problem 4. Except for the computational burden in
convex optimization, the calculation of the inverse matrices,
as shown in (12) and (19), has a computational complexity
of O((Nn)3). As for the runtime operation (Algorithm 2),
it is viable for the limited onboard computing resources of
individual agents, because it only involves computing the
state estimate and control input based on the designed gains,
as shown in (7) and (9).
Remark 6: The central versus distributed paradigms for

MAS can be distinctly applied across the design and runtime
phases. In the design phase, Algorithm 1 leverages all
MAS information to optimize complex MAS tasks in a
centralized fashion, similar to [33], [34], and [35]. This
contrasts with distributed design, which relies solely on
information from neighboring agents, allowing each agent to
independently design its protocol in a decentralized manner.
During the runtime phase through Algorithm 2, our method
adopts a distributed control strategy that depends only on
local measurements from neighboring agents. This is in
contrast to centralized control, which requires full MAS
measurements and is impractical for online operations with
network topological constraints.
Remark 7: The proposed algorithm can be extended to

heterogeneous agents with more complex system dynamics.
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The structure of the algorithm remains the same, except for
the parts that involve agent dynamics, e.g., (5) and (10).
Although it is feasible to derive an algorithm for a hetero-
geneous MAS, we opted to focus on a homogeneous MAS in
this paper to clearly convey our core idea.
Remark 8: The proposed iterative optimization process

does not guarantee monotonic performance improvement
with each iteration. Therefore, to avoid an infinite run
of the iterative loop, the maximum number of allowed
iterations is set as the initial condition, Nmax . It is worth
noting that the focus of this paper is not on identifying
the conditions where the optimal solution can be tractable,
but on developing an optimization framework to effectively
approximate the solution for a wider scope of intractable
problems, specifically those that do not satisfy well-known
network conditions, e.g., the QI condition [44].

Algorithm 1 (Design phase)
Virtual Network Based Suboptimal linear Distributed
Control-Estimation Synthesi
Initialization
• Set the MAS dynamics information A, B, L, 6(0), ϵstop,
Nmax , F (0), and the cost metrics Q,R.

l = 0
While l ≤ Nmax
a) Distributed estimator design

While k ≤ T
1) GivenF (l), solve for the estimator gains for each agent,

Li(k + 1), ∀i ∈ V using (12)
k ← k + 1
end while
Output H⇒ ϒ

(l)
i , 6

(l)
ij ,∀i ∈ V

b) Distributed control law design
4) Given 6

(l)
ij ,∀i, j ∈ V , compute 6

(l)
max by Definition 4

5) Solve the convex problem in (20), and computeF (l) by
applying the inverse of the non-linear mapping in (19)

Output H⇒ F (l)

c) Convergence check
6) Store F (l) and ϒ

(l)
i ,∀i ∈ V in the set S

7) If (21) is satisfied −→ Break
else l ← l + 1

end while
Return H⇒ F∗, and ϒ∗i , ∀i ∈ V using (22)

IV. THEORETIC PERFORMANCE ANALYSIS
This section presents a verification of the theoretical perfor-
mance of the proposed solution. Beforehand, we consider an
auxiliary problem for an ideal MAS, having fully connected
network topology (�i = V, ∀i ∈ V) and no measurement
noise (vi = 0, ∀i ∈ V ) while retaining the same
dynamics as in (2). The optimal distributed control for such a
MAS can be implemented using full-state feedback without

Algorithm 2 (Runtime phase)
Virtual Interaction Based Suboptimal Linear
Distributed Control for the ith Agent
Initialization
• Set the MAS dynamics information A, B, Hi, the initial
condition ix̂(0), the optimized control and estimator
gains (F∗, ϒ∗i ).

k = 0
While k ≤ T do
1) Execute the control input ui(k) by (9)
2) The MAS state x(k) is evolved to x(k + 1) by (2)
3) Measure the state of neighboring agents, Zi(k + 1) by (4)
4) Update ix̂(k + 1) using (11), and (7)
k ← k + 1
end while

requiring a distributed estimator. The cost associated with
this auxiliary problem serves as a benchmark for comparing
it with other scenarios, such as those involving network
topology constraints or measurement noise.
Problem 5: Full-state feedback-based optimal distributed

control of a noise-free MAS with a fully connected network
topology.

min
F∈F̃

J̄ (F)

subject to (5), and ui = (IT ⊗Mi)FCx

where the quadratic cost J̄ = E
[
xTQx+ uTRu

]
can be

written by

J̄ (F) = ∥Q
1
2 (I − P12FC)−1P116

1
2
w∥

2
F

+ ∥R
1
2 (I − FCP12)−1FCP116

1
2
w∥

2
F

+ ∥Q
1
2 (I − P12FC)−1P11µw∥

2
2

+ ∥R
1
2 (I − FCP12)−1FCP11µw∥

2
2. (23)

Using the non-linear mapping technique (19), Problem 5
can be solved through the following equivalent convex
problem.
Problem 6: Equivalent convex problem for Problem 5.

min
8∈h−1(F̃)

¯̄J (8)

where

¯̄J (8) = ∥Q
1
2 (I + P128C)P116

1
2
w∥

2
F
+ ∥R

1
2 8CP116

1
2
w∥

2
F

+ ∥R
1
2 8CP11µw∥

2
2 + ∥Q

1
2 (I + P128C)P11µw∥

2
2.

Along with Problem 5, whose solution is denoted byF free,
the preceding optimization problems are characterized by the
following definition.
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Definition 7: Let us define a set of cost formulas as
follows.

Jopt : = J (Fopt , ϒ
opt
1 , · · · , ϒ

opt
N )

Japx : = J (κ)apx(F∗)
J free : = J̄ (F free)

J∗ : = J (F∗, ϒ∗1 , · · · , ϒ∗N )

which respectively refer to the global optima by the exact
optimal solution (denoted by Fopt , ϒ

opt
i ,∀i ∈ V) to

Problem 2; the optimal solution to the approximated cost for
Problem 3; the optimal solution to the noise-free cost for
Problem 5; and the cost achieved by the proposed distributed
control-estimation synthesis.

Note that Japx and J free are readily computed from equiv-
alent convex problems, i.e., Problems 4 and 6, respectively.
However, the global optimum Jopt , is not a convex problem
and is thus intractable to solve. Then, we are interested in
evaluating the performance of F∗, ϒ∗i ,∀i ∈ V as to Fopt ,
ϒ
opt
i ,∀i ∈ V in terms of the ratio between J∗ and Jopt .
Definition 8: Let ∇ := J∗

Jopt be the performance ratio of
the proposed solution relative to global optima.

Without knowing the exact Jopt , we provide a finite bound
on the ratio ∇ by using the computable measures Japx and
J free. Remark that ∇ gets closer to 1 when J∗ achieves the
comparable performance to Jopt [58].
Theorem 2: Given the primal distributed control-estimation

problem in the form of Problem 2, this ratio is bounded above
by the following inequality.

∇ ≤
Japx

J free
(24)

where Japx and J free are solved from Problem 4 and 6,
respectively.
Proof. First, from (23), (16), and (17), J̄ is the common part
of J and J (l)apx such that

J (F , ϒ1, · · · , ϒN ) = J̄ (F)+5(F , ϒ1, · · · , ϒN )

J (l)apx(F) = J̄ (F)+5(l)
apx(F) (25)

where 5 and 5
(l)
apx are the cost terms induced by the

estimation error covariances as follows.

5(F , ϒ1, · · · , ϒN )

=

∑
i,j

∥R
1
2 (I − FCP12)

−1
(MiFC6ijCTFTMT

j )
1
2 ∥

2
F

+

∑
i,j

∥Q
1
2P12(I − FCP12)

−1
(MiFC6ijCTFTMT

j )
1
2 ∥

2
F

5(l)
apx(F) = ∥Q

1
2 (I − P12 FC)

−1
P12 FC6

(l) 12
max∥

2
F

+ ∥R
1
2 (I − FCP12)

−1
FC6

(l) 12
max∥

2
F

(26)

By Definition 4, 5(F (l), ϒ
(l)
1 , · · · , ϒ

(l)
N ) ≤ 5

(l)
apx(F (l)) holds

for all l ∈ |S| including the case l = κ , and thus J∗ ≤ Japx .

Dividing this inequality by Jopt yields

J∗

Jopt
=: ∇ ≤

Japx

Jopt
.

Further, from the fact that J̄ is included in J ,

J̄ (F free) ≤ J̄ (Fopt ) ≤ J (Fopt , ϒ
opt
1 , · · · , ϒ

opt
N ) = Jopt .

Hence, J free ≤ Jopt holds. By this inequality,

∇ ≤
Japx

Jopt
≤
Japx

J free

which yields (24). This ends the proof. ■
Remark 9: Given a MAS network topology satisfying the

network observability condition in Theorem 1, ∇ varies with
the extent of disturbance and measurement noise. As an ideal
case, for deterministic MAS dynamics, i.e., 6w ≈ 0 and
6ij ≈ 0,∀i, j ∈ V , the approximated cost induced by the
estimation error covariances becomes negligible, i.e.,5(κ)

apx ≈

0, by (26). Thus, Japx ≈ J free from (25). Furthermore,
observing the cost comparison 0 ≤ J free ≤ Jopt ≤ J∗ ≤
Japx , it follows that 1 ≤ J∗

Jopt . Consequently, 1 ≤ ∇ ≤
Japx

J free ≈

1 implying that the proposed solution approaches the global
optima of Problem 2, J∗ ≈ Jopt . Moreover, when the initial
state x(0) has a zero mean, we have J free ≡ Japx ≡ J̄ (F∗).
In this case, the bounds can be further refined, resulting in
1 ≤ J∗

Jopt ≡
Japx
Jopt ≡

Japx

J free ≡ 1. This clearly indicates that the
upper bound of ∇ is tightened to one.

V. NUMERICAL SIMULATION
This section validates the proposed suboptimal linear dis-
tributed control-estimation synthesis via numerical simula-
tions using the following parameter sets A = 1, B = 1,
2i = 1, iξ = I5,∀i ∈ V , Q = I6 ⊗ (5I5 − 151T5 ), R = I25,
and T = 5. The considered network topology is an undirected
string graph with five agents, represented by the following
Laplacian matrix.

L =


2 −1 −1 0 0
−1 2 0 −1 0
−1 0 2 0 −1
0 −1 0 1 0
0 0 −1 0 1

 (27)

The primary goal of the defined cost metrics is to establish
a consensus protocol, where agents aim to converge to the
same state, thereby reducing the relative distance between
them to zero. For the iterative optimization process in
the design phase, the stopping criterion is set as ϵstop =

0.05 with the maximum number of iterations as Nmax =
10. In Figure. 2, the convergence of the proposed iterative
optimization process is demonstrated with the cost difference
of consecutive iterations. In the aforementioned problem set-
up, iteration terminates at the 5th iterations.

The resulting distributed control law, F∗ is color-coded
in Figure. 3 to provide a clearer insight into the proposed
virtual interaction concept. Displaying different colors with
respect to the gain magnitude, each entry of the computed
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TABLE 1. Comparative analysis of computational complexity and measurement loads.

FIGURE 2. Cost differences over the consecutive iteration of the proposed
algorithm.

control gain matrix F∗ indicates the weights of the (possibly
virtual) interactions between agents (e.g., the top row and
second column ofF∗ represent the virtual interaction weights
between the 1st agent and the 2nd agent, from the 1st agent’s
perspective at time step k = 0). Specifically, at time step
k = 2, F∗22 exemplifies the optimal control law for each
time step, in which a large gain value is assigned to those
that correspond to non-zero entries of L. This implies that
agents interact more intensively with their neighbors by
virtue of directly available measurements. More importantly,
even for zero entries in L, the corresponding control gain
value is not zero. This signifies virtual interactions between
non-neighboring agents through the fully connected virtual
network topology established by the distributed estimator.

FIGURE 3. The entry of the distributed control law, under θi = 1 and
i ξ = I5, ∀i ∈ V .

To further demonstrate the underlying mechanism of the
proposed distributed control-estimation synthesis, we have
performed additional simulations under different measure-
ment noise scenarios when the noise covariance of measuring
the 4th agent is ten times bigger than all the other agents, i.e.,

FIGURE 4. The entry of the distributed control law, under θi = 1 and
i ξ = diag(1, 1, 1, 10, 1), ∀i ∈ V .

FIGURE 5. Total costs over finite time horizon (Monte Carlo simulations
with 100 runs).

iξ = diag(1, 1, 1, 10, 1),∀i ∈ V . The resulting control gain
is color-mapped in Figure. 4. It is highlighted that increasing
the noise of the 4th agent reduces the interaction weights
between the 4th agent and all other agents. When optimizing
the control law, the cost function encompasses the estimation
errors of all individual agents. Therefore, the control law
is designed to diminish the effect of the estimation error
from measurement noise. This trend is well understood by
intuition because less interaction is preferable if the measured
information is inaccurate.

Two different distributed control schemes are carried out
for the comparative analysis. The first scheme employs
the suboptimal distributed control law developed in [33]
for MAS subject to the same partially connected network
topology, L. The second scheme considers the distributed
output feedback control under a fully connected network,
i.e., each agent can directly interact with every other
agent. Hence, a globally optimal distributed control solution
can be easily obtained [47]. Together with our distributed
control-estimation law scheme, three schemes are showcased
through Monte Carlo simulations. The average cumulative
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total costs for different schemes are shown in Figure. 5.
The proposed control-estimation law, which facilitates virtual
interactions among agents that are not direct neighbors,
surpasses the suboptimal solution for the same partially
connected network [33], and its performance nearly matches
the optimal solution with a fully connected network [47].
By Theorem 2, we can theoretically infer the solution to
Problem 2, which is not tractable but guaranteed to be within
the gray-shaded area. Additionally, it is worth noting that the
optimal solution with a fully connected network serves as
the lower bound for the solution to the original Problem 1,
since the problem of finding an optimal solution under the
fully connected network is an unconstrained optimization of
Problem 1. Therefore, by comparing the proposed solution
with the optimal solution with a fully connected network,
we can indirectly gauge the performance of the proposed
algorithm relative to the solution to Problem 1.

Table 1 provides a comprehensive comparison between
existing methods and our proposed method in terms of
computational complexity andmeasurement acquisition load.
These criteria are assessed using the big O notation,
which is desired to be small in practical applications. The
suboptimal solution stands out because it exhibits a minimal
measurement load and computational complexity during both
the design and runtime phases, albeit with poor performance.
Conversely, the optimal solution with a fully connected
network ranks least favorably in terms of the measurement
load, because it requires establishing network links between
every possible pair of agents in the entireMAS. Our proposed
method takes advantage of network connection efficiency
by relying only on neighboring measurements. This in turn
reduces the network overhead, while the performance nearly
matches that of a fully connected network MAS.

VI. CONCLUSION
In this paper, a synthesized suboptimal linear distributed
control-estimation framework has been proposed to address
the non-convex complexity imposed by the MAS network
topological constraint. The key innovation of the proposed
framework is that the distributed estimator expands the
information available to individual agents beyond their
neighbors, empowering the distributed control law to realize
interactions between non-neighboring agents. The theoretical
performance guarantees relative to the global optima of the
joint distributed control and estimation problems have been
discussed. Furthermore, numerical simulations have demon-
strated that the performance of distributed control-estimation
synthesis is superior to existing suboptimal solutions within
the same partially connected network topology and is
comparable to the globally optimal solution within a fully
connected network. The proposed work has taken the first
step toward a new paradigm on optimal distributed control,
opening up many future works including but not limited to:

1) extending the proposed distributed control-estimation
framework to an infinite time horizon case for practical
use; and

2) applying the proposed distributed control-estimation
framework to facilitate complex real-world applications,
subject to time-varying network topology, non-linear
stochastic dynamics, heterogeneous agents, physical
constraints, and process delays.
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