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ABSTRACT In recent years, the YOLOv8 series algorithms have become a research hotspot in many fields,
and they can perform excellently in different computer vision tasks. However, YOLOv8 still has room for
improvement in multi-target tracking. We integrated it with the Symmetric Positive Definite Convolution
(SPD-Conv) module and proposed the YOLOv8s SPD detector, which enhances its detection ability for
small targets. The values of mAP@0.5 and mAP@.5:95 have both been increased compared to YOLOv8s.
Subsequently, the detector was combined with the ByteTrack tracking algorithm, and the IoU and loss
function were optimized to achieve superior performance. We refer to this tracking framework as YBTrack.
YBTrack was tested on the Multiple Object Tracking (MOT) Challenge MOT17 and MOT 20 datasets, and
achieved MOTA metrics of 74.0% and 66.8%, respectively. Compared with existing tracking frameworks
with built-in detectors, our tracking framework has better performance.

INDEX TERMS YOLOv8s, Bytetrack, SPD Conv, MOT, computer vision.

I. INTRODUCTION
Target tracking, which has many applications in automatic
driving, video surveillance, and other industries, is a sig-
nificant area of study in computer vision. It is further
classified into two categories: single target tracking (SOT)
and multi-target tracking (MOT). Different from SOT, MOT
not only has to face the problems of target occlusion, scale
change, rapid motion, etc., but also needs to consider the
identity label (ID) matching of multiple targets in the front
and back frames, which is more difficult and has wider
applicability, and has attracted the attention of many scholars
at home and abroad. Early MOT algorithms [1], [2], [3],
[4], [5], [6] mainly used human-designed features to con-
duct inter-frame target association, and the available target
information was limited. Subsequently, machine learning and
deep learning were gradually applied to the field of MOT,
and breakthroughs were made [7], [8], [9]. Among these,
the deep learning-based MOT method substitutes the initial
artificial features with deep features that are extracted by
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the neural network, significantly enhancing tracking accuracy
and resilience. Based on the joint detection and embed-
ding (JDE) paradigm and the tracking-by-detection (TBD)
paradigm, the model structure basically divides the MOT
algorithm into two ways.

The TBD paradigm cascades detection and tracking tasks,
matching detection and tracking boxes through data associa-
tion, ultimately achieving the goal of ID association. Typical
algorithms include SORT [10], DeepSORT [11], and Byte-
Track [12]. Detector, motion estimation and data association
constitute the framework of SORT. To finish the motion
estimate, the target frame is predicted using the Kalman
filter [13]. In data association, the Hungarian algorithm [14]
is used for matching, and the Intersection over Union (IoU)
is employed to calculate the distance between the detection
box and the prediction box. DeepSORT proposes a cascaded
matching based data association method based on SORT,
which addsMahalanobis distance metric [15] (motion match-
ing) and cosine distance metric (feature matching) before IoU
distance metric, improving the long-term association ability
of the trackingmodel. ByteTrack believes that in the detection
stage, there are blocked targets in the detection boxes with
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low scores. If the low score box is removed directly based on
the threshold, the target is missing and the missed detection
is increased. In order to preserve the veiled target in the low
score detection frame, ByteTrack keeps the low score detec-
tion frame and matches it with the tracking track twice. The
outcomes demonstrate that this approach lowers the missing
rate and raises the model’s tracking consistency.

Wang et al [16] believe that the two-stage TBD paradigm
has efficiency issues, and they proposed the JDE paradigm by
studying the shared structure between detection and tracking
tasks. The JDE paradigm integrates object detection and Re
identification (Re ID) networks into one network, and then
performs subsequent matching and tracking based on the net-
work output, but its essence is still a two-stage pattern. After
studying existing one shot trackers, Zhang et al. [17] pointed
out that prior anchor boxes may deviate from the actual target
area, and there is not a one-to-one correspondence between
anchor boxes and targets, which seriously affects tracking
performance. They proposed an Anchor free JDE method
called FairMOT, which locates the center point of the target
through a heatmap and uses low dimensional Re ID feature
vectors to reduce overfitting risk and improve model robust-
ness. CTracker [18] and CenterTrack [19] further integrated
the data association matching process on the basis of the
two-stage JDE paradigm, achieving end-to-end training of the
tracking model, making it a true single-stage model.

In addition, some scholars put forward a new paradigm
based on tracking-by-attention (TBA) from the Query-Key
mechanism. For example, TransTrack [20], TrackFormer [21]
andMOTR [22] are all built based on Transformer [23] archi-
tecture, and useQuery to represent the target and complete the
detection and tracking of the target through the codec struc-
ture. TBA paradigm implicitly realizes data association and
improves tracking efficiency to a certain extent, but its model
structure is fixed, which limits the flexibility of application.

Although MOT research has made significant progress,
multi-target tracking still faces significant challenges: 1) the
problem of difficult identification of appearance features for
small targets in tracking targets. On the one hand, when dif-
ferent targets interact frequently, the tracker finds it difficult
to distinguish them based on their appearance features and
location information. On the other hand, when the target is
obstructed by obstacles in the background, it will disappear
briefly or for a long time, affecting the accuracy of target
detection. 2) The problem of target loss caused by motion
estimation deviation caused by irregular target motion. Most
of the existing algorithms consider the motion of the target
rule. If the target suddenly accelerates or turns, it will make
the motion estimate inaccurate, resulting in an IoU of 0,
making the target lose the chance of matching.

In response to the above issues, considering the simplic-
ity and ease of implementation of engineering applications,
as the detectors and trackers of JDE and TBA paradigms are
not designed in a separate cascading manner, it is not possible
to flexibly replace detectors. Therefore, this article chooses to

design a tracking model using the TBD paradigm, which has
high application value and is flexible to replace. The well-
performing YOLOv8s [24] detector and the SPD Conv [25]
module were combined to enhance small target detection per-
formance. Concurrently, a multi-target tracking system based
on matching for Expansion Intersection over Union (EIoU) is
suggested. Firstly, for the first matching of trajectory and high
score detection, a measure index based on small expansion
intersection ratio is designed to improve the performance of
high score detection box direct matching. secondly, ameasure
index based on large expansion intersection ratio is designed
to match the activation trajectory and low score detection
twice, which improves the tracking performance of low score
detection frame. In this paper, MOT17 [26] and MOT20 [27]
data are selected as experimental data sets, and the experi-
mental results demonstrate that the suggested framework has
higher robustness and better precision when compared to the
current multi-target tracking system.

II. YBTrack TRACKER FRAMEWORK
The detection and tracking framework based on TBD design
requires first inputting each frame in the video into the detec-
tor to generate detection boxes, and then linking the detection
boxes to the tracking trajectory. In this method, the effective-
ness of marker detection is particularly important because
it determines the number and type of targets to track. This
article first improves the object detector. Then, the optimized
YOLOv8s fusion BYTE data association method is used to
achieve target recognition and tracking.

A. YOLOv8 TARGET DETECTION
YOLOv8 was introduced by the YOLOv5 team in January
2023 and is a continuation of the YOLO [28] series. It can
swiftly finish multi-image processing jobs such object detec-
tion, instance segmentation, picture classification, and key
point detection. It is compatible with a wide range of image
processing tasks. To accommodate various scenarios, each of
these processing tasks has five distinct parametermodels: n, s,
m, l, and x.

Input, Backbone and Head form the overall network
structure of YOLOv8. In the Input, YOLOv8 closes the
Mosiac enhancement operation in the last 10 iteration cycles
of the data enhancement section, which can effectively
improve accuracy. In the Backbone section, the convolu-
tion in YOLOv8 uses Conv blocks, namely 2D convolution
Conv2d, 2D batch normalization BatchNorm2d, and activa-
tion function SiLU. The last layer of Backbone is the SPPF
module, which consists of two Conv modules before and
after, three MaxPooling modules in series in the middle, and
one connection layer. The input feature map passes through a
Conv module, then undergoes three max pooling operations,
and finally passes through a Conv module. The connection
layer connects four feature maps of Conv, Conv and 1 max
pool, Conv and 2 max pools, Conv and 3 max pools to realize
feature fusion at different scales. YOLOv8 replaces all C3
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modules in YOLOv5 with C2f modules to get richer gradient
flow information. In the Head section, YOLOv5’s original
Anchor Based has been replaced with Anchor Free.

B. SPD Conv MODULE
A space-to-depth layer and a non-strided convolution layer
make up the space-to-depth layer and non-strided convolution
layer (SPD-Conv) [25].

In the spatial-depth layer, the original feature map X with
any size S × S × C is segmented by the scale factor, and
two feature subgraphs of scale, fx,y, and the dimensions are
( S
scale ,

S
scale ,C), and the scale multiple downsampling of the

original featuremapX is realized. Then, the feature submap is
connected along the channel dimension to obtain the middle
layer feature map X ′( S

scale ,
S

scale , scale
2C), which preserves

every bit of data in the channel dimension. Equation 1 depicts
the calculating procedure.

f0,0 = X [0 : S : scale, 0 : S : scale] ,

f1,0 = X [1 : S : scale, 0 : S : scale] , . . . ,

fscale−1,0 = X [scale− 1 : S : scale, 0 : S : scale] ;

f0,1 = X [0 : S : scale, 1 : S : scale] ,

f1,1 = X [1 : S : scale, 1 : S : scale] , . . . ,

fscale−1,1 = X [scale− 1 : S : scale, 1 : S : scale] ; . . .

f0,scale−1 = X [0 : S : scale, scale− 1 : S : scale] ,

f1,scale−1, . . . ,

fscale−1,scale−1=X [scale−1 : S : scale, scale−1 : S :scale] .

(1)

Figure 1 takes scale = 2 as an example, and the orig-
inal feature map X [S, S,C] is split to obtain four feature
subgraphs, f0,0, f0,1, f1,0, f1,1, all of which are ( S2 , S2 ,C), and
2 times the downsampling of X is realized. Then, the feature
sub-maps are connected to obtain the middle layer feature
map X ′( S2 , S2 , 4C). The original X’s length and width are cut
in half, while the channel dimension increases to four times
its original size.

FIGURE 1. Space depth conversion module.

The non-step-over convolutional layer, the D-filter is
used to further transform the feature map X’ of the mid-
dle layer to obtain the feature map X ′′( S2 , S2 ,D). Since the

non-step-over convolution retains the feature information of
X ′ to the greatest extent, the SPD-Conv module realizes
downsampling while retaining the feature information as
much as possible.

C. YOLOv8s SPD ALGORITHM
Small target detection is a very challenging task, because of
the low resolution of small target, when it coexists with large
target, the feature learning process is often dominated by large
target, which is easy to cause small target missing detection.
The YOLOv8 backbone network’s step convolution mod-
ule uses downsampling to increase the sensitivity field and
decrease parameter calculation, which solves the problem
of large amount of redundant pixel information in scenes
with high image resolution and moderate object size. How-
ever, it inadvertently loses fine-grained information, which
greatly reduces the feature learning ability. In turn, YOLOv8s
has a low accuracy in detecting small targets, so it is not
suitable for practical applications. This study suggests the
YOLOv8s-SPD approach to address these issues by opti-
mizing the step convolution and pooling layer using the
SPD-Conv module to achieve downsampling without sacri-
ficing learnable features.

In order to reduce complex background interference,
YOLOv8s-SPD algorithm adds SPD-Conv module to the
Conv module of backbone network and head network, so that
the network can focus on small target features. Specifically,
the improvement lies in the addition of SPD Conv modules
to replace the 3rd, 6th, 9th, and 12th layers of the YOLOv8s
backbone network, as well as the initial downsampling mod-
ules found in the Head network’s layers 22 and 28. The
suggested algorithm’s network structure diagram is displayed
in Figure 2.

FIGURE 2. YOLOv8s SPD network structure diagram.

D. ByteTrack MULTI OBJECT TRACKING ALGORITHM
Based on the TBD paradigm, ByteTrack is a multi-target
tracking technique that uses the detector to obtain the detec-
tion frame for track tracking [12]. In the detection phase,
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most TBD algorithms discarded the low score detection box
directly, but this may cause the occluded real target to lose its
tracking trajectory. In order to improve such problems, Byte-
Track uses the data association method BYTE to establish
trajectories for high score detection boxes while performing
secondary matching between low score detection boxes and
trajectories, mining real targets and maintaining trajectory
coherence. The specific operation process is as follows:

First, The high frame threshold is set according to the
YOLOv8s-SPD detection results. If the confidence of a detec-
tion box exceeds the confidence of the box, it is added to
the Dhigh set, the set of high-scoring detection boxes. It is
also necessary to determine the low frame threshold. If the
confidence of a detection box falls between the low score
threshold and the high score threshold, it is added to the Dlow
set (low score detection box set).

Second, Dhigh is matched with an existing trajectory
for the first time. The IoU distance matrix of the Dhigh.
high-resolution frame and the trajectory set is calculated
and matched by the Hungarian algorithm. For successfully
matched tracks, its Kalman filter is updated and placed in the
current frame track collection. The trajectories that failed to
be successfully matched are placed into the set of trajectories
that failed to be matched in the first association, and in
Tremain, the high-scoring detection frames that failed to be
successfully matched are placed in the set of detection frames
that failed to be matched in the first association, Dremain.
Third, the second IoU association match was performed

with the Dlow and Tremain trajectories. The IoU distance
matrix of the Dlow and Tremain trajectory sets is calculated,
and the Hungarian algorithm is used to match. Trajectories
that fail to be successfully matched are put into the lost
trajectories collection, and the low-score detection boxes that
fail to be successfully matched are directly deleted in Tlost .
For successfully matched tracks, its Kalman filter is updated
and placed in the current frame track collection.

Finally, Track creation, deletion, and merge. For the detec-
tion box in Dremain, if the confidence value is greater than
the tracking score threshold, a new trajectory is created for
it and merged into the current frame trajectory set, otherwise
it is not processed. For tracks that remain in Tlost , 30 frames
are retained, and when they reappear, they are matched, and
if 30 frames do not reappear, they are deleted. The policy
process flow chart is displayed in Figure 3.

E. GREEDY MATCHING ALGORITHM BASED ON EIoU
In multi-target tracking tasks, due to changes in states such
as occlusion, target interaction, and irregular motion, it is dif-
ficult to obtain appearance and motion features, i.e. IoU=0,
resulting in trajectory matching failure. To address the issue
of traditional IoU metric failure, this paper designs a metric
based on the Expansive Intersection Union Ratio (EIoU)
region, which constructs spatiotemporal similarity between
the initial non overlapping detection area and the trajectory.
Without changing the original position center point, aspect

FIGURE 3. ByteTrack algorithm flowchart.

ratio, and shape, the matching space between the two is
expanded.

The IoU metric is shown in Figure 4, with the specific
equation of:

IoU =
A

⋂
B

A
⋃
B

(2)

Among them, A and B represent two original boxes,
the numerator is composed of the intersection between
boxes A and B, the denominator is composed of the union
between boxes A and B, and the IoU indicator is obtained by
the ratio between the two.

FIGURE 4. Schematic diagram of traditional IoU matching.

The calculation method based on the expansion inter-
section to union ratio region EIoU designed in this article
involves adding a proportional expansion region around the
original box, as shown in Figure 5. The specific equation is:

EIoU =
C

⋂
D

C
⋃
D

(3)

Among them, C and D represent two expansion boxes
based on the original boxes A and B, respectively. The
molecule is composed of the intersection between C and D
expansion boxes, and the denominator is composed of the
union between C and D boxes. The EIoU index is obtained
by the ratio between the two.

The expansion area is shown in Figure 6, and the expansion
box’s center coordinates match those of the original box.

120714 VOLUME 12, 2024



Y. Wang, V. Y. Mariano: Multi Object Tracking Framework Based on YOLOv8s and Bytetrack Algorithm

FIGURE 5. EIoU matching diagram.

The specific equation is:

e =
Ew − w
w

=
Eh − h
h

(4)

where, e stands for the proportional parameter of the expan-
sion area, EW stands for the width of the expansion box, the
expansion box’s height is denoted by Eh, the original box’s
height by ℏ, and the width of the original box by W .

FIGURE 6. Schematic diagram of expansion area.

Assuming the original match is represented as:

A = (x, y,w, h) (5)

Of them, the upper left corner of the detection box’s
horizontal coordinate is represented by x, while its vertical
coordinate is represented by y. According to the expansion
area ratio parameter e, the detection of the expansion area is
expressed as:

C =

((
x −

ew
2

)
,

(
y+

eh
2

)
,w (1 + e) , h (1 + e)

)
(6)

The method in this paper uses a two-stage association
cascade matching strategy, with a small expansion region
proportion hyperparameter e1 and a large expansion region
proportion hyperparameter e2, and e1< e2. The combination
of e1 and e2 is searched in the range of 0.2∼ 0.7, and the best
values of e1 and e2 are determined through grid search.

F. OVERALL PROCESS
With the deepening of the detection model network layer, the
convolution and pooling operations increase, which is easy
to cause the loss of small target features. Therefore, using
the SPC-Conv module to optimize the shallow convolutional
and pooling layers of the network, in order to maximize the
preservation of small target feature information. The tracking

part adopts ByteTrack algorithm. Select high and low con-
fidence thresholds of 0.6 and 0.1 for two matches. If both
matches fail, match them with inactive trajectories in the
target tracking pool. If the detection result does not match
the current tracking pool, save 30 frames.

Coordinate loss, object confidence loss and object classi-
fication loss constitute the loss function of common object
detectors. In this paper, since we only target people, tar-
get confidence loss and coordinate loss make up the two
halves of the loss function. The target confidence loss uses
BCEWithLogitsLoss, a variant of Binary Cross-Entropy Loss
(BCELoss), which combines the BCELoss and sigmoid func-
tions and is numerically more stable than using BCELoss and
sigmoid alone. The coordinate loss is based on CIoU loss,
which takes into account the distance between the center point
of the boundary frame and the aspect ratio, and improves
the recognition ability of occlusion interference to a certain
extent. Equation 7 illustrates the BCEWithLogitsLoss calcu-
lation process.

l = −w
[
ylogσ (x) + (1 − y) log (1 − σ (x))

]
(7)

where σ (x) = sigmoid(x), x represents the prediction output,
y represents the confidence label, and w is a fixed parameter,
which is set when the label is unbalanced, and is set to 1 under
normal circumstances.

The calculation method for CIoU loss is shown in
Equations 8-11.

LCIoU = 1 − EIoU +
ρ2

(
p, pgt

)
c2

+ αv (8)

EIoU =

∣∣C ⋂
D

∣∣∣∣C ⋃
D

∣∣ (9)

α =
v

(1 − EIoU) + v
(10)

v =
4
π2 (arctan

Egtw
Egth

− arctan
Ew
Eh

)
2

(11)

where D is the expanded prediction frame, C is the expanded
dimension frame, ρ is the Euclidean distance, p is the center
point of the prediction frame, pgt is the center point of the
dimension frame, c is the diagonal distance of the smallest
outer rectangular frame between boxes. α is a weight param-
eter, v is a parameter to measure the consistency of the aspect
ratio, Ew and Eh are the width and height of the prediction
box after expansion, Ewgt and E

gt
h are the width and height of

the label box after expansion.

III. EXPERIMENTAL DESIGN
A. EXPERIMENTAL DATASET
The experiments in this paper are based on two publicly
available MOT datasets.

The MOT17 dataset, one of the most widely used publicly
available datasets for multi-target tracking, contains 28 video
sequences, 14 of which are training sets and 14 of which are
test sets. All of the sequences are provided as video frames;
the total number of frames in the 28 videos is 11,235, and the
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number of frames used for training and testing is 5,316 and
5,919, respectively.

MOT20 data set focuses on extremely dense crowd scenes,
and its video can reach up to 246 people per frame, which can
well verify the tracking effect of the algorithm in frequent
occlusion and interaction scenes. MOT20 data set contains a
total of 8 videos, among which 01, 02, 03 and 05 are training
sets and 04, 06, 07 and 08 are test sets. All videos are provided
in the form of video frames. The 8 videos contain a total of
13,410 frames, and the number of video frames for training
and test are 8931 and 4479 frames respectively.

In the MOT17 and MOT20 datasets, the first half of each
video is used for training and the second half is used for
validation in this paper.

B. EXPERIMENTAL ENVIRONMENT AND PARAMETERS
The hardware configuration of this experiment is as fol-
lows: the CPU is Intel (R) Core (TM) i5-13400F, the main
frequency is 2.50GHz, and the GPU is NVIDIA GeForce
RTX4070. The experimental software environment is Win11,
CUDA11.8, and Python 2.1.2. We use YOLOv8s SPD as the
detector for the tracking framework. Train and evaluate on
the MOT17 and MOT20 datasets without loading any pre-
trained weights. In data augmentation, the image input size is
set to 640 × 640, the network learning rate is set to 0.0001,
the epoch is set to 100, and standard color hue, saturation,
rotation angle modification are used along with concatena-
tion and confusion techniques. In the tracking algorithm, the
number of unmatched tracking frames is set to 30; the low
confidence threshold is set at 0.1 while the high confidence
threshold is set at 0.6.

C. EVALUATION INDICATORS
Precision (P), recall (R), and average precision (mAP) are
used as performance evaluation indicators for the detector
[29]. The integral method computes the precision and recall
curves and the area around the axis.This is called one-class
precision (AP). The mAP value can be obtained by summing
the AP values of the individual categories and dividing by
the total number of categories. In this paper, the value of
mAP is calculated with IoU=0.5, that is, mAP@0.5 [30]. The
specific equation is shown as follows:

P =
TP

TP + FP
∗100% (12)

R =
TP

TP + FN
∗100% (13)

AP =

∫ 1

0
P®dr ∗ 100% (14)

mAP =

∑k
i=1 APi
k

∗100% (15)

The integration procedure in Equation 14 is to deter-
mine the area occupied by the smoothed curve P®,
which represents the smoothed precision and recall curves.
In Equation 15, i is an ordinal number, APi represents the

precision of the ith category, and k is the number of categories.
In this study, k=1.

Using MOTA, IDF1, MT, ML, IDs, and FPS as per-
formance evaluation indicators for the tracking framework.
MOTA (Multiple Object Tracking Accuracy) [31] is a mea-
sure of the overall performance of a tracker formultiple object
tracking, defined as follows:

MOTA = 1 −

∑
t (FPt + FN t + IDst)∑

t GT t
(16)

Among them, FPt , FN t , IDst , andGT t . respectively have the
number of false detections, the number of missed detections,
the number of trajectory ID conversions, and the number of
true values at time t, respectively. MOTA takes into account
tracking stability, accuracy, and completeness to measure the
overall performance of trackers. Since FPt , FN t , and IDst .
have no upper limit, the MOTA range is (−∞,1).

IDF1 (ID F1 Score) [32] takes into account both ID accu-
racy IDP and ID recall IDR, and has a high sensitivity to ID
information during the tracking process. Its definition is as
follows: 

IDF1 =
2 × IDP× IDR
IDP+ IDR

IDP =
IDTP

IDTP+ IDFP

IDR =
IDTP

IDTP+ IDFP

(17)

Among them, IDP and IDR represent the correct rate and
recall rate of identification, while IDTP, IDFP, and IDFN
represent the number of true positive IDs, false positive IDs,
and false negative IDs.

MT (Mostly Tracked Targets) [33] is a high integrity track-
ing, which refers to the proportion of tracks with a tracking
length of over 80%.

ML (Most Lost Targets) [29] is a high degree of missing
tracking, which refers to the proportion of trajectories with
tracking length less than 20%.

IDs (ID switches) [33] are the total number of ID transi-
tions during the tracking process.

FPS (Frames Per Second) is the number of frames pro-
cessed by the tracking framework per second.

D. YOLOv8 DETECTION RESULTS
Table 1 shows the detection results of YOLOv8 on the
MOT17 and MOT20 datasets. It can be seen from this
that on the MOT17 dataset, the accuracy, recall, and
mAP@0.5 mAP@.5. 95 is lower than the highest val-
ues of 1.1, 0.2, 0.6, and 1.6 percentage points, respec-
tively. On the MOT20 dataset, the accuracy, recall, and
mAP@0.5 mAP@.5. 95 is lower than the highest values
of 2.1, 2.2, 1.2, and 4.5 percentage points respectively, but
its performance is significantly improved compared to the
n model. However, from the perspective of model memory
usage and GFLOPs values, the size and complexity of the s
model are much smaller than those of the m, l, and x models.
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TABLE 1. Performance of five parameter models in YOLOv8.

Compared with the n model, the improvement in model size
and complexity is not significant. Therefore, this article uses
the YOLOv8s detection network to detect targets with high
accuracy and fast detection speed, providing fast and accu-
rate detection targets for subsequent ByteTrack multi-target
tracking algorithms.

E. COMPARISON OF YOLOv8s SPD DETECTION RESULTS
We adopted the same data partitioning strategy and experi-
mental Settings with existing target detection algorithms such
as YOLOv5s and YOLOv8s, and trained them with the same
experimental parameters for 100 rounds respectively to test
their performance. Corresponding experimental results are
shown in Table 2. It can be seen from the table that com-
pared with the YOLOv8s algorithm, the improved YOLOv8s
algorithm has improved in the values of P, R, mAP@0.5 and
mAP@.5:.95, and its mAP@0.5 value on MOT17 and
MOT20 datasets has increased by 1% and 0.6% respec-
tively. The experimental results show that the YOLOv8s-SPD
algorithm with SPD-Conv module can realize the subsam-
pling while retaining the target feature information as much
as possible.

F. ABLATION EXPERIMENT
In this section, we take a close look at all the above methods
and conduct rigorous experiments on the BCEWithLogit-
sLoss and EIoUmethods in YBTrack based on the YOLOv8s
SPD model. We conducted ablation experiments without the
assistance of a pre-trained model in order to ensure fair and
objective results. Of the MOT17 and MOT20 datasets, half
were used for training and the other half for evaluation.
Table 3 displays the results of the ablation test. Based on
loss function and IoU optimization, the experimental findings
show that MOTA and IDF1 on MOT17 and MOT20 data

TABLE 2. YOLOv8s SPD detection results.

are, respectively, 2.8 and 2.7, 2.6 and 2.3 percentage points
higher than those of prior frameworks. BCEWithLogitsLoss
and EIoU methods can effectively improve the performance
of YBTrack tracking framework.

TABLE 3. Ablation experiment.

G. COMPARISON WITH OTHER TRACKING FRAMEWORKS
In order to make the results fair and impartial, after train-
ing the YOLOv8s-SPD model, to load the best round of
pre-training weights into the tracking system, we used the
same training and test data. Table 4 displays the outcomes of
the experiment. Our model performs exceptionally well on
the MOT17 dataset. With the exception of the fact that the
tracking framework’s total ID changes exceed those of the
Relation Track [34] method, other performance indicators of
the tracking framework are better than that of the Relation
Track method. The values of MOTA and IDF1 are respec-
tively 0.2 and 0.4 percentage points higher than those of
Relation Track method, and the values of FPS are 0.4 points
higher than those of Relation Track method.

In the dataset MOT20, all of our metrics outperform the
LCC tracking framework compared to the RekTCL [35] and
LCC [36] methods, only the total number of ID changes is
slightly higher than the LCC. On the other hand, although the
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RekTCL approach is faster than our approach, our framework
has higher MOTA and IDF1 values, and its total target ID
changes are 1.8 times higher than ours. After comparison,
it can be seen that our model speed is not the highest, but
combining model speed, accuracy and other important indi-
cators data, our framework has advantages, especially IDF1
value is 5.4 percentage points higher than RekTCL method.

TABLE 4. Performance comparison with other tracking frameworks.

IV. CONCLUSION
As can be seen fromTable 1, onMOT17 andMOT20 datasets,
the values of mAP@0.5 and mAP@.5:.95 of the improved
Yolov8S-SPD model increase by 1%, 2.2%, 0.9% and 1%,
respectively, with higher accuracy than the original YOLOv8s
model. As can be seen from Table 4, on the MOT Challenge
MOT17 dataset of tracking framework.

YBTrack, the values of MOTA and IDF1 are 0.2 and
0.4 percentage points higher than those of Relation Track
method respectively, and the values of FPS are 0.4 points
higher than those of Relation Track method. The MOTA and
IDF1 values of YBTrack on the MOT20 data set were 75.5%
and 66.8%, respectively, which were 8.4 and 0.8 percentage
points greater than those of the LCC method. It can be seen
that YBTrack has better performance than existing tracking
frameworks with built-in detectors.

V. DISCUSSIONS
In this work, we integrated SPD-Conv module into the
YOLOv8s model to alleviate the phenomenon of missing
detection of small targets, and conducted ablation experi-
ments. The outcomes of the experiment demonstrated that

SPD-Conv retained more feature information of targets in
the process of downsampling. Considering that the tracking
target may have occlusion, target interaction, irregular motion
and other changing states, we optimized the traditional IoU to
design EioU. The results show that the intersection ratio after
expansion effectively reduces the probability of trajectory
matching failure. After that, we use BCEWithLogitsLoss for
loss calculation, and propose a YBTrack tracking framework
with high performance, which has achieved excellent perfor-
mance on both MOT20 and MOT17 datasets.

In the process of track deletion in ByteTrack algorithm,
we adopt a fixed retention frame number of 30. Whether this
value is the best, and whether it is more reasonable and effec-
tive to design this retention frame value as a dynamic value?
In the future, we will continue to conduct more in-depth
research to explore the optimal retention frame to further
optimize our approach.
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