
Received 31 July 2024, accepted 21 August 2024, date of publication 26 August 2024, date of current version 6 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3449914

Accelerated Finite Element Method Solver for RCS
Analysis Using CUDA-Based Parallel Computing
MINCHEOL JO1, WOOBIN PARK 1, MOONSEONG KIM 2, AND WOOCHAN LEE 1
1Department of Electrical Engineering, Incheon National University, Incheon 22012, South Korea
2Department of IT Convergence Software, Seoul Theological University, Bucheon 14754, South Korea

Corresponding authors: Moonseong Kim (moonseong@stu.ac.kr) and Woochan Lee (wlee@inu.ac.kr)

This work was supported in part by the Laboratory of Computational Electromagnetics for Large-Scale Stealth Platform under
Grant UD230016JD, in part by the National Research Foundation of Korea (NRF) grant funded by Korean Government
under Grant RS-2023-00242558, and in part by the Institute of Information and Communications Technology Planning and
Evaluation (IITP) grant funded by Korean Government under Grant 2019-0-00098.

ABSTRACT When addressing large-scale electromagnetic problems using the finite elementmethod (FEM),
the resulting matrices are typically sparse, necessitating numerous sparse matrix-vector multiplication
(SpMV) operations. To handle this efficiently, research has focused on leveraging large-scale parallel
processing with graphics processing units (GPUs). These GPUs can be controlled directly using NVIDIA’s
Compute Unified Device Architecture (CUDA). In this paper, we analyze electromagnetic scattering for
dielectric and dielectric-coated structures using iterative solvers with FEM. To accelerate the handling of the
large-scale matrices generated during this process, we employ compressed sparse row (CSR) format, various
preconditioners, and CUDA-based GPU parallelization. We verify the accuracy of our results by comparing
them with those obtained using the commercial electromagnetic software High Frequency Structure Simula-
tor (HFSS) and our custom-developedMATLAB-based FEM code. Performance improvements are assessed
by comparing these results with those fromMATLAB’s backslash direct solver under single-core processing
conditions.

INDEX TERMS Finite element method, absorbing boundary conditions, radar cross section, parallel
processing, CUDA.

I. INTRODUCTION
To address electromagnetic phenomena, understanding
Maxwell’s equations is essential. However, deriving explicit
solutions to these equations is notoriously complex. Hence,
for practical purposes such as analyzing electromagnetic
scattering and antenna radiation, employing electromagnetic
numerical analysis becomes imperative. This computa-
tional approach enables the approximation of solutions to
Maxwell’s equations through computer-based methods [1].
One of the most widely used CAD tools for interpreting
problems such as antenna and scattering analysis, FEM is a
representative electromagnetic numerical analysis technique.
It excels in interpreting geometrically complex structures and
heterogeneous materials [1], [2], [3], [4]. Also, the system
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matrix obtained through the finite element process is sparse,
offering advantages for iterative methods [3], [5] and suit-
ability for parallel computation with domain decomposition
algorithms [6], [7], [8], [9]. Furthermore, Time-domain finite
element method (TDFEM) can effectively address nonsta-
tionary and nonlinear electromagnetic problems where the
properties of the media vary with time [10], [11]. As a
result of these advantages, research using TDFEM has
been extended, ranging from accelerating TDFEM simula-
tions by extending the time step sizes [11] to developing
TDFEM acceleration algorithms for analyzing and design-
ing very large-scale on-chip circuits using the structure of
on-chip circuits such as Manhattan geometry and layered
permittivity [12].

In electromagnetic problem analysis using the FEM,
special boundary conditions such as absorbing boundary
conditions (ABC) and perfectly matched layers (PML) are
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required to truncate the computational domain [13]. ABC is
a boundary condition that simulates the behavior of outgoing
waves by setting up virtual boundaries at the edges of the
computational domain [13], [14]. On the other hand, PML
is a boundary condition that minimizes reflections at the
boundary by absorbing outgoing waves through the design of
an artificial layer [13], [14]. While PML has the advantage
of being less influenced by incident angle and frequency,
it increases computational time and computer memory due
to the additional computational domain corresponding to the
artificial layer [13]. Unlike PML, ABC does not require addi-
tional artificial layers, which is an advantage. However, it is
known that the absorption performance varies depending on
the distance between the virtual boundary and the scattering
object [13]. It is known that the second order ABC predicts
lower reflection compared to the first order ABC. However,
it is also known that the finite element matrix with first order
ABC provides better conditions than that with second order
ABC, making it more efficient for iterative methods [15].
Additionally, according to the previous research conducted
by our group, the first-order ABC has been found to perform
better compared to PML and waveguide port boundary con-
dition (WPBC) [16].
GPUs have significant advantages in handling computa-

tionally intensive data parallel tasks, such as finite element
calculations [17]. Therefore, improving FEM speed using
GPUs is a major research topic in FEM parallel com-
puting [18]. Recently, GPU hardware and programming
strategies have continuously developed [19]. Therefore, ana-
lyzing the parallelism of electromagnetic problems and
designing efficient GPU parallel algorithms to maximize
hardware performance have great potential to address these
challenges [20], [21]. Most existing FEM parallel computing
studies focus on the two most time-consuming parts solving
the system of linear equations [22], [23], [24] and assembling
the sparse global matrix [25], [26], [27].
Research has been conducted to accelerate the computation

of inverse matrices by developing new algorithms. For exam-
ple, an algorithm has been proposed that improves the speed
of Ridge regression estimator calculations through serial
expansion and computational reuse, without adopting inverse
matrix computation or other factorizationmethods [28]. Itera-
tivemethods aremore suitable for solving large-scale systems
of linear equations compared to direct elimination methods,
leading to many studies on implementing iterative solvers
using parallel computing-based GPUs [5], [29]. The conju-
gate gradient (CG) method [30], [31], one of the iterative
methods, is frequently employed due to its ease of imple-
mentation and excellent parallelism [18], [32]. However,
directly using the CG method often results in slow conver-
gence because the condition number of the system of linear
equations is too large. To achieve better convergence results
and improve solution speed, the preconditioned conjugate
gradient (PCG) method needs to be used [31], [32]. In large-
scale engineering finite element problems, the global matrix
is significant, and many of its coefficients are zero. In such

problems, the global matrix is usually stored in a sparse
matrix format. Therefore, SpMV operations are required
during the solution process of the PCG method. The perfor-
mance of SpMV directly affects the solution time of the PCG
method. The GMRES method is used for solving asymmetric
and non-Hermitian linear systems and can be parallelized
on both CPUs and GPUs. Additionally, recent studies have
addressed round-off errors that may arise during the process
of generating orthogonal basis vectors [33], [34], [35], [36],
[37], [38], [39]. BICG and BICG-STAB require two SpMV
operations and several vector-vector operations within each
iteration. The efficiency of SpMV depends on the memory
access patterns of GPU threads, which are determined by
the sparse matrix storage format, making efficient allocation
of GPU memory crucial [5]. However, due to the uncertain
number of non-zero values in each row of the sparse matrix,
irregular memory access patterns may be introduced when
designing GPU parallel programs for SpMV [24]. Despite
these challenges, some researchers have conducted GPU par-
allel research on SpMV and achieved excellent results [40],
[41], [42], [43], [44], [45], [46], [47].

In this paper, the electromagnetic scattering problems
caused by 3D dielectric and dielectric-coated structures in
free space are analyzed using FEM to calculate scattered
electric field and radar cross section (RCS) parameters. First-
order and second-order ABCs are applied to truncate the
computational domain, and the accuracy and validity of
the simulation results are verified through comparison with
the commercial electromagnetic analysis software HFSS,
identifying methods with better convergence. Additionally,
while previous research applied CUDAC/C++ library-based
GPU parallel acceleration for BICG and BICG-STAB meth-
ods, this paper implements parallelization of BICG-STAB’s
SpMV using CUDA C/C++ kernels to directly control GPU
operations and compares its performance with the MATLAB
backslash direct solver. Furthermore, the efficient com-
pressed sparse row (CSR) format is used for sparse matrix
storage, and additional simulation acceleration is performed
by applying MATLAB’s built-in function ‘‘Equilibrate’’ and
SSOR-AI and Jacobi preconditioning techniques. Finally,
the performance improvement of GPU parallel computation
is compared with single-core CPU computation for each
method.

II. FEM WITH BOUNDARY CONDITIONS FORMULATION
In this paper, electromagnetic scattering problems of a 3D
dielectric structure in free space, as depicted in Fig. 1, are
analyzed. In electromagnetic scattering problems, the elec-
tric field is governed by the vector wave equation derived
from Maxwell’s equations, as shown in (1). To formulate
the scattering field, substituting E = Esc + Einc into (1)
yields (2) [15].

∇ ×

[
1
µr
∇ × E

]
− k20εrE = 0 (1)
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FIGURE 1. 3D dielectric structures in free space.

FIGURE 2. 3D dielectric-coated PEC structures in free space.

∇ × (
1
µr
∇ × Esc)− k20εrE

sc

= −∇ × (
1
µr
∇ × Einc)+ k20εrE

inc (2)

The first and second absorbing boundary conditions can
be written as (3) and (4) [15], [48]. Here, β(r) is defined as
r/2(1+ jk0r), and subscript t and r denote the transverse to r
and radial component, respectively.

r× (∇ × Esc)

≈ −jk0r× (r× Esc) (3)

r× (∇ × Esc)

≈ −jk0r× (r× Esc)

+ β(r)∇ × [r(∇ × Esc)r ]+ β(r)∇t (∇ · Esct ) (4)

Applying the generalized variational principle to (2)
and imposing the absorbing boundary condition on
an arbitrary surface S to truncate the computational
domain yields an equation in the form of functional (5)
[15], [48], [49].

F(Esc)

=
1
2

∫∫∫
V

[
1
µr

(∇ × Esc) · (∇ × Esc)− k20εrE
sc
· Esc

]
dV

+

∫∫∫
Vsc

[
1
µr

(∇×Esc) · (∇×Einc)− k20εrE
sc
· Einc

]
dV

−
1
2

∫∫
⃝

S
Esc · P(Esc)dS +

∫∫
⃝

Ssc
Esc · (n×∇ × Einc)dS

(5)

In (5), P is a vector operator, defined as (6) for the first
order ABC and (7) for the second order ABC. Addition-
ally, V is the total volume of the computational domain,
S is the outer surface of the computational domain, and
Vsc and Ssc are the volume and surface of the scatterer,
respectively [15].

P(Esc) = jk0r× (r× Esc) (6)

P(Esc) = jk0r× (r× Esc)

− β(r)∇ ×
[
r
(
∇ × Esc

)
r

]
− β(r)∇t (∇ · Esct )

(7)

Expanding (5) yields the following expression. Addition-
ally, the region corresponding to V uses volume elements(3D
vector basis functions Ne), and the region corresponding to S
uses surface elements (2D vector basis functions Ns) [15].

F

=
1
2

V∑
e=1

{
Ee

}T [
K e] {

Ee
}
+

1
2

S∑
s=1

{
Es

}T [
Bs

] {
Es

}T
−

Ssc∑
s=1

{
Es

}T {
bs

}
(8)[

K e]
=

∫∫∫
V

[
1
µr

(∇ × Ne) · (∇ × Ne)− k20εrN
e
· Ne

]
dV

+

∫∫∫
Vsc

[
2
µr

(∇ × Ne) · (∇ × Einc)− k20εrN
e
· Einc

]
dV[

Bs
]

= −

∫∫
⃝

S
Ns
· P(Ns)dS{

bs
}

=

∫∫
⃝

Ssc
Ns
· (n×∇ × Einc)dS (9)

Furthermore, applying the Ritz procedure yields the fol-
lowing matrix formulation as

[K ] {E} = {b} (10)
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If the analysis is conducted on a perfectly conducting
scatterers, (5) can be simplified as

F(Esc)

=
1
2

∫∫∫
V

[
1
µr

(∇ × Esc) · (∇ × Esc)− k20εrE
sc
· Esc

]
dV

−
1
2

∫∫
⃝

S
Esc · P(Esc)dS (11)

In the case of perfectly conducting scatterers excitation
is introduced through application of the Dirichlet boundary
condition n × Esc = −n × Einc. Due to this difference,
the efforts required in their numerical implementations are
different [15].

However, as shown in the structure of Fig. 2, many metal
objects are often coated with a dielectric material for various
purposes (such as protection, functionality, etc.). In the case
of such structures, it is necessary to consider both afore-
mentioned methods simultaneously. If the dielectric coating
is relatively thin compared to the scatterer, the mesh for
the dielectric coating becomes relatively small, leading to
multi-scale and other issues, making accurate analysis dif-
ficult. To address this problem, the impedance boundary
condition (IBC) should be applied. This approach has the
advantage that the field inside the IBC does not need to be
analyzed, regardless of the shape and structure of the object.

F(Esc)

=
1
2

∫∫∫
V
[
1
µr

(∇ × Esc) · (∇ × Esc)− k20εrE
sc
· Esc]dV

+
1
2

∫∫
⃝

S
Esc · P(Esc)dS

+

∫∫∫
Vsc

1
µr

[(∇ × Esc) · (∇ × Einc)− k20εrE
sc
· Einc]dV

−

∫∫
⃝

SIMP
Esc · (n× (∇ × Einc))dS

+
jk0Z0
K

∫∫
⃝

SIMP
(n× Esc) · (n× Esc)dS

+
jk0Z0
K

∫∫
⃝

SIMP
(n× Esc) · (n× Einc)dS (12)

The modified equation for applying the IBC is given
by (12) and expanding (12) yields the following expression.
Additionally, SIMP is the surface for the impedance boundary
(outer surface of the coated dielectric).

F

=
1
2

V∑
e=1

{
Ee

}T [
K e] {

Ee
}
+

1
2

S∑
s=1

{
Es

}T [
Bs1

] {
Es

}T
+

1
2

SIMP∑
s=1

{
Es

}T [
Bs2

] {
Es

}T
−

SIMP∑
s=1

{
Es

}T {
bs

}
(13)[

K e]
=

∫∫∫
V

[
1
µr

(∇ × Ne) · (∇ × Ne)− k20εrN
e
· Ne

]
dV

+

∫∫∫
Vsc

[
2
µr

(∇ × Ne) · (∇×Einc)−k20εrN
e
· Einc

]
dV[

Bs
]

=
[
Bs1

]
+

[
Bs2

]
= −

∫∫
⃝

S
Ns
· P(Ns)dS

+ 2
jk0Z0
K

∫∫
⃝

SIMP
(n× Ns) · (n× Ns)dS{

bs
}

=

∫∫
⃝

Ssc
Ns
· (n×∇ × Einc)dS

−

∫∫
⃝

SIMP
Ns
· (n× (∇ × Einc))dS

+
jk0Z0
K

∫∫
⃝

SIMP
(n× Ns) · (n× Einc)dS (14)

where [K ] is assembled form [K e] and [Bs], and {b} is assem-
bled form {bs}. This system can be solved using either direct
methods or iterative methods. When solved using iterative
methods, it is characterized by the need for a large number
of SpMV.

III. RCS ANALYSIS FORMULATIONS
RCS is a measure of how electromagnetic waves are reflected
off an object, determined by the magnitude of radar sig-
nals scattered from the reflection of emitted electromagnetic
waves off the target object. RCS is a critical parameter in typ-
ical electromagnetic scattering problems, but it is a complex
physical quantity associated with various variables such as
the size, shape, and material of the object, as well as factors
like radar frequency and incident angle [57].

In 3-D, RCS is defined as (15), where uscatfar represents the
scattered electric or magnetic field from a specified direction
at the far-zone [57].

σ3D = lim
R→∞

4πR2

∣∣∣uscatfar

∣∣∣2∣∣uinc∣∣2 (15)

The far-zone scattered fields can be calculated through
the post-processing of FEM. Once the scattered electric
field is obtained through FEM, the electric and magnetic
fields in the far-zone can be calculated using Huygens’
surface equivalence principle as expressed in (16) [57]. J
and M are the electric current density and magnetic cur-
rent density, respectively, and S ′ is Huygens’ surface. R
is chosen to be sufficiently large to satisfy the far-field
assumption.

Escatfar (r) = jk
e−jkR

4πR

∫∫
⃝

s′

×
[
r×M(r′)+ ηr× (r× J(r′))

]
e−jk(r

′
·r)ds′

Hscat
far (r) = jk

e−jkR

4πR

∫∫
⃝

s′

× [J(r′)× r+
1
η
r× (r×M(r′))] e−jk(r

′
·r)ds′

(16)
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When the outermost surface of the scatterer is a dielectric,
the Huygens’ surface must be chosen as a closed surface
slightly offset from the outermost boundary of the scatterer.
In FEM analysis, since the domain is discretized, the closed
surface is chosen to be offset by one element. Consequently,
the integral over the Huygens’ surface in (16) is expressed
as the sum of K elements adjacent to the Huygens’ surface
in (17). In (17), I1 and I2 for each coordinate correspond to
the equations given in (18) [57].

(Escatfar )x

= jk
e−jkR

4πR

K∑
i=1

× (I (i)1x + ηI (i)2x )e
jk(x(i)m sin θ cosϕ+y(i)m sin θ sinϕ+z(i)m cos θ )1s(i)

(Escatfar )y

= jk
e−jkR

4πR

K∑
i=1

× (I (i)1y + ηI (i)2y )e
jk(x(i)m sin θ cosϕ+y(i)m sin θ sinϕ+z(i)m cos θ )1s(i)

(Escatfar )z

= jk
e−jkR

4πR

K∑
i=1

× (I (i)1z + ηI (i)2z )e
jk(x(i)m sin θ cosϕ+y(i)m sin θ sinϕ+z(i)m cos θ )1s(i)

(17)

I1
= r×M = r× E× n = I1xx+ I1yy+ I1zz

I2
= r× r× J = r× r× n×H = I2xx+ I2yy+ I2zz (18)

Ultimately, the RCS obtained through FEMpost-processing
can be calculated using the far-field values obtained from (17)
through the calculation shown in (19) [57].

σ3D = 4πR2
[∣∣∣(Escatfar

)
x

∣∣∣2 + ∣∣∣∣(Escatfar

)
y

∣∣∣∣2 + ∣∣∣∣(Escatfar

)
z

∣∣∣∣2
]
(19)

IV. ITERATIVE SOLVER WITH CUDA-BASED PARALLEL
COMPUTING
The FEM solver can be solved by direct and iterative
methods. It is known that the complexity and memory
requirements of direct methods increase exponentially with
the dimension of the FEM system matrix. On the other hand,
iterative solvers require significantly less memory compared
to direct solvers, making them well-suited for large-scale
matrix problems [5], [15]. Therefore, in this paper, we apply
CUDA-based GPU parallel processing to perform finite ele-
ment analysis using the more concise and efficient BICG and
BICG-STAB methods compared to other iterative methods
and compare them with the MATLAB backslash method.

A. CUDA PROGRAM OUTLINE
CUDA is a programming interface provided by NVIDIA,
one of the GPU manufacturers, to enable the use of GPUs
for general-purpose computing on graphics processing units
(GPGPU). CUDA is essentially an extension language of
C/C++, allowing modules written in CUDA to be invoked
and used from languages such as Fortran, Java, Python, and
others. However, to directly control the GPU via CUDA,
code must be written in CUDA C/C++. A CUDA program
consists of host code and device code, and the typical flow of
a CUDA program is depicted in Fig. 2 [16], [58].

FIGURE 3. Flow of CUDA programs.

Because the CPU and GPU are independent devices, they
have separate memory spaces. Therefore, to perform GPU
computations, it is necessary to copy the data required for the
operations from host memory to device memory. Once the
copying process is completed, GPU computation begins via
kernel calls, and the computation results are stored in device
memory. Subsequently, copying the data stored in device
memory back to host memory allows for verification of the
computation results [16], [58].

B. CUDA-BASED PARALLEL COMPUTING
IMPLEMENTATION
Most iterative algorithms, including BICG and BICG-STAB,
require SpMV. In these computations, each element necessi-
tates multiplication and addition, which can be parallelized
as they are independent operations. Moreover, finite element
matrices are often in sparse matrix, containing many zeros,
which reduces the number of elements requiring multiplica-
tion. This makes SpMV more efficiently calculated.

In this paper, BICG and BICG-STAB solvers are employed
to solve the finite element matrices, as depicted in
algorithm 1, 2 [59]. To implement the BICG and BICG-STAB
methods, it is necessary to compute SpMV in the form of
y = A·x, whereA is anm×nmatrix, x is a vector of size n, and
y is a vector of sizem. The calculation for y can be represented
as yi =

∑n
j=1 Aij · xj since each row of the vector y is

independent, we can utilize parallel processing to compute
them simultaneously. Moreover, the parts corresponding to y
that can be parallelized in BICG and BICG-STAB are Apj,
p̂jA, Asj. In BICG and BICG-STAB, there are 2 and 6 parts
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corresponding to y, respectively. Therefore, in this paper,
CUDA was applied to accelerate computation by directly
controlling GPU, large-scale processing devices with a sig-
nificant number of computational cores, compared to CPU,
for SpMV.

Algorithm 1 BICG [59]
Initialize : x0 = 0, r0 = b − Ax0, r̂0 = r0, p0 = r0, p̂0 =
r̂0
Repeat (j = 0, 1, . . . )

αj←
r̂jrj
p̂jApj

xj+1← xj + αj · pj
x̂j+1← x̂j + αj · p̂j
rj+1← rj − αj · p̂jA

βj←
r̂j+1rj+1
r̂jrj

pj+1← rj+1 + βj · pj
p̂j+1← r̂j+1 + βj · p̂j

Algorithm 2 BICG-STAB [59]
Initialize : x0 = 0, r0 = b− Ax0, p0 = r0
Repeat (j = 0, 1, . . . )

αj← (rj, r∗0 )/(Apj, r
∗

0 )
sj← rj − αjApj
ωj← (Asj, sj)/(Asj,Asj)
xj+1← xj + αjpj + ωjsj
rj+1← sj − ωjAsj
βj←

(rj+1,r∗0 )
(rj,r∗0 )

×
αj
ωj

pj+1← rj+1 + βj(pj − ωjApj)

Algorithm 1 involves SpMV computations, such as Apj
and p̂jA, at each iteration step. To accelerate these com-
putations, information about matrix A is stored in CSR
format, and a kernel function is directly developed to par-
allelize element-wise multiplication and addition. Similarly,
Algorithm 2 includes computations such as Apj and Asj at
each iteration step. Acceleration for Algorithm 2 was per-
formed in the same manner as Algorithm 1.

V. SIMULATION RESULTS
A. TESTING AND VALIDATION OF AN IN-HOUSE FEM
CODE
In this paper, we analyze the electric field and RCS param-
eters for the dielectric structure shown in Fig. 1 and the
dielectric coating structure shown in Fig. 2. In this analysis,
the incident waves from arbitrary directions are given by (20)
and (21), respectively.

Einc =
1
√
13

(
√
3x+ y− 3z)e−jk0(

√
3x+3y+2z)/4 (20)

Einc = ye−jk0z (21)

The operating frequency is set to 300 MHz, corresponding
to a wavelength of 1 meter. The dielectric box is a cube
with each side equal to one wavelength, and its permittivity

is 6-j1. Additionally, the arbitrary boundary surface is
enclosed by a cube with each side three wavelengths. There-
fore, the distance from the surface of the dielectric to the
arbitrary boundary surface is one wavelength. In the case of
the dielectric-coated box, it consists of a PEC cube with each
side equal to one wavelength, coated with a dielectric layer
of 0.01 wavelength thickness and a permittivity of 4-j10. The
arbitrary boundary surface is similarly enclosed by a cube
with each side three wavelengths. Thus, the distance from the
dielectric coating surface to the arbitrary boundary surface is
0.99 wavelengths. Additionally, a complete program is devel-
oped using MATLAB (compatible with version R2022b).
The accuracy of the simulation is verified by comparing the
results from the in-house FEM program with those from the
commercial electromagnetic software HFSS for the scattered
electric field distribution and RCS.

In both cases, the Huygens’s surface is defined as a
region 0.05 meters away from the scatterer, and the RCS
parameters are calculated using the electric current density
and magnetic current density passing through this surface.
The simulation employs a 3-D edge-based brick element,
with a total of 216,000 elements and 669,780 edges used
for both first-order and second-order ABCs. The scattered
electric field distributions and RCS results for the dielectric
structure in the XY, XZ, and YZ planes are shown in Figs. 4
to 7, while the corresponding results for the dielectric-coated
structure are shown in Figs. 8 to 11. The simulation results
indicate a high level of agreement between HFSS and both
first-order and second-order ABCs.

B. COMPARISON OF THE CONVERGENCE
CHARACTERISTICS
The BICG-STAB method, based on Krylov subspace tech-
niques, is known for faster and more stable convergence
compared to BICG because it does not require the mul-
tiplication of the system matrix with its transpose [60].
To determine if this characteristic applies to matrices gener-
ated by FEM, convergence simulations based on absorbing
boundaries are conducted. In these simulations, the residual
for BICG represents the norm of the direction vector r, while
for BICG-STAB, it represents the smaller value between
the norms of the two direction vectors s and r. Accord-
ingly, the results shown in Figure 12 indicate that BICG
exhibits highly unstable convergence for both dielectric and
dielectric-coated structures, whereas BICG-STAB shows rel-
atively improved convergence characteristics. Furthermore,
it is observed that second-order ABC introduces much
larger residuals due to the inclusion of more complex terms
compared to first-order ABC. Consequently, the combina-
tion of BICG-STAB and first-order ABC achieves the best
performance.

VI. ACCELERATING FEM SOLVER WITH EQUILIBRATE
FUNCTION, JACOBI, SSOR-AI PRECONDITIONER
To enhance simulation speed, CUDA-based GPU parallel
acceleration is applied to a BICG-STAB based FEM solver
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FIGURE 4. Scattered electric field distribution for a dielectric structure (XY plane).

FIGURE 5. Scattered electric field distribution for a dielectric structure (XZ plane).

FIGURE 6. Scattered electric field distribution for a dielectric structure (YZ plane).

FIGURE 7. The RCS simulation results for a dielectric structure (each plane).

using the first-order ABC, which has demonstrated the
fastest convergence in dielectric and dielectric-coated struc-
tures. As outlined in Algorithm 2, the SpMV operations in
BICG-STAB occur six times in total, all of which can be

accelerated by the GPU. Additionally, to compare conver-
gence speeds, further experiments are conducted by applying
the equilibrate function along with Jacobi and SSOR-AI pre-
conditioners.
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FIGURE 8. Scattered electric field distribution for a dielectric-coated structure (XY plane).

FIGURE 9. Scattered electric field distribution for a dielectric-coated structure (XZ plane).

FIGURE 10. Scattered electric field distribution for a dielectric-coated structure (YZ plane).

FIGURE 11. The RCS simulation results for a dielectric-coated structure (each plane).

A. MATLAB’S BUILT-IN EQUILIBRATE FUNCTION
When using the function [P, R, C] = equilibrate(A) in
MATLAB, matrix A can be rescaled to have unit-size

diagonal elements, with off-diagonal entries not exceeding a
magnitude of 1, producing thematrixB = R×P×A×C . Here,
P represents a permutation matrix used to balance the matrix,
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FIGURE 12. Comparing convergence characteristics with varying ABCs and iterative method.

where the absolute product of the diagonal elements of P×A
is maximized by rearranging A. Additionally, R and C denote
the row and column diagonal scaling matrices, respectively,
aiding in maintaining balance by adjusting the sizes of rows
and columns. Additionally, the resulting matrix B the equili-
brate function generally possesses a lower condition number
than A, which results in enhanced efficiency and stability in
the solution of linear systems.

B. SSOR-AI PRECONDITIONER
The SSOR-AI preconditioner is commonly used to accel-
erate the convergence of iterative solvers for sparse linear
systems [5], [42]. Assuming that matrix A is decomposed as
shown in (22), the SSOR preconditioner is defined as (23)
[42]. Here, D and L respectively represent the diagonal matrix
and the lower triangular part of matrix A.

A = L + D+ LT (22)

M = KKT

where

K =
1

√
2− ω

(
D+ L

)
D
−1/2

(23)

ω represents the relaxation parameter, ranging from 0 to 2.
Additionally, D̄ is defined as (1/ω)D.
Computing the SSOR preconditioner directly, as in (23),

involves substantial computational cost. Conversely, employ-
ing the SSOR-AI preconditioner offers a straightforward
computational approach [42].

K−1 =
√
2− ωD

1/2
(I + D

−1
L)−1D

−1

≈
√
2− ωD

1/2

×

[
I − D

−1
L + (D

−1
L)2 − (D

−1
L)3 + · · ·

]
D
−1

(24)

Applying the Neumann series to (23) transforms it
into (24). The first-order approximation inverse of K can be
computed as shown in (25), and the first order SSOR-AI
preconditioner can be expressed as in (26) [42].

K−1 ≈
√
2− ωD

1/2
(I − D

−1
L)D

−1
= K (25)

M = K
T
K (26)

TABLE 1. Simulation environment.

To determine the optimal value of ω, simulations are
conducted by varying ω and applying the SSOR-AI pre-
conditioner to the structures depicted in Fig. 1 and Fig. 2.
The system matrix has a size of 669,780 × 669,780, and
the convergence criterion is set to ensure the residual is
below 0.01. Additionally, Fig. 13 presents a graph comparing
the number of iterations required for convergence as ω varies.
For both dielectric and dielectric-coated structures, conver-
gence is achieved with the minimum number of iterations
when ω = 0.4

C. RCS ANALYSIS WITH ACCELERATED FEM SOLVER
In this simulation, RCS analysis and acceleration through
CUDA-based GPU parallel processing are performed for the
structures shown in Fig. 1 and Fig. 2. Due to the large-scale
matrix operations involving matrices of size 669,780 ×
669,780, the combination of BICG-STAB and first-order
ABC, which showed the fastest convergence, is used for
accelerating these operations. The accuracy of BICG-STAB
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FIGURE 13. The number of iterations with SSOR-AI preconditioner as a function of ω.

FIGURE 14. RCS simulation results for each plane with different solution techniques (dielectric structure).

FIGURE 15. RCS simulation results for each plane with different solution techniques (dielectric-coated structure).

and BICG-STAB with preconditioners (equilibrate function,
Jacobi, SSOR-AI) is verified through RCS comparison. The
simulation environment is as shown in Table 1, with the
number of edges being 669,780. Additionally, the tolerance
is set to 0.01, and the ω value for SSOR-AI is set to 0.4,
which showed the fastest convergence. Figs. 14 and 15 show
the RCS results for dielectric and dielectric-coated structures,
respectively. Additionally, the results of the BICG-STAB
with preconditioners and GPU parallel processing are com-
pared with the MATLAB backslash direct solver using a
single CPU core. It can be observed that the results from the
iterative solver match those from the direct solver.

To analyze the performance improvement based on matrix
size during CUDA-based GPU parallelization for dielectric
and dielectric-coated structures, the number of edges is grad-
ually increased to 413,712, 490,050, 575,244, and 669,780.

The computational speed and the number of iterations
required for convergence for each method are compared, with
the results presented in Figs. 16 and 17 and Tables 2 and 3.
Figs. 16 and 17 show the computational speed graphs for
each method for dielectric and dielectric-coated structures,
respectively, plotted on both linear and logarithmic scales.
Table 2 provides detailed analysis results for the dielectric
structure, including computation time, speed-up (the ratio
of improved speed compared to the direct solver), iteration
number, and residual values for eachmethod. Table 3 presents
results for the dielectric-coated structure, with detailed items
identical to those in Table 2.

According to the simulation results, overall, the BICG-
STAB with CUDA-based GPU acceleration shows improved
computation time compared to MATLAB backslash. Addi-
tionally, as the number of edges, or the number of unknowns,
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FIGURE 16. Computation time comparison (dielectric structure).

FIGURE 17. Computation time comparison (dielectric-coated structure).

TABLE 2. Computation time for solution techniques based on the number of unknowns (dielectric structure).

increases, the ratio of improved computational speed also
increases. This is because the numerous cores of the GPU
can be efficiently utilized for parallel processing, fully
leveraging the advantages of parallelism. Furthermore, the
dielectric-coated structure shows relatively faster computa-
tion time compared to the dielectric structure, likely due

to the improved matrix properties resulting from the full
reflection of the dielectric effect in the IBC. However, none
of the preconditioners applied to improve the convergence
performance of BICG-STAB, including the equilibrate func-
tion, Jacobi, and SSOR-AI, have enhanced the computational
speed. Although the SSOR-AI preconditioner has shown
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TABLE 3. Computation time for solution techniques based on the number of unknowns (dielectric-coated structure).

overall improved convergence iterations, the total computa-
tional speed has been relatively slower due to the increased
number of nonzeros resulting from the application of SSOR-
AI. The lack of improvement in convergence speed despite
the application of these preconditioning techniques is likely
due to the characteristics of the system matrix generated in
frequency domain FEM. This matrix includes both positive
and negative eigenvalues, exhibits indefinite properties with
complex values, and typically has a large condition number
because the smallest eigenvalue is close to zero.

VII. CONCLUSION
In this paper, the electromagnetic scattering problem is
analyzed for a three-dimensional cubic dielectric and
dielectric-coated structure when an arbitrary electromagnetic
wave is incident. The scattered electric field and RCS are
compared between the results from the commercial elec-
tromagnetic software HFSS and the self-written in-house
MATLAB-based FEM code to validate the accuracy of the
developed code. As a result, the accuracy of the near-field
(electric field) and far-field (RCS) for HFSS and first-order
and second-order ABCs is confirmed. Subsequently, the
convergence of BICG and BICG-STAB for first-order and
second-order ABCs is compared, and it is confirmed that the
use of first-order ABC with BICG-STAB provides the most
stable convergence.

GPU parallelization are applied for efficient large-scale
matrix analysis. For the SSOR-AI preconditioner, the relax-
ation parameter ω is varied to determine the optimal value
of ω = 0.4. Additionally, the RCS results of the basic
BICG-STAB and the BICG-STAB with preconditioners are
compared with the direct solver MATLAB backslash, con-
firming high accuracy. Furthermore, the computational per-
formance based onmatrix size is evaluatedwith CUDA-based
GPUparallelization, showing that the speed up ratio increases
as the matrix size grows. The SSOR-AI preconditioner
results in the fewest iterations for convergence, but the basic

BICG-STAB without any preconditioner exhibits the fastest
computation speed, achieving up to a 32-fold speed up.

In this paper, a large-scale problem is addressed by
incrementally increasing the number of edges for a simple
structure, which can be extended to the analysis of large and
complex structures, such as aircraft carriers, in the future.
Additionally, the parallel processing algorithm performed in
this study was executed on a desktop specification computer,
indicating that even faster analysis will be possible in the
future using cluster computing environments that support
more processors.
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