IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 26 June 2024, accepted 18 July 2024, date of publication 26 August 2024, date of current version 5 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3450280

== RESEARCH ARTICLE

A Group Multi-Criteria Decision-Making
Approach Based on the Best-Only
Method for Cloud Service Selection

AHMED M. MOSTAFA

Computer and Systems Engineering Department, Faculty of Engineering, Helwan University, Cairo 11795, Egypt

Faculty of Computing and Information, Al-Baha University, Al Bahah 65511, Saudi Arabia

e-mail: ahmed_youssef01 @h-eng.helwan.edu.eg

ABSTRACT The evaluation of cloud services from various providers involves assessing multiple criteria,
creating a multi-criteria decision-making (MCDM) problem. Group decision-making among experts adds
complexity to this process. Traditional methods like AHP and BWM are effective but burdensome due to
extensive pairwise comparisons, computational demands, and inconsistency. Thus, there is a clear need for
a more efficient and reliable approach that reduces comparison efforts, ensures consistency, and improves
overall decision-making efficiency, crucial for enhancing cloud service selection tailored to user needs. The
best-only method (BOM) simplifies decision-making by considering a single decision-maker’s preferences,
but it fails to address group decision-making complexities. This paper introduces the group BOM (GBOM),
which aggregates criteria/alternative weights using probability and statistical techniques across multiple
decision-makers (DMs). The GBOM method was validated with three numerical examples, demonstrating
consistent criteria rankings compared to existing AHP and BWM group-based MCDM methods, with a
constant consistency ratio (CR) of zero and lower computational complexity requiring only n—1 comparisons
compared to BWM’s 2n — 3 and AHP’s nx(n—1) / 2. Furthermore, GBOM was applied to a real-world
cloud service selection case study, showcasing improved consistency (CR = 0), reduced expert comparisons,
and a novel approach to ranking cloud services based on group preferences using the best-only method.
The proposed GBOM method offers a robust and efficient solution for MCDM in cloud service selection,

addressing critical limitations of existing methodologies.

INDEX TERMS Multi-criteria decision-making (MCDM), best-only method (BOM), group decision-

making, cloud service providers (CSPs), cloud service ranking.

I. INTRODUCTION

Multicriteria decision-making (MCDM) approach con-
tributes significantly to improving real-life decisions through
the sorting and ranking of criteria/alternatives. They pro-
vide useful assistance when faced with difficult decision-
making situations. It has been shown that MCDM methods
are effective in addressing practical decision-making issues in
a wide range of fields, including social sciences, engineering,
management, and economics [1], [2], [3], [4], [5], [6]. [7], [8]-
Utilizing certain approaches and existing decision informa-
tion while considering a variety of criteria, MCDM involves
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sorting all the alternatives in order to determine the most opti-
mal. In order to rank alternatives, it is necessary to establish
the set of criteria for decision making and the weight assigned
to each criterion before ranking them. Following this, the
alternatives’ performance in relation to the criteria can be
calculated. Finally, the problem can be solved by applying
different techniques [9]. Analytic hierarchy processes (AHP)
[10] have been applied to solve various decision-making
problems over the past several decades and are widely con-
sidered to be one of the most important decision-making
tools. According to AHP, goals, criteria, sub-criteria, and
alternatives are identified for solving a problem. Starting with
the first level and moving downwards, a pairwise comparison
is performed between elements at each level with respect to
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elements at the next higher level. Based on the comparison
of elements at each level, preference matrices are generated.
Decision makers use Saaty’s scale of relative preference
as a basis for their assessment. According to this scale,
criteria and alternatives are ranked from 1 to 9 in order
of importance. There are nine levels of importance on the
scale from 1 to 9, where 1 represents equal importance and
9 represents extreme importance. In order to determine the
optimal solution, pairwise comparisons are used to determine
the comparative importance of the criteria and alternatives.

Consider a problem in which n criteria cy, ¢, - -+ ,¢, are
given, and we are required to calculate their weights. The
pairwise comparison matrix A will represent the relative
preferences for each given criterion over the others. It shows
the following relative preferences [11]:

aip aiz - A
azl ax - Ay
A= . . . ey
anl An2 -+ Apn
where:
a;j = 1, in the case where criteria i and j are of equal
importance.

a;;> 1, in the case where the weight of criterion i is greater
than the weight of criterion j.

a;j< 1, in the case where the weight of criterion i is lower
than the weight of criterion j.

In addition, for the purpose of consistency in the decisions
made by the DM, we should have g;; = 1 / aj; (the reciprocal
property) and a; = 1. Therefore, matrix A can be created
only by making nx(n—1) / 2 comparisons.

A recent multi-criteria decision-making approach, the
best-worst method (BWM), was proposed by Rezaei in 2015
[12]. This method begins with determining the worst and best
criteria at the beginning of the process. According to the DM,
the best criterion is of the highest importance, while the worst
criterion is of the lowest importance. In contrast to AHP,
BWM employs fewer pairwise comparisons and consists of
only two vectors for comparison, the first containing the
preference of the best criterion over all others and the second
containing the preference of all criteria over the worst criteria.
The optimal weights of the criteria were determined based on
pairwise comparisons using a min-max mathematical model.
While both AHP and BWM use pairwise comparisons to
calculate the optimal weights of criteria, BWM requires only
2n — 3 pairwise comparisons. This makes it a more efficient
method for data collection. In spite of the fact that AHP and
BWM have been rigorously evaluated, they still suffer from
certain deficiencies, including low consistency of comparison
and complex computation.

A novel method of MCDM, the best-only method (BOM),
was introduced in 2021 as an innovative method for
MCDM [6]. BOM requires the decision maker to identify
only the best criterion before conducting the pairwise com-
parisons of that criterion with other criteria. This ensures
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the full consistency of the resulted pairwise comparison vec-
tor. Moreover, the BOM approach only requires one vector,
versus two vectors for the BWM approach. Consequently,
BOM requires only n — 1 pairwise comparisons, resulting in
a reduced computational burden.

A cloud computing environment provides users with
access to a wide range of resources and applications, includ-
ing storage, computing, and networking, and is highly effi-
cient and cost-effective [13]. Additionally, cloud comput-
ing enables users to quickly deploy resources as needed as
it provides scalability and disaster recovery. Cloud service
providers (CSPs) compete based on price, performance, and
features. Customers should thoroughly investigate the dif-
ferent options and select a provider that meets their spe-
cific needs [14]. Considering that there are many different
cloud computing service providers available, cloud users may
find it difficult to evaluate and select the one that meets
their specific needs [15]. Consequently, cloud service selec-
tion becomes a multi-criteria decision-making problem. This
requires an expert decision maker to analyze the available
criteria pairwise and determine the optimal weights for each.
Also, CSPs are evaluated against each criterion by the DM.
Finally, CSPs are ranked based on their weights and opti-
mal criteria weights. When a group of experts participates
in the decision-making process and must decide on a com-
mon multi-criteria problem, complexity increases [9]. This
is a group decision-making process that requires a group
decision-making method for aggregating individual prefer-
ences and presenting the most acceptable outcome [16]. This
heightened complexity underscores a critical challenge: how
to effectively aggregate individual preferences in a group
decision-making context to arrive at the most acceptable
outcome. Traditional methods, like AHP and BWM, while
useful, often involve extensive pairwise comparisons and can
be computationally intensive and inconsistent. The need for
a more efficient and reliable group decision-making method
becomes apparent. Such a method should reduce the bur-
den of comparisons, enhance consistency, and improve over-
all decision-making efficiency. Addressing this challenge is
essential for facilitating better cloud service selection and
ensuring that cloud users can make well-informed, optimal
choices that meet their specific requirements.

In this paper, we propose a novel approach to the group
MCDM, GBOM, that applies best-only method and statistical
inference to cloud service selection problem. This study is
aimed at helping cloud customers rank service providers.
GBOM, based on the best-only method and statistical infer-
ence, is the first to base group MCDM on the Best-Only
Method (BOM) and offers significant advantages over tra-
ditional methods like BWM and AHP. Inputs to the GBOM
are identical to those in the original BOM, which are pair-
wise comparisons that are modeled based upon a multino-
mial distribution. Meanwhile, the output of this model is
the optimal aggregated final weights of all DMs based on
Dirichlet distribution modeling. GBOM simplifies pairwise
comparisons, requiring only n — 1 comparisons compared
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to BWM’s 2n — 3 and AHP’s nx(n—l)/Z, reducing data
collection and analysis time. GBOM ensures fully consistent
results with a consistency ratio (CR) of zero and uses inte-
ger values for comparisons, as opposed to AHP’s fractional
numbers, making it easier to understand and interpret. This
approach is more data-efficient and consistently achieves a
CR of 0, highlighting its reliability and efficiency over AHP
and BWM. As a means of testing and validating the proposed
method, three numerical examples were used to demonstrate
its efficiency and consistency. The developed approach was
also compared to the existing methods presented in [16]
(Group BWM and Group AHP), and [17]. Based on their
aggregated optimal weights, all approaches ranked the cri-
teria in the same order, but the developed model exhibited
a superior consistency ratio (CR) and lower computational
complexity. Finally, we apply the GBOM to a real dataset
for selecting cloud services. One drawback of the proposed
method, similar to AHP and BWM, is that when dealing
with qualitative criteria, the ultimate ranking of the CSPs,
and consequently the reliability of the decision, hinges on
the decision maker’s judgments of the pairwise comparison
values.

The rest of the paper is arranged as follows. A review of
related work was given in Section II. In Section III, a back-
ground is provided for the best-only method. The proposed
GBOM method is given in Section I'V. In Section V, an exper-
imental study is presented utilizing three numerical examples.
In Section VI, the GBOM is applied to a real case study based
on a real dataset to select cloud service providers. Section VII
is about discussion of results. Finally, Section VIII concludes
our study and discusses its limitations and future work.

Il. RELATED WORK

There are many MCDM methods available to derive the
weights of the decision criteria based on preferences of a sin-
gle decision maker. These methods include ELECTRE (Elim-
ination and Choice Translation Reality) [18], TOPSIS (Tech-
nique for Order of Preference by Similarity to Ideal Solution)
[19], AHP (the Analytic Hierarchy Process) [10], ANP (the
Analytic Network Process) [1], PROMETHEE (preference
ranking organization method for enrichment evaluations)
[20], BWM (best-worst method) [12], and recently, BOM
(best-only method) [6]. Nevertheless, due to the increasing
complexity of the decision-making problems, many busi-
nesses are now switching from a single decision maker to
a team of experts who collaborate to resolve a specific
multi-criteria decision problem [9]. This helps to ensure that
the decision is based on a more comprehensive view of the
problem. It takes into account the different perspectives of
experts. As the first research on a group MCDM, group-
AHP was developed based on AHP in order to obtain opti-
mal weights based on the individual preferences [21]. The
researchers further extended AHP-based models to solve
group-based decision-making problems [22]. Since these
approaches rely on AHP, they necessitate pairwise com-
parisons of all criteria and alternatives to determine the
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weights. This results in increased computational complexity
and potential inconsistencies in the pairwise comparisons.

Considering how ambiguity in decision-making plays an
important role, fuzzy theory has recently been applied to
decision-making problems in an imprecise environment in
which uncertain information and flexibility in human judg-
ment play a crucial role. Guo and Zhao [23] proposed a
fuzzy BWM in which fuzzy numbers represent pairwise ref-
erence comparisons with linguistic terms. In this approach,
the weights of criteria and alternatives with regard to various
criteria were determined using the graded mean integration
representation (GMIR) method. However, as the number of
criteria and alternatives increases, the method may become
less efficient and more cumbersome to apply, impacting its
scalability. In addition, While GMIR aims to provide a more
accurate representation in a fuzzy environment, it might not
adequately address inconsistencies that arise during the fuzzi-
fication and defuzzification processes. Ahmed et al. [24]
used group BWM in a different application to identify and
prioritize strategies to combat the Covid-19 outbreak.

Sarfarzadeh et al. [16] presented GBWM as a new
approach that incorporated two different mathematical
models, based on BWM, to facilitate the process of
decision-making among group of DMs.

A new extension of the BWM method called the multi-
choice best-worst method (MCBWM) has recently been pro-
posed by Hasan et al. [25] to manipulate multiple preference
values for each pairwise comparison. In this method, many
choices are associated with parameters, and the method is
based on multichoice mathematical model [26]. They demon-
strated an improvement over the BWM by demonstrating
that the MCBWM proposed could handle numerous pair-
wise comparison options provided by the decision maker.
By accommodating multiple models of BWM, MCBWM
can provide a single model through multiple choice. In this
process, all selected pairwise comparison values are inserted
into a choice set. The optimal pairwise comparison value
can be determined from a choice set of values while mini-
mizing inconsistencies and finding the optimum weight for
the criteria. The MCBWM provides the decision maker with
the flexibility to select multiple preference values according
to human perception and cognition. In an extension of the
MCBWM, Ahmad et al. [17] developed a method for solving
group MCDM problems using the model.

For these BWM-based models, solving them becomes
computationally challenging, particularly when there are a
large number of decision-makers, as each one must identify
the best and worst alternatives for each criterion. Moreover,
the results still exhibit inconsistency since the consistency
ratio (CR) is not equal to O.

Regarding the application of MCDM methods to cloud ser-
vice selection, some studies utilized AHP-based approaches
for the selection of cloud services to help cloud users in
ranking cloud service providers using Saaty’s basic 1-9 scale.
Garg et al. [27] proposed the SMICLOUD framework for
evaluating and ranking three IaaS cloud services based on the
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cloud service measurement index (SMI). This study presents
anumber of key performance indicators (KPIs) for quality-of-
service criteria derived from the cloud service measurement
initiative consortium (CSMIC), with various cloud service
providers being compared based on these KPIs. Based on
DM preferences, the authors calculated the weights for SMI
criteria using the AHP approach and then compared the three
TaaS cloud services using the calculated weights. In select-
ing CSPs, they only considered quantifiable CSMIC crite-
ria and did not take into account the non-quantifiable QoS
trustworthiness criteria. Based on the AHP approach, Godse
and Mulik [28] assessed various QoS criteria of SaaS ser-
vices, including usability, architecture, functionality, vendor
reputation, and pricing.

Pairwise comparisons were conducted for estimating
weight values of criteria and alternatives based on AHP,
while TOPSIS was used to finally rank alternatives. In order
to assess the trustworthiness of 15 CSPs from various per-
spectives, nine Quality of Service criteria were used (cus-
tomer service, cost, response time, storage, speed, ease of
use, capacity, features, technical support, and availability).
Youssef [29] proposed a method of ranking CSPs based on
evaluation criteria describing their service offerings using
an MCDM approach that incorporates TOPSIS and the
BWM.

Based on the analysis of these research papers, it can be
concluded that a large number of criteria were used to rank
CSPs. Consequently, pairwise comparisons became signifi-
cantly more complex. Furthermore, many of these criteria are
qualitative, making pairwise comparisons less reliable due to
decreased consistency.

While AHP is an effective tool for making decisions,
it does not consider uncertainty in decision making when
making pairwise comparisons. The fuzzy AHP was devel-
oped in response to this issue, which provides decision mak-
ers with an opportunity to use fuzzy ranking in place of exact
ranking [40].

Mun et al. [30] proposed a method that replaces the tra-
ditional fuzzy AHP for determining criterion weights with
a direct estimation method using triangular fuzzy numbers,
which is simpler and more flexible. It normalizes the fuzzy
decision matrix using a nonlinear method with a threshold.
Instead of using the traditional Euclidean distance, it cal-
culates distances from positive and negative ideal solutions
using the fuzzy weighted average method based on the cen-
troid of the fuzzy number. Finally, it evaluates alternatives
using a relative closeness coefficient weighted by these dis-
tances. This method has been validated through its appli-
cation to selecting talent with high intelligence. While this
approach offered simplicity and flexibility, it has several
potential disadvantages: The use of triangular fuzzy numbers
and the centroid method for calculating distances can be
mathematically complex and computationally intensive com-
pared to traditional methods. Direct estimation of weights
using triangular fuzzy numbers introduces subjectivity and
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bias, as it heavily depends on the decision-maker’s judgment.
In addition, much information is lost when DMs’ judg-
ments/weights are aggregated. Furthermore, averages can be
significantly impacted by outliers, which can also have an
impact on the results.

Barasin et al. [31] propose a novel MCDM approach to
enhance warehouse management and operational efficiency.
The proposed method integrates the Group Best-Worst
Method (G-BWM) and the Ranking Alternatives based on
Trace-to-Median Index (RATMI). G-BWM is used to deter-
mine the relative importance of performance criteria by
aggregating the preferences of decision-makers. RATMI is
then employed to rank the warehouses based on their perfor-
mance scores relative to these weighted criteria. The study
considers five key performance criteria: cost, quality, time,
productivity, and safety. Data were collected from four mega
retail warehouses in the western region of Saudi Arabia.
The findings reveal each warehouse’s strengths and weak-
nesses, offering insights for strategic improvements. How-
ever, employing RATMI, a linear additive model, to combine
criterion scores might not fully capture the complex, non-
linear interactions between variables in real-world warehouse
settings. Additionally, the G-BWM method for weighting
criteria is not fully consistent and requires more computations
compared to the proposed approach.

The best-only method (BOM) has been proposed by
Ahmed [6] for solving the problem of cloud services selec-
tion, which is fully consistent and computationally efficient.
In BOM, the expert needs only to select the best crite-
rion/alternative and decides the pairwise comparison val-
ues for it over the remaining criteria/alternatives. Compared
with AHP and BWM, BOM is more efficient and reliable
due to its lower computing complexity and full consistency.
For selecting cloud service providers based on the best-only
method (BOM) and the order of preference by similarity to an
ideal solution (TOPSIS), Ahmed [11] proposed an integrated
MCDM framework for cloud service selection. A pairwise
comparison is conducted by BOM for each criterion and
among alternatives with respect to each criterion in order
to obtain the weights of criteria and the relative weights of
alternatives related to criteria. TOPSIS uses these weights to
determine the final ranking of CSPs. Ahmed [32] presented
a hybrid model to detect and record transition patterns in
the priorities of user requirements. This model is based on
a Markov chain which is applied to calculate the priorities
of user requirements. Afterwards, the BOM method is used
to calculate the weights of all criteria relative to each user
requirement. Then, the aggregated weights of the criteria are
calculated using the BOM method and based on the priori-
ties of user requirements. In the final stage of the process,
we obtained a ranked list of CSPs, and the best one can be
selected.

For group decision making, two classes of techniques are
commonly employed [33]. One technique which is called
aggregation of individual judgment (AlJ) [34]. AlJ is used
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for integrating pairwise comparisons from various DMs into
a single set. This set is then evaluated in accordance with
the same method as a single DM approach. The other tech-
nique is called aggregation of individual priorities (AIP) [35],
[36]. AIP begins by calculating a weight for each DM input,
and then combining those weights, usually using arithmetic
means. Despite the fact that both techniques are practically
simple, aggregation results in the loss of much information.
Additionally, averages are susceptible to outliers, which can
have a significant impact on the results.

A novel approach to the group MCDM, called a group
BOM (GBOM), is presented in this study based on the
best-only method and statistical inference in order to assist
cloud customers in ranking cloud services. To the best of our
knowledge, this is the first study to present a group MCDM
based on the BOM method. There are many advantages of
GBOM over BWM and AHP group-based MCDM methods.
Following are the reasons of preferring GBOM over BWM
and AHP group-based MCDM methods.

1. The BOM delivers more reliable results compared to the
AHP and BWM methods. While all these methods use
pairwise comparisons to determine criteria weights and
rankings, AHP is matrix-based and requires pairwise
comparisons among all criteria. BWM involves two
vectors for comparing the best to other criteria and oth-
ers to the worst criteria. In contrast, BOM uses only one
vector for comparing the best to other criteria, result-
ing in significantly fewer comparisons. This reduces
the need for extensive data collection, calculation, and
analysis time.

2. In BOM, there is only n — 1 comparisons which is much
lesser than comparisons in BWM i.e. 2n—3 and in AHP
ie.nx(n—1)/2

3. The BOM yields fully consistent results with a con-
sistency ratio (CR) of zero, indicating greater consis-
tency compared to BWM and AHP based methods.
This improvement is achieved by eliminating redundant
comparisons.

4. In BOM, pairwise comparisons are conducted using
integer values on a scale of 1 to 9. In contrast, AHP
utilizes fractional numbers ranging from 1/9 to 9. This
gives BOM an advantage over AHP in terms of easier
analytical evaluation, understanding, and interpretation
of comparisons, aligning better with human perception
and cognition.

5. BOM is more data-efficient compared to AHP and
BWM-based methods. In AHP and BWM, the solution
can become inconsistent if the consistency ratio (CR)
exceeds 0.1, necessitating revisions to improve consis-
tency in comparisons. In contrast, BOM consistently
achieves a CR of 0.

lll. THE BEST-ONLY METHOD

Among the many MCDM models, the best-only method
(BOM) is a recent model that is robust, cost-effective, and
entirely consistent. There is only one criterion that needs to
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be identified by the decision maker in accordance with the
BOM: the best criterion. It calculates criteria weights based
only on a pairwise comparison of the best criterion to the
other criteria. Thereby, the derived weights are based on fully
consistent pairwise comparison vector.

BOM is more efficient than AHP [10] and BWM [12],
two widely known MCDM methods. BWM and BOM are
vector-based MCDM approaches, so a lower number of
comparisons are required compared to matrix-based MCDM
approaches like AHP. Furthermore, BOM requires only one
comparison vector for the best criterion, whereas BWM
requires two comparison vectors for the best and worst cri-
teria [6]. For AHP, n x (n — 1) / 2 pairwise comparisons are
conducted. For BWM, 2n — 3 pairwise comparisons are con-
ducted. For BOM, only n — 1 pairwise comparisons are
conducted. Therefore, it is evident that BOM needs fewer
pairwise comparisons than AHP or BWM, which implies that
it is more computationally efficient.

The BOM method produces a constant consistency ratio
(CR) equal to 0. Therefore, it is more reliable and fully
consistent than AHP and BWM. Following is a summary of
the BOM method steps:

Step 1: Identify the set of n criteria C = (¢, ¢2, -+ ,¢p).

Step 2: The DM chooses Cp, where Cp € C, is the best
criterion.

Step 3: The DM provides the pairwise comparison vector
PCp which contains the preference values made by the DM
for the best criterion over other criteria in C.

PCp=(PCg1, PCg, -+ ,PCpy) )

Step 4: Calculate the optimal criteria weights by solving
the following equations:

"B  PCyVj#B and PCriePCy.j=1.2....n. (3)

Wj
n
2= “)

IV. THE PROPOSED APPROACH

This section presents a statistical inference model based on
the preferences of a group of decision makers to find the opti-
mal weights of a set of criteria using the best-only method.
The proposed model will be referred to as the group best-only
method (GBOM). Initially, we need to specify the given
inputs to the model and the expected output.

Let us suppose that we have m decision makers need to
determine the weights for n criteria. According to BOM, each
DM will only provide one comparison vector for the best
criterion over other criteria. So, we will have m vectors as

follows:
PCy = (PC};I,PC’I;z, .. .,PC’g,n) ,x=1,3,....,m. (5

where PC7 represents the pairwise comparison vector for

decision maker x forallx =1,2,3, ..., m.
The expected output of the proposed model is the aggre-
gated weight of the set of criteria w® = {w‘f, w‘é, S Wik
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In order to compute the aggregated weight, w®, given the
set of pairwise comparison vectors for DMs, PC7, based on
statistical inference, we need to formulate both the inputs and
the output of the model as a probability distribution function.
This means that for the inputs, which are the pairwise com-
parisons of DMs, we need to represent them using appropriate
probability distribution (multinomial distribution) that cap-
ture the variability inherent in these assessments. Similarly,
the outputs, which are the aggregated final weights of criteria,
must also be modeled as probability distributions (Dirichlet
distribution). This probabilistic approach allows for a more
rigorous and nuanced handling of the data, enabling us to
derive more reliable and robust conclusions. By treating both
inputs and outputs probabilistically, we can apply advanced
statistical techniques, such as Bayesian inference.

The input pairwise comparison vector for each DM can be
formulated using the multinomial distribution as follows:

(Z] IPCx 1

Prob(PCy|lw") = —H/:I PCy) * szl Wj

(6

where:

n: The number of criteria.

m: The number of decision makers.

ji1,2,3,....n

x:1,2,3,...,m

PC: Pairwise comparison vector for decision maker x.

w*: Criteria weight vector for decision maker x.

PC ’fgj: Pairwise comparison value of the best criterion over

criterion j set by the decision maker x.

wj’? : Weight of criterion j according to PC7.

In this context, each pairwise comparison can be seen
as an event with multiple possible outcomes, where each
outcome corresponds to a particular preference expressed
by the DM. By using the multinomial distribution, we can
effectively model the probability of each possible pairwise
comparison outcome across multiple decision-makers. This
statistical approach allows us to capture the variability in the
comparisons provided by different DMs.

As the weight vector must satisfy both the properties
of sum-to-one and non-negativity, the Dirichlet distribution
appears to be an appropriate choice for modeling the weights
of the criteria. The Dirichlet distribution is a family of con-
tinuous multivariate probability distributions parameterized
by a vector of positive reals. It is particularly well-suited
for modeling probabilities that must sum to one and remain
within the interval [0, 1], which aligns perfectly with the
requirements for the weight vector of the criteria. Using the
Dirichlet distribution allows us to model the variability in
the criteria weights. It provides a flexible and mathematically
sound approach to representing the distribution of weights
across different decision-makers. The use of the Dirichlet
distribution facilitates the application of Bayesian inference
techniques. This enables us to refine the estimated weights
iteratively, improving the robustness and reliability of the
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final decision-making model.
.. 1 n aoj—1
Dirichlet (W* |at) = B * Hj:1 (W) @)

where a« = (a1, o, - - - ,ay) is the concentration vector that
determine the shape and concentration of the distribution and
B(«) is the multivariate Beta function.

Dirichlet distributions are used in Bayesian statistical infer-
ence as a prior to the multinomial distribution. The posterior
distribution would also be a Dirichlet distribution if Dirichlet
were used as the prior distribution. During initialization, «
will equal 1, then its value will be updated by PCy val-
ues. This choice of parameter « equal to 1 result in a uni-
form distribution over the simplex, indicating that initially,
we assume all criteria are equally important, reflecting a
state of no prior preference or information bias. The Dirichlet
distribution with this parameter serves as a non-informative
prior, providing a neutral starting point for further analysis.
To refine this initial distribution and incorporate the data
obtained from decision-makers, we will compute the poste-
rior distribution using Markov-chain Monte Carlo (MCMC)
techniques. MCMC methods are powerful statistical tools
used to approximate the posterior distribution of complex
models by generating samples from the distribution.

In GBOM, to compute the aggregated weight, w, we need
to solve the following joint probability based on the Bayes
theorem:

Prob(w", w*="-"|pCy=1-m
= Prob (PCXZI"m|wa, wle“’") x Prob (w”, wle“’")

= Prob H

where Prob (w*|w?) is modeled as a Dirichlet distribution
with w® represents its mean. The initial distribution for w®
uses a Dirichlet distribution with the parameter « equal to 1.
The posterior distribution will be computed using MCMC
techniques [37].

The MCMC sampling is performed using the ““just another
Gibbs sampler” (JAGS) [38], one of the most powerful proba-
bilistic languages available. In this process, JAGS handles the
computationally intensive task of sampling from the posterior
distribution of the model parameters. It iteratively generates
samples from the distributions of the criteria weights w?,
gradually building up an accurate approximation of the full
posterior distribution. This iterative process ensures that the
sampled weights accurately reflect the underlying probabilis-
tic structure of the data and the initial Dirichlet prior. The
overall procedure for the proposed GBOM is presented in
Fig. 1.

Prob PC Blw* ) * Prob (wx|w“) )

V. EXPERIMENTAL STUDIES

We present three numerical examples to demonstrate the
application of the proposed GBOM method to a variety of
group decision-making problems and provide an evaluation
of the results based on the comparison of the three numerical
examples. These examples are derived from [16] and [17].
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The optimal weights for the proposed model of the exam-
ples were determined by solving the model using Python.
The proposed method, GBOM, is validated by comparing its
results for the three numerical examples to those obtained by
GBWM [16] (Model 1 and Model 2), MCBWM-GDM [17],
and the arithmetic mean of the calculated weights by applying
BOM separately to each DM’s preferences (AIP_BOM). The
third numerical example, which is a real-world case study of
a piping selection method, is also compared with the results
obtained using Group-AHP in [16]. To perform the analysis
and validate the proposed GBOM method, we implemented
the model using Python. The key libraries involved: numpy
for numerical computations and handling arrays, jags(Just
Another Gibbs Sampler) for MCMC sampling, and pyjags for
interfacing with JAGS from Python.
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|
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1

|

|

|

1

'

solving

]

Apply Markov-chain Monte Carlo (MCMC) techniques to

Data analysis and problem

compute posterior distribution using JAGS for sampling

l

’ Solve the model to obtain the aggregated weight vector

FIGURE 1. Flow chart of research methodology.

A. EXAMPLE 1

This example demonstrates the responses provided by two
DMs in response to four criteria. It was determined that the
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best criterion is the first while the worst is the third one. Note
that for our proposed GBOM method, only the best criterion
needs to be determined. According to Table 1, the two DMs
have developed pairwise comparison vectors for the best and
the worst criteria.

For the proposed method, we need only the pairwise com-
parison values Pp», Py3, and Py4. Table 2 provides results
regarding the optimal weights and ranking of the criteria.
These weights were obtained by using our model as well
as other existing models. Fig. 2 shows the optimal weights
obtained and the consistency ratio (CR) of these weights for
the different models.

TABLE 1. Pairwise comparison values for Example 1.

P Py Py Py Py
DM, 2 9 3 4 2
DM, 2 8 2 4 2

TABLE 2. Criteria weights and CR values FOR Example 1.

Model W, W, W; W, CR

Safarzadeh et al.
[16] Model-1
Safarzadeh et al.

0.5280 02220  0.0650  0.1850  0.0960

[16] Model.2 05120 02460 0.0630 0.1790  0.0960
Ahmad et al. [17]

MCBWM.GDM. 05067 02667 0.0667 01600 0.0270
AIP BOM 04924 02462  0.0580 0.2034 0
Proposed 04474 02577  0.0675 02274 0
approach

The optimal weight values obtained by the five models
differ slightly from each other, however, the order of the
criteria based on the weight values remains the same (C; —
C, — C4 — (3). Further, the proposed GBOM method
always guarantees a CR value of zero, which makes it supe-
rior to other models. Additionally, GBOM utilizes fewer com-
putational resources because it relies on only one pairwise
comparison vector.

w1

H Model-1 ® Model-2

EXAMPLE 1

|| il
W2

W3

o R
w4 CR

MCBWM-GDM mAIP_BOM ™ Proposed approach

FIGURE 2. The optimal weights and CR values for Example 1.
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B. EXAMPLE 2

This example demonstrates the responses provided by three
DMs in response to four criteria. Similar to the previous
example, the best and worst criteria were determined to be the
first and third criteria. The values of pairwise comparisons for
the best and the worst criteria are shown in Table 3.

Table 4 provides the optimal weights and ranking of the
criteria obtained by using our model as well as other existing
models. For the proposed method, we only require the pair-
wise comparison values Py», P13, and P4. Fig. 3 displays the
optimal weights obtained and the consistency ratio (CR) of
these weights.

TABLE 3. Pairwise comparison values for Example 2.

P P13 Pu Py Py
DM, 2 9 3 4 2
DM, 2 8 4 4 2
DM, 2 8 4 3 2

TABLE 4. Criteria weights and CR values for Example 2.

Model Wl Wz W3 W4 CR
Safarzadeh et al.

C. EXAMPLE 3

This example demonstrates a real-world case study [16]
involving the selection of piping. Ten decision makers ana-
lyzed four categories of costs: total costs (C1), security costs
(C»), social costs (C3), and environmental costs (Cy4). The
total cost (C) was the best criterion, whereas an environmen-
tal cost (C4) was the worst. The pairwise comparison values
for the case study are shown in Table 5.

Table 6 provides results regarding the optimal weights and
ranking of the criteria obtained using our proposed model
compared with other existing models including the Group-
AHP model. Fig. 4 shows the optimal weights obtained and
the consistency ratio (CR) of these weights for the different
models.

TABLE 5. Pairwise comparison values for Example 3.

Other models data Group-AHP model data

P2 P3Py Pu Py | P P33 Py Pu Py Pxn

DM; 6 6 7 4 3 6 5 9 3 1 3

DM: 7 7 7 6 5 7 7 6 6 5 6

DM; 7 7 9 8 8 7 6 9 8 8 8

DMy 2 4 6 4 3 2 4 6 3 4 2

DM;5s 3 4 8 3 5 3 5 8 3 5 4

DM 5 7 7 5 3 5 8 7 5 3 6

[16] Model. 1 0.5530 02260 0.0660 0.1550  0.0400 DM, 9 4 9 o9 s|o 2 7 o 8 o
[slag?rfdafggg al 05510 02270 00650 01570  0.0450 DMy 9 9 9 8 2 )9 9 9 8 2 8
Ahmad et al. [17] DM, 8 9 9 3 1 8 9 8 3 1 2

0.5340 02670 0.0670  0.1340 0
MCBWM-GDM PMow 9 9 9 3 1]l9 9 9 3 1 3
AIP_BOM 05270 02635 0.0635 0.1460 0
Proposed 04932 02758 0.0712  0.1598 0
sl EXAMPLE 3

EXAMPLE 2

” |I il
W2 w3

MCBWM-GDM m®AIP_BOM ®Proposed approach

II II [ 1 It
wa

CR

wi1

H Model-1 = Model-2

FIGURE 3. The optimal weights and CR values for Example 2.

Although the weights obtained by the five models differ
slightly, the order of the criteria based on the weights remains
the same (C; — C; — C4 — C3). GBOM is also superior to
other methods because it guarantees a CR value of zero and
uses fewer computational resources since it relies on pairwise
comparisons of only the best criterion.

VOLUME 12, 2024

W4 CR

1 w2 3

w w3

H Model-1 ® Model-2 ® Group-AHP ® MCBWM-GDM ® AIP_BOM ™ Proposed approach

FIGURE 4. The optimal weights and CR values for Example 3.

The optimal weight values obtained by the six models is the
same (C; — C, — C3 — (Cy). Although MCBWM-GDM
resulted in a CR value of 0, it assigns the same weight to C3
and Cy4, which results in an ambiguous situation for these two
criteria.

VI. A REAL CASE STUDY FOR CLOUD SERVICE SELECTION
In this section, we present a real dataset which is used through
an experimental case study to clarify how GBOM can be used
in real-world cloud service selection problems.

119953



IEEE Access

A. M. Mostafa: Group MCDM Approach Based on the BOM for Cloud Service Selection

TABLE 6. Criteria weights and CR values for Example 3.

Model Wl Wz W3 WA CR

Safarzadeh et al.
[16] Model-1 0.7180 0.1110 0.0960 0.0750 0.1690
Safarzadeh et al.
[16] Model-2 0.6490 0.1460 0.1380 0.0670 0.1830
Safarzadeh et al.
[16] Group-AHP 0.6770  0.1920  0.0790  0.0530  0.0900
Ahmad et al. [17]
MCBWM-GDM 0.5450  0.2720  0.0900  0.0900 0
AIP_ BOM 0.6795 0.1241 0.1107 0.0857 0
Proposed 0.6811 0.1135 0.1123  0.0930 0
approach

A. DATASET

Based on the real-world dataset (CloudHarmony) [39],
we conducted our analyses. In order to record the perfor-
mance of several cloud services dynamically, the CloudHar-
mony dataset utilizes a number of benchmark applications
that run on different virtual machines over a predetermined
period of time. CloudHarmony periodically assesses the qual-
ity of service (QoS) metrics for leading CSPs such as Ama-
zon AWS, Microsoft Azure, IBM Bluemix, Alibaba Cloud,
and others. In addition to evaluations, CloudHarmony offers
cloud service profiling and consulting services. Cloud service
profiling entails detailed information on features, pricing
policies, SLAs, and uptime commitments provided by various
service providers. Table 7 provides a summary of the dataset
used. For each of the 10 real-world Cloud Service Providers
in the dataset, five QoS criteria values have been collected.
These QoS criteria are CPU Performance (C1), Memory
Performance (C2), Disk Performance (C3), Disk Consistency
(in ms) (C4), and Price (in $) (C5).

B. CASE STUDY
It was assumed that there would be five decision-makers. The
pairwise comparison values for the criteria are generated at
random. The profiles of the DMs may include cloud architects
or engineers, I'T managers, business strategists, and end users
or application developers. Each DM’s unique perspective and
expertise contribute to a comprehensive evaluation process
aimed at selecting the best criterion and the pairwise compari-
son values that meet both technical requirements and strategic
business goals. Initially, decision makers select the best QoS
criterion. Suppose that CPU Performance (C1) is the best cri-
terion selected. DMs provide pairwise comparison values of
the best criterion over other criteria. Table 8 presents pairwise
comparison values. Afterwards, GBOM is used to calculate
the weights of the criteria based on the pairwise comparison
values set by the DMs. Table 9 shows the optimum weights
of the criteria using the proposed method (GBOM).

In Table 10, we present the normalized values of the criteria
for the CSPs calculated from the dataset as presented in our
previous study [32].

119954

In order to determine the final CSPs’ scores (priorities), the
following formula was applied:

n
Ri = wiQoSj
k=1
where:
n: The number of criteria.
k:1,2,3,...,n.

i 1,2,3,..., 10 (number of CSPs).

wy: Optimal weight of criteria .

QoS ;;: The normalized value of the QoS relative to CSP;.

Table 11 summarizes our rankings of cloud service
providers in the case study. The results of this case study
indicated that HP ranked highest among the cloud service
providers, due to its high CPU performance, which was pre-
viously selected as the best criterion by the DMs.

It is interesting to note that the obtained CSP rankings
differ slightly from those in [32], since the priorities of user
requirements were not taken into account when determining
the weights of the criteria.

VII. DISCUSSION
The experimental studies presented in this paper highlight
the practical applicability and effectiveness of the proposed
GBOM Method for group decision-making. By comparing
GBOM with several existing methods, including the Group
Best-Worst Method (GBWM) [16], MCBWM-GDM [17],
and AIP_BOM, the results demonstrate GBOM’s capability
to consistently produce optimal weights and rankings with
improved consistency and reduced computational complex-
ity. Unlike AHP and BWM-based group decision-making
methods, which require a large number of pairwise com-
parisons, GBOM significantly reduces this burden. Specifi-
cally, GBOM requires only n — 1 comparisons compared to
BWM’s 2n — 3 and AHP’s n x (n — 1)/2. This reduction
not only minimizes the effort required from DMs but also
enhances the feasibility of the decision-making process in
scenarios involving numerous criteria. The consistency ratio
(CR) in GBOM is consistently zero, indicating a high level of
reliability and robustness in the final weight estimates. This
improvement in consistency is crucial for ensuring that the
decision outcomes are logically sound and free from internal
contradictions. In addition, by using the multinomial distri-
bution to model input pairwise comparisons and the Dirichlet
distribution for the criteria weights, GBOM incorporates a
rigorous probabilistic framework. This allows us to quantify
variability in the DMs’ inputs, leading to more robust and
reliable aggregated weights. Furthermore, the application of
Bayesian inference using Markov-chain Monte Carlo tech-
niques via JAGS enables the continuous update of the cri-
teria weights as new data becomes available. This dynamic
updating mechanism ensures that the decision-making model
remains relevant and accurate over time.

The validation of GBOM through numerical examples and
a real-world cloud service selection case study demonstrates
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TABLE 7. Cloud services dataset summary.

| e Qo5 Meris
Prcol\(l)il:l(ei:lie(rglsclgs) Virtual Memory | CPU Performance Memory Disk Performance Disk Consistency
Processors (in GB) (Cl) Perf;)g;l)ance (€3) (in ms) (C4) Price (in $) (C5)
Amazon (CSP1) 4 7.5 63.44 91 56.82 66 0.17
HP (CSP2) 4 15 111.95 131.81 100.5 119.63 0.42
?gg;‘;s)"ﬁ Azure 2 4 77.49 80.67 40.23 2343 0.12
Rackspace (CSP4) 2 4 5.45 842 109.2 78.56 0.12
Google (CSP5) 4 7 822 61.8 78.49 67.97 0.24
Century Link (CSP6) 4 4 41.85 63.44 63.1 70.29 0.24
City-Cloud (CSP7) 8 16 58.42 78.15 68.45 31.22 1.05
Linode (CSP8) 8 64 37.05 132.87 102.74 36.15 1.65
GoGrid (CSP9) 4 8 42.05 97.16 174.5 59.63 0.21
SoftLayer (CSP10) 2 2 4.87 83.74 82.01 133.61 0.12

its practical applicability and effectiveness. In Examples 1
and 2, the GBOM method yielded optimal weights and crite-
rion rankings that were slightly different from those generated
by GBWM (both Model-1 and Model-2), MCBWM-GDM,
and AIP_BOM. Despite these differences, the ranking order
of the criteria remained consistent across all methods (C1 —
C2 — C4 — C3). This consistency underscores the robust-
ness of the proposed GBOM method in preserving the relative
importance of criteria while ensuring a zero Consistency
Ratio (CR).

TABLE 8. Pairwise comparison values for the case study.

Py Pi3 Py Pys
DM, 2 3 5 7
DM, 3 5 7 3
DM; 3 5 7 3
DM, 5 7 5 3
DM; 2 5 4 3

TABLE 9. The optimum weights of the criteria for the case study.

Criteria C, C, C; Cy Cs
Weight 0.4722 0.1787 0.1110 0.0989 0.1392

The zero CR is particularly noteworthy, as it demonstrates
GBOM’s superior ability to maintain internal consistency
without the computational overhead associated with existing
methods. In Example 3, a real-world case study on piping
selection, the GBOM method’s rankings aligned closely with
those from GBWM and MCBWM-GDM. The Group-AHP
model, although producing a similar ranking, showed higher
CR values (>0.1), indicating potential inconsistencies.

The slight variations in weight values across methods
are attributed to the inherent differences in how each

VOLUME 12, 2024

TABLE 10. The normalized values of the QoS criteria relative to the CSPs
in the case study.

C C, GC; C, Cs
‘?g‘s;;’;‘ 07371 08186 07151 050006  0.5234
HP (CSP2)  0.8685 09063  0.8426  0.50003  0.5095
A xrigré)éggs) 07808  0.7901  0.6563  0.50017  0.5332
R?g;sf{’j)ce 05217 08001  0.8626  0.50005  0.5332
%’S‘E@) 0.7945 07317 07837  0.50006  0.5166
Cer(ltcusr{)gnk 0.6622 07371 07360  0.50006  0.5166
Ci(t(y:é%l;’;‘d 07205 07827 07532 050013  0.5038
(Lclg‘}’,‘;e) 0.6445 09080  0.8479 050011  0.5024
%’SG;;‘; 0.6629  0.8343 09595  0.50007  0.5190
S(‘éfg};%gr 05194 07988 07939  0.50003  0.5332

method handles pairwise comparisons and aggregates group
preferences. The weighting differences observed in the exper-
imental examples have significant implications for decision-
making outcomes. For instance, in Example 1, the optimal
weight assigned to the best criterion (C1) by GBOM (0.4474)
was lower than those assigned by GBWM (0.5280 and
0.5120 for Model-1 and Model-2, respectively), MCBWM-
GDM (0.5067), and AIP_BOM (0.4924). This suggests that
GBOM provides a more balanced consideration of criteria,
preventing the overemphasis of the best criterion and poten-
tially leading to more nuanced and holistic decision-making.
Similarly, in Example 2, the GBOM method assigned weights
that were more evenly distributed among the criteria, fur-
ther emphasizing its ability to balance the decision-making
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TABLE 11. CSPs ranking scores in the case study.

CSsp Score Rank
Amazon (CSP1) 0.6960 4
HP (CSP2) 0.7860 1
Microsoft Azure (CSP3) 0.7064 3
Rackspace (CSP4) 0.6087 9
Google (CSP5) 0.7143 2
Century Link (CSP6) 0.6475 8
City-Cloud (CSP7) 0.6833 6
Linode (CSP8) 0.6801 7
GoGrid (CSP9) 0.6903 5
SoftLayer (CSP10) 0.5998 10

process. However, in Example 3, it appears that most
decision-makers assign higher pairwise comparison values to
the best criterion compared to the others, which emphasizes
a greater weight for the best criterion relative to the other
criteria.

In the real-world case study of cloud service selection,
GBOM’s optimal weights resulted in the ranking of cloud
service providers (CSPs). HP, ranked highest by GBOM,
demonstrated superior CPU performance (C1), the best cri-
terion selected by the decision-makers. However, the slight
differences in weights assigned to other criteria (C2, C3,
C4, C5) influenced the final rankings of other CSPs. This
highlights the importance of considering user requirements
in determining the final rankings [32].

The differences in weightings and final rankings have prac-
tical implications for decision-makers in various contexts.
For example, in strategic decision-making scenarios, such as
selecting a cloud service provider, the nuanced differences
in weights can impact long-term outcomes, cost efficiency,
and overall satisfaction with the chosen service. The GBOM
method, with its balanced weighting approach and zero CR,
provides a more reliable and consistent framework for such
critical decisions. Furthermore, the computational efficiency
of GBOM, achieved by requiring only the best criterion for
pairwise comparisons, simplifies the decision-making pro-
cess. This reduction in computational resource requirements
makes GBOM particularly suitable for scenarios involving a
large number of decision-makers or criteria, where traditional
methods may become cumbersome and resource-intensive.

VIil. CONCLUSION

The evaluation of cloud services involves navigating complex
multi-criteria decision-making (MCDM) challenges, partic-
ularly when incorporating group decision-making among
experts. While traditional methods like AHP and BWM have
proven effective, their reliance on extensive pairwise compar-
isons, computational demands, and inconsistency underscore
the need for more efficient and reliable approaches. This
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paper introduces the group BOM (GBOM) method, which
expands the BOM method and addresses these challenges
by aggregating criteria and alternative weights using prob-
abilistic and statistical techniques across multiple decision-
makers (DMs). A multinomial distribution is used to model
the inputs, which are pairwise comparisons collected from
a group of experts. While the output of the method is the
optimal aggregated final weights of all DMs, it is formulated
according to Dirichlet distribution modeling. For estimating
the aggregated final weights for the criteria, Bayes theorem
was applied. Our validation with two numerical examples
and a case study for a piping selection method demonstrates
GBOM’s ability to consistently rank criteria compared to
established AHP and BWM group-based MCDM methods,
achieving a consistent ratio (CR) of zero and requiring signif-
icantly fewer comparisons. Specifically, GBOM necessitates
only n — 1 comparisons, contrasting sharply with BWM’s
2n—3and AHP’sn x (n — 1)/2. By relying only on the best
criterion for pairwise comparisons, we eliminate redundancy
and inconsistency. Moreover, our application of GBOM to
a real-world cloud service selection case study reaffirms its
advantages, showcasing improved consistency and offering
a streamlined approach to ranking cloud services based on
group preferences using the best-only method. This under-
scores GBOM’s potential as a robust and efficient solution
for MCDM in cloud service selection, effectively overcoming
key limitations of existing methodologies. There are also
limitations to the proposed approach. Experts’ confidence
levels for their pairwise comparison values were not taken
into account. Furthermore, the formulating and programming
of the probability distribution models requires some level of
technical expertise. These limitations can be addressed in a
future study.

Future research could investigate hybrid approaches that
combine GBOM with other methodologies like fuzzy logic
or grey systems theory. This would enable the handling
of complex decision scenarios where criteria weights and
alternatives’ rankings need to be assessed under uncertain
or ambiguous conditions. Additionally, developing interac-
tive decision support systems centered on GBOM could
foster real-time collaboration among decision-makers. This
could involve user-friendly interfaces, visualization tools,
and feedback mechanisms to enhance transparency and
consensus-building in group decision-making processes. Fur-
thermore, conducting case studies across diverse application
domains beyond cloud service selection would be instru-
mental in verifying and enhancing the applicability and
effectiveness of GBOM.
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