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ABSTRACT Over the past few years, smart cities have seamlessly integrated into our daily lives, offering
convenience and simplicity. However, as these cities become increasingly interconnected and reliant on
the Internet of Things (IoT), ensuring heightened security measures becomes paramount. The potential
compromise of IoT devices due to vulnerabilities poses significant risks, including the theft of personal
data, leading to severe hazards for individuals. Thus, Security plays a pivotal role in safeguarding IoT
devices. In this modern era, integrating security measures with machine learning has emerged as a solution
to automate and streamline security protocols. This requires a comprehensive analysis of enhancing security
levels in IoT devices within innovative city environments. Our study extensively surveys security issues
across various facets of IoT infrastructure, including hardware, cloud environments, applications, data,
software, and networks. Through thorough examination, we identify the effects of these issues and propose
countermeasures to bolster Security, mainly focusing on IoT devices. Furthermore, our study delves into
various machine learning algorithms, providing examples, detailing attack types, and assessing accuracy
rates for each algorithm. We offer a quick reference guide that outlines the benefits and drawbacks of
different machine-learning algorithms and their applications. Additionally, we aim to identify and mitigate
various security threats by exploring diverse datasets, evaluation metrics, [oT threats, and machine-learning
techniques. By thoroughly exploring these aspects, our study equips future researchers with the knowledge
to effectively identify potential security threats and implement robust safeguards against them.

INDEX TERMS IoT, security, machine learning, smart city, attacks.

I. INTRODUCTION
IoT devices have sensors and actuators where the sensors

billions of IoT devices in our everyday lives, Global security
and risk management spending is expected to increase by

are used to sense the particular environment and use the
internet to transmit the sensed input to the decision-making
processor, and in turn, it sends the specific signals to activate
the actuators to take necessary actions in the environment,
for example, the temperature sensor senses the temperature
inside a particular room and sends the input to the processor,
and it decides whether the room temperature to be increased
or decreased, such that the processor will send back the
signal to the actuators to cool or heat that room. We utilize
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14.3% in 2024, outpacing IT spending at 8%, according to
Gartner. Fortune Business Insights predicts the cybersecurity
market will reach $424.97 billion by 2030, nearly 2.5 times
its 2023 value [1].

The concept of an intelligent city environment includes
elements like smart homes and smart Agriculture, as depicted
in Figure 1. These factors significantly influence the use
of Internet service providers, data storage, and access,
consequently introducing the possibility of vulnerabilities
and threats into the scenario. Nowadays, there are more
security issues in any IoT device’s hardware and software
side due to the device manufacturers’ lack of encryption
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and standardization. The software can easily be hacked by
hackers using bots.

A smart city powered by IoT devices has been used
by Smart Buildings — how to Secure the home as well
as office buildings and also to automate all the work in
and around it [2], Smart Agriculture — deals with how
to maximize the profit in the cultivation of agricultural
products with less investment and to improving the utilization
natural farming instead by avoid using chemical fertilizers or
pesticides [3]

Smart Manufacturing — to automate, and speed up
the process and product workflow in manufacturing indus-
tries [4], Smart Education — to enhance the process of
delivering the classes in digital forms such as audio and video
and to increase the teaching and learning process between
a teacher and a student [5], Smart Environment — how to
safeguard our environment by making a green environment
and encouraging about waste management, recycling of
wastes, air quality management, pollution management,
etc. [6]

Smart Grid - dealing the way of the utilization of
energy resources for power such that proper generation,
transmission, distribution from various kinds of power
resources(wind, water, air, atomic) [7], Smart Healthcare —
to make the physicians work smarter and lesser the intelligent
devices and wearables are used to monitor the patient
condition all the time, thereby Robots are also used for
diagnosis and to do critical tasks to make more affordable
in the Healthcare sectors, [8], Smart Transportation’s — to
have a more brilliant way of mobility, transportation, parking
garages, electric vehicle charging stations, delivery of goods,
self-driving cars and more [9].

The table labeled Table 1 compiles abbreviations alongside
their respective definitions.

Smart
Manufacturing

Smart
Education

gmart Smart
Healthcare Building

Smart Smart

Environment Transportation
Smart
Agriculture

FIGURE 1. Illustration of smart city environment with internet of things.

A. PROCESS OF SLR

This study examines the present research on enhancing
Security within the Internet of Things (IoT) domain. Employ-
ing a systematic mapping study, we scrutinize the existing
literature. The investigation aims to address the following five
Research Questions (RQs):
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o« RQI: What are the areas to concentrate on in IoT
Security? The answer to the above question is given in
Section II-A through II-F

o RQ2: What are the different types of attacks and their
corresponding countermeasures? This above question is
answered in Section III-A through III-F

e RQ3: In what ways is ML influencing Security in
IoT? We have the solution to the above question in
Section IV and V

o RQ4: How can you design an IoT system securely? The
answer to the above question is given in Section VI-A
through VI-D

Figure 2 illustrates the findings and selection of articles.
Initially, we searched based on keywords, screening approx-
imately 986 articles. After applying our selection criteria,
we included 198 articles. Among these, we excluded survey
articles, leaving 137 for further consideration. We then thor-
oughly examined the title, abstract, and full text of 96 articles.
Subsequently, we chose 59 articles for further Analysis based
on the publisher’s quality, as shown in Figure 3.

Figure 3 represents the selection of articles based on the

publishers.

1) ORGANIZATION OF THIS SURVEY

The following is the outline for this paper. Section I
introduces a ‘smart city’ concept and the Research Questions
to be Solved. Section II provides an overview of Essential
Focus Areas for IoT Security and different possible attacks.
Section III explains various attacks in IoT and discusses
their countermeasures. Section IV discusses the need for
a Machine Learning Algorithm in IoT security. Section V
represents a literature survey on various types of Machine
Learning algorithms. Section VI addresses Security Issues
with the Internet of Things. Section VII explores Secure
Designs with problems and Solutions, and Section VIII
delves into Future Scope and Research Directions, conclud-
ing with final remarks and References.

II. SIX ESSENTIAL FOCUS AREAS FOR loT SECURITY
The significant studies’ tiered architectures had anywhere
from three to seven tiers depending on how comprehensive a
given study was. These tiers housed the various components
of the different IoT platform types. Researchers introduced
the three-layer architecture as the first IoT paradigm [10]. The
sensing layer is the foundation and comprises sensors and
controllers as objects, the cloud layer handles data storage
and processing, and the application layer facilitates user
participation. This three-layer structure is expanded to a
four-layer form by adding a company component [11].
Another description of IoT, which has a middleware-based,
five-layer structure [12]. Composing services, managing
those services, and abstracting them from the rest of the
system are all middleware-based activities. In addition to
the five-based model, which already includes the edge and
mixed edge cre, the six-layer adds a fog layer or a gateway
layer [13]. Cisco’s latest suggestion for the Internet of Things’
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FIGURE 2. The steps involved in discovering and selecting articles.
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FIGURE 3. The arrangement of the chosen articles based on the
publishers.

underlying infrastructure is a seven-tiered plan. Coatings
for the end user and processes and a layer for peripheral
processing were added to the prior design [14]. With the
increasing intricacy of IoT systems and the general direction
of research in this field, we have chosen to concentrate
on the seven-layer design paradigm. We have decided to
focus on this investigation’s 3, 5, and 7-layer design types.
Figure 4 illustrates how these seven levels are translated into
six critical regions for attention.

As mentioned above, the IoT might have avoided many
of these assaults if it had protected all 6 of the following
emphasis areas.

The following are the primary areas where Security should
be a top priority while developing your IoT solutions which
is shown in Figure 5.

A. DEVICE/HARDWARE SECURITY
Due to computing and power limitations, security alterna-
tives. Because many IoT installations are widely distributed,
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these constraints allow attackers to easily locate a network
access point through methods such as brute force, Rowham-
mer, fuzzing, or side-channel attacks. For sensors and gate-
ways, organizations must provide an outer layer of protection.
They might begin by actively looking for or building devices
with built-in security features. Tamper-resistant casings and
gadgets disabling when tampered with are examples of
security methods. IoT devices need hardware-level Security
since software-based security solutions can easily miss
assaults on this level. Software security cannot stop assaults
on its own [15].

B. CLOUD SECURITY

IT administrators should look at gadgets when securing
the Internet of Things. IoT gadgets, including temperature
sensors, security cameras, and wearable medical equipment,
come in various shapes and sizes. IoT device security
involves additional specialized best practices, such as device
detection and segmentation, while hardware security also
includes measures to safeguard specific devices [15]. Every
organization must start with device detection. IT managers
will not take other security measures, like changing a
default password, rolling out an update, or turning off
idle devices, if they are unaware that a device even
exists [15].

C. APPLICATION SECURITY
Some vulnerabilities in IoT apps that hackers exploit
include insecure network links, open data storing, outdated
IoT application segments, weak passwords, and inadequate
upgrade procedures. IT managers must prepare for basic
attacks like spoofing and privilege escalation [15].
Applications may be well-protected using industry-
standard best security practices, such as frequent software
upgrades, firewalls, and access permission. IT administrators
must secure all the connections between devices and apps,
API integrations, and surrounding technologies. However,
even if everything is safe, they must watch for dangers and
unexpected behavior in IoT programs [15].
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TABLE 1. Table of abbreviations used.

Abbreviation Definition Abbreviation Definition
ABE Attribute-Based Encryption MDP Markov Decision Process
Al Artificial Intelligence ML Machine learning
ANN Artificial Neural Networks MQTT Message Queuing Telemetry Trans-
port

APA An Authentication Protocol to Pre- NB Naive Bayes

vent Phishing
API Application Programming Interface =~ NN Neural Network
ASLR Address Space Layout Randomiza-  NOS Networked Smart Object

tion
AUC Area Under the Curve PCA Principle Component Analysis
BAN Body Area Network PDOS Permanent Denial of Service
BIOS Basic Input Output System PUF Physically Unclonable Function
BN Batch Normalization R2L Root to Local
CNN Convolution Neural Networks RAM Random Access Memory
CRC Cyclic Redundancy Check RBAC Role Based Access Control
CUTE Customizable and Trustable Endde- ~ ReLU Rectified Linear unit

vice
DBSCAN Density-based spatial clustering of RF Random Forest

applications with noise
DDoD Dual Denial of Decision RFID Radio Frequency Identifier
DDoS Distributed Denial of Service RL Reinforcement Learning
DOM Document Object Model RNN Recurrent Neural Networks
DoS Denial of Service RQ Research Question
DoS Denial of Service SAML Security Assertion Markup Lan-

guage

DPP Dynamic Privacy Protection SOAP Simple Object Access Protocol
DQN Deep Q Network SQL Structured Query Language
DS Data Science SSL Secure Socket Layer
DT Decision Tree SVM Support Vector Machine
EDoS Economic Denial of Sustainability SYN Synchronize Sequence Number
EL Ensemble Learning TCP Transmission Control Protocol
GMM Gaussian mixture models TD Temporal Difference
HER Electronic Health Record TLS Transport Layer Security
HLS High-Level Synthesis U2R User to Root
HTML Hyper Text Markup Language USB Universal Serial Bus
IoT Internet of Things WAFs Web Application Firewalls
ISDD Improved Secure Directed Diffu- WS Web Services

sion
1T Information Technology WSN Wireless Sensor Networks
KNN K-Nearest Neighbours XGBOOST Extreme Gradient Boosting
LDA Linear Discriminant Analysis XML Extensible Markup Language
LSTM Long Short Time Memory XSS Cross-site scripting

D. DATA SECURITY

The business insights provided by the data gathered make
IoT valuable. The information can support procedures or
guarantee a patient’s well-being and safety. However, data
security is among the most challenging topics for many
firms. IoT implementations involve the continuous exchange
of enormous amounts of data. Multiple protection layers
must cooperate to safeguard users’ data privacy and ensure
the uninterrupted operation of IoT devices. Additionally,
businesses must choose where to save and arrange their IoT
data. Legislative agencies have started to broaden the data
protection and privacy rules that firms must abide by in
addition to practical factors [15].

IT managers may take the first measures to restrict
access by frequently upgrading all devices and reset-
ting all passwords. SSL and other IoT data encryption
technologies guarantee that data will not be intercepted.
To safeguard the machines, they must also set up firewalls
and monitor how users and software programs handle critical
information [15].
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E. SOFTWARE SECURITY

The IoT industry needs to catch up regarding security
norms and legislation compared to other technology areas.
Because it would take more time and money to incorporate
Security, IoT technology does not come with it by default.
Organizations must include Security in all of their hardware
and IoT software. IoT software developers need to care-
fully choose their platforms, languages, and tools due to
security vulnerabilities present in various libraries and APIs.
To expedite their work, IoT developers could use open-source
software, but they must consider the offered assistance and
if the community takes proactive action to fix problems.
Access control measures and software vulnerability testing
are essential components of software security [15].

F. NETWORK SECURITY

Last, the network is becoming the primary focus of IoT
protection. After devices join the network, the network has
access to all data and tasks. With this method, hackers can
gain access to anything on the web. By utilizing the network,
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FIGURE 4. lllustration of how the different layers are translated into six key regions for security.

the Verification of users and devices can occur, enabling
the establishment of guidelines and regulations to control
access, behaviour, and the detection of anomalies [15].
The network is essential for spotting an attack as it
happens and responding to the assault by shutting down,
restricting, or slowing down the device. You can accomplish
a lot with the network infrastructure. Most of the time,
IT professionals will want to rely on network firewalls to
solve security issues, but they only utilize one for some of
the switch ports. The network itself has to have security
features [15].

IIl. ATTACKS IN loT
Various types of attacks are taking place in different areas
mentioned above; we will discuss the attacks in particular
domains of IoT as discussed below. Figure 6 summarizes the
various attacks in IoT.

A. ATTACKS ON IoT DEVICE/HARDWARE

Here, we provide a comprehensive summary of these assaults.
Physical attacks can be launched against network or system
hardware if the intruder maintains proximity to it [16]. The
following is a list of typical physically made Device or
Hardware assaults or Attacks:
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1) TAMPERING
The act of physically altering a gadget (such as an RFID) or
communication connection [17].

2) MALICIOUS CODE INJECTION
By infecting a tangible object with harmful code, an assailant

gains a foothold from which to launch further attacks [16]
and [17].

3) RADIO FREQUENCY INTERFERENCE/JAMMING

An attacker produces and transmits noise signals across Wire-
less Sensor Network (WSN) and radio frequency (RF) signals
to conduct denial-of-service (DoS) assaults on RFID tags in
addition to sensor nodes and obstruct connectivity [18].

4) FAKE NODE INJECTION
To manipulate data flow between two genuine network nodes,
an attacker inserts a fake node between them [19].

5) SLEEP DENIAL ATTACK

A Sleep Denial Attack targets battery-powered devices, like
those in 0T, by continuously sending data or requests to keep
them awake. This prevents low-power sleep mode, quickly
draining the battery and reducing the device’s lifespan [20].
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TABLE 2. Device /Hardware threats, outcomes, and defenses.

Name of the Attack Threats Proposed Measures for Prevention References
Malicious Code Injection and  The ability to obtain private ~ An Authentication Method Relying on a Physically Un-  [17]
Tampering data and launch denial-of-  clonable Function (PUF), SVM.
service attacks
Jamming/ RF Interference DoS: Cause Conversation CUTE Mote, RF, SVM, RL, and K means are Used. [18]
Problems
Fake Node Injection Manage information traffic, act ~ Key Establishment and Pervasive Authentication in Wire-  [19]
as an intermediary less Sensor Networks for Distributed Internet of Things
Applications (PAuthKey), SVM, RF, K-Means, and DB-
SCAN are used.
Sleep Attack of Denial The shutdown of a Node Support Vector Machine (SVM), CUTE (customizable and  [20]
trustable end device ) Mote, SVM, RF, K-Means, and DB-
SCAN are used.
Side Channel Attack Gather the Decryption Codes Authentication using PUF and Masking technique, SVM,  [21]

PCA, LDA, RF, and CNN are used.

Permanent Denial of Service Destruction of Resources

NetwOrked Smart object (NOS) Middleware, SVM, RF, K- [22]

Means, and DBSCAN are used.
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FIGURE 5. Six essential areas for loT security.

6) SIDE-CHANNEL ATTACK

During this assault, the assailant gathers time, power, fault
attacks, and other techniques on the system’s hardware; one
can decrypt keys [21]. These keys enable it to encrypt and
decode sensitive data.

7) PERMANENT DENIAL OF SERVICE(PDoS)
Denial-of-service attacks like phishing entail using malicious
software to wipe down an IoT device. The malware used
to conduct the attack uploads corrupted BIOS or destroys
firmware [23]. Table 2 summarizes the various types of
attacks and their Effects and Countermeasures in IoT
Devices/Hardware.

B. ATTACKS ON IoT CLOUD

1) FLOODING ATTACKS IN THE CLOUD

An SYN message overflow attack aims to exhaust a
server’s capacity by sending high volumes of SYN requests.
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Therefore, the server is unable to serve the actual users.
SYN flooding attacks impact PaaS and IaaS layers [24].
Transmission Control Protocol (TCP) SYN messages link a
legitimate client to a server. (TCP). The server then sends
the authorized user a request to confirm receipt of the SYN
communication, abbreviated as (SYN-ACK). The final step
in establishing a link is for the authenticated user to submit
an ACK message to the server. SYN overflow is inevitable
if many messages are sent to the server from the assailants,
but the three-way negotiation technique will fail. As a result,
the cloud system’s resource efficiency suffers as the computer
waits for all those messages to complete. Two approaches
are used in the PaaS layer to connect to a legitimate user
request. The SYN cache mechanism is one, while the SYN
cookies defense technique is another. Due to its 15% longer
request-response time and subpar performance, neither is at
a suitable level [24].

2) CLOUD MALWARE INJECTION ATTACK

The malware infiltration process damages cloud computing’s
credibility because it compromises the reliability of the
extraordinary services for which the technology is known.
Attackers try to introduce their malicious virtual machines,
services, and applications into the cloud system; as a result,
services are marked as genuine instances of harmful software.
Cloud-based anti-malware services are available to all autho-
rized users, including Trojan packages or virus programs that
create hazardous zones in dispersed environments. Malware
programs put system hardware and cloud instances in danger
and make data unavailable throughout the cloud system [25].
There are two suggested actions to stop an assault using
cloud malware injection. The first and most crucial stage
is to forward all inbound queries to the service instance
security check. The second stage is to implement a system
that requires a correct hash value for each user.

3) SIGNATURE WRAPPING ATTACK

The Signature Wrapping Attack is implemented using
SOAP-Simple Object Access Protocol, which underlies the
XML signature attack. A signature element in the security
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FIGURE 6. lllustration of various attacks in loT environment.

header of a SOAP message addresses extra message sections.
Since XML messages’ IDs are used for validation, a user ID
for the online application can be used to launch an assault on
the data. The receiver of a SOAP message will typically check
the signature’s authenticity by matching the received ID to
a predetermined set of numbers. An XML signature attack
is launched against the user who fraudulently uses a copied
SOAP message as a heading element in the request. The
malicious attacker carried out every SOAP message control
there. To prevent an XML Signature attack, one must adhere
to the WS-Security policy [26].

4) WEB BROWSER ATTACK
Cross-site scripting adware inserts harmful code onto a
legitimate website to initiate an attack on a user’s browser.
The most prevalent XSS attack is DOM-based, followed by
non-persistent (or dynamic) XSS attacks and irreversible (or
static) XSS attacks. Reflected XSS [27] includes DOM-based
attacks as a subtype, the injected script is temporarily
diverted away from the web server, and persistent type attack
involves the lasting storage of an inserted script. Due to their
dynamism, dynamic websites are more susceptible to being
hurt by XSS attacks than static websites. When trusted users
click pop-up windows on the screen, private information is
accidentally disclosed. Several strategies are used to stop this
threat, including technology for detecting vulnerabilities in
web applications, content-based methods for preventing data
leaks, and Active Content Filtering [27].

Table 3 summarizes the various types of attacks and their
Effects and Countermeasures in the IoT Cloud Environment.

C. ATTACKS ON IoT APPLICATIONS

1) INJECTION

In this attack, harmful code is inserted into the system by
exploiting programming vulnerabilities [25], [28]. Injecting
malicious code into a software application has many uses,
including data stealing, system takeover, and malware
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6. Deny the Data Reports

6. Logic Bombs

8. Man in the Middle Attack

9. Replay Attack

10. Denial/Distributed Denial
of Service(DOS/DDOS)

distribution [25], [28]. Standard methods of assault include
script injection and HTML code injection. The system may
become unstable, users’ privacy may exposed, or the entire
system may shut down if attacked in this way.

2) BUFFER OVERFLOW

In this type of assault, program flaws are exploited to
overflow the memory holding the code or data. Many
programs use a standard memory organization to keep blocks
of code and data. The attacker floods a preset residence zone
by writing a lengthy data stream to a designated place. The
application’s flow management can be disrupted, malevolent
code can be executed (when the pattern crosses into a logical
block of code.), and other data can be changed (where another
data buffer’s data section meets the series). Some typical
methods include memory overflows on the heap or stack,
arithmetic errors, double frees, and attacks based on format
strings [29].

3) AUTHORIZATION TO MANIPULATE/ACCESS SENSITIVE
INFORMATION

This assault compromises users’ Security by allowing third
parties to see and potentially change their data [30]. This
attack often takes advantage of permission model design
shortcomings [30]. Attackers can manipulate programs in
intelligent homes by taking advantage of flaws in the
authorization paradigm, leading to theft and break-ins [30].
In addition, earlier research [30] examined the events
involved in communication between Smart Apps and Smart
Devices. Keep in mind that smart devices and intelligent apps
provide a particularly challenging issue for data security.

4) PHISHING ATTACKS

An intruder may masquerade as a user or a genuine
organization to access sensitive material [31]. Email is a
typical target for this attack, and when recipients open the
email, the attacker gets access to essential data.
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TABLE 3. Cloud threats, outcomes, and defences.

Name of the Attack Threats

Proposed Measures for Prevention

References

Flooding Attack Performance and Quality of

Service on the Cloud

By setting up a firewall or intrusion detection system (IDS), ~ [24]
you may prevent attacks on your server from unauthorized

users, SVM, K-Means, CNN, and DBSCAN are used.

Cloud Malware Injec-  Stealing Data or Eavesdrop-
tion Attacks ping.

Signature Wrapping
Attacks

Bypassing signature-based
security measures, Tampering
with message integrity, and CNN.
Gaining unauthorized access.

Browser Security At-  Identity theft

To verify the authenticity of incoming requests to a service  [25]
instance using their hash values, SVM, RF, XGBOOST,

and CNN are used.

Anomaly Detection can implemented by SVM, Behavioral  [26]
Analysis by RNN, and Deep Packet Inspection by Using

(Transport Layer Security) TLS with x509 certificate. Pub-  [27]

tack lic key with SAML (Security Assertion Markup Language).
A server’s public key is used. Legally Binding Session.
SVM, NB, SVM, RF, NN, and DBSCAN are used.

5) AUTHENTICATION AND AUTHORIZATION

The preservation of IoT security and privacy depends heavily
on the authentication procedure. Fine-grained Verification is
impossible with the current authentication techniques [32].
Malicious files, for instance, can be obtained alongside
program updates, allowing attackers to exert direct control
over a device [32]. However, there are problems with the
authorization paradigm as well. Over-privilege is a common
problem [32] because it enables a device to obtain data
without utilizing all permissions to be granted. Additionally,
the permission issue results from utilizing the default
setup. When a file or location is given the wrong rights,
an intruder can exploit it in several ways [32]. The smart
card is vulnerable to distant verification attacks in a specific
application, which might result in user information leakage
and manipulation [32]. Additionally, an attacker can carry out
unlawful actions, like opening the door, because the smart
home lacks a complete authentication method [33]. Table 4
summarizes the various types of attacks and their Effects and
Countermeasures in [oT Applications.

D. ATTACKS ON IoT DATA

The computational resources required to sustain the degree
of connection and data collecting that IoT’s growth and
development in the manufacturing sector are putting pres-
sure on the market for connected products [34]. Cloud
computing entered the scene, serving as the framework
for all the IoT offers. Cloud computing simplifies the
deployment of virtual servers, the launch of a database
instance, and the construction of data channels to support
the functioning of IoT systems [34]. Cloud services may
also be helpful in this context due to the importance placed
on data protection by providing suitable login methods,
hardware and software upgrade processes, etc. In this article,
we discuss the most severe recent data leaks in the IoT
industry:

1) DATA INCONSISTENCY
Attacks on data honesty, also called Data Inconsistency, can
lead to problems with widely kept or in-transit data in the I0T;
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erroneous Analysis and decisions made due to inconsistent
data might lead to system failure or unexpected results [35].

2) UNAUTHORIZED ACCESS

Ensuring that only genuine users are granted access and
that malicious users are prevented from gaining data
proprietorship or access to sensitive information is cru-
cial, as regulated entry aims to prevent unauthorized
users [36].

3) DATA BREACH
The revealing of data, also known as memory leaking, is the
illegal use of private, delicate, or secret information [37].

4) STEAL THE DATA

Data theft is the unauthorized or intentional acquisition of
any data not meant for sharing. Data access has been more
widely available in recent years, which has led to a rise in
data theft. Data may stolen from business databases, desktop
computers, mobile phones, portable devices, flash drives, and
cameras [38].

5) ALTER THE DATA

Any circumstance has the potential for data interception and
tampering. The basis of digital messaging is the transmission
of data. Unencrypted data transmissions are particularly
vulnerable because hackers can easily tamper with them and
redirect them to different destinations. The system program
could have a security vulnerability while the data is at rest,
allowing an intruder to damage the data or the base computer
code with harmful code [38].

6) DENY THE DATA REPORTS

The report’s Security is robust; it allows or disallows precise
access to data pieces in a package, data source, or even row-
level access in a database. The ability to run a report is
often granted to specific Groups or Roles using Read and
Execute permissions. However, you may give or limit access
to a message so we can use it at particular times of the
day [38].
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TABLE 4. loT Application threats, outcomes, and defenses.

Name of the Attack Threats Proposed Measures for Prevention References
Code Injection Inserting Code Insert harmful ~ Black box testing uses web crawlers to establish the up-  [25] and [28]
code into a software programor  per bounds of SQL speed and Web Application Firewalls
HTML document. (WAFs) is used to track how the application reacts to these
limits, DT and SVM are used.
Buffer Overflow Buffer Overflow Overwrite an ~ ASLR randomizes data region address spaces. Randomiz-  [29]
application’s memory ing address spaces makes buffer overflow attacks unfeasi-
ble; SVM, DT, RF, and NN are used.
Authorization to Ma-  Unauthorized manipulation or  Utilize DT or RF in Machine Learning Access Control for  [30]
nipulate / Access Sen-  sensitive data access. adaptive authorization based on contextual data.
sitive Information
Phishing Attacks Concealment of the attacker’s ~ An Authentication Protocol to Prevent Phishing (APA):  [31]
identity to take sensitive infor- It employs a zero-knowledge password proof and a two-
mation via "phishing." factor authentication system. NB, SVM, RF, and XG-
BOOST are used.
Authentication and  Unauthorized access to IoT de-  Implement Face Recognition for Bio-metric Authentica-  [32]

Authorization

vices, Identity spoofing, Unau-
thorized data access.

tion, utilize Reinforcement Learning for Behavioral Anal-
ysis, and employ DT or RF in Machine Learning Access
Control for adaptive authorization based on contextual

data.

Table 5 summarizes the various types of attacks and their
Effects and Countermeasures in [oT Data.

E. ATTACKS ON IoT SOFTWARE

Below are some examples of software assaults that an attacker
may conduct by taking advantage of a system’s related
software or security flaws:

1) VIRUSES

An attacker could compromise the system with this malicious
software to perform unauthorized changes, theft, and a denial-
of-service assault [45].

2) WORMS

According to [46], White worms are self-propagating pro-
grams to safeguard and guard IoT devices. They do this
by utilizing the dissemination and infection mechanism of
malevolent botnets. White worms, however, inherit specific
problems from malevolent botnets since they resemble them
in some ways.

3) TROJAN HORSES

The Internet of Things (IoT) provides a new arena in which
malware can be used to construct formidable botnets. Mirai,
a novel Linux Trojan attack, is elusive and widespread. The
danger is a new variant of Gafgyt, also called BASHLITE
or Torlus, the standard software used by DDoS service
providers [47] and [48].

4) SPYWARE AND ADWARE

A type of virus called spyware includes secretly watching the
person actively using a device. The network makes it possible
for harmful operations, including surveillance, keystroke
collection, data harvesting of account credentials and banking
and credit card information, and monitoring of keystrokes.
It could also corrupt a device’s four software security settings.
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It can exploit vulnerabilities in open software and spread itself
by attaching itself to various software [49] and [50].

Adware is a malicious program designed to display
advertisements on your computer, often through an Internet
browser. Many security experts consider it the precursor to
today’s potentially harmful software. It usually employs a
dishonest strategy to either pass for legitimacy or disguise
another piece of software to trick users into installing it on
their computer, laptop, or smartphone. Malware is a night-
mare for any contemporary enterprise. New harmful software
is constantly accessible by attackers and cyber-criminals to
assault their targets. Despite their most significant efforts,
security firms must find millions of new malware each month
to fully defend themselves against malware attacks [49]
and [50].

5) MALWARE
Malware could infect the cloud or data centers if it gains

access to information on the Internet of Things devices,
as stated by [45].

6) LOGIC BOMBS
Several security professionals agree that a logic bomb is
a deliberately implanted bit of code in a program that
goes off only when a predetermined set of conditions is
met. If a coder worries about being dismissed from their
job, they might hide some code that deletes all of the
company’s data. (a database payment prompt is one such
example.) [51].

Table 6 summarizes the various types of attacks and their
Effects and Countermeasures in IoT Software.

F. ATTACKS ON IoT NETWORK
Creating harm to the network attacks manipulates IoT
network infrastructure. Without being near the network,
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TABLE 5. loT Data threats, outcomes, and defences.

Name of the Attack Threats Proposed Measures for Prevention References

Data Inconsistency Discordance in the  Blockchain architecture, Chaos-based scheme, k-means or hi-  [39], and [40].
Data erarchical Clustering, KNN is used

Unauthorized Access There has  been  Blockchain-based Attribute-Based Encryption(ABE), ABE that  [41] and, [36].
a breach of data Protects User Privacy, SVM, RF, and DT are used.
privacy.

Data Breach

Information Loss

Dynamic Privacy Protection (DPP), Improved Secure Directed
Diffusion (ISDD), Two Factor Authentication, CNN, K-Means,
DBSCAN, and SVM are used.

[42], [43], and [44].

Stealing the Data Unauthorized data  Implement anomaly detection using Isolation Forest or One-  [38]
theft. Class SVM.
Altering the Data Unauthorized manip- Employ anomaly detection models like Autoencoders to iden-  [38]
ulation of data. tify data anomalies.
Deny for Data Reports Blocking or denying  Use machine learning-based access control, such as RBAC, to  [38]
access to data reports.  enforce policies.
TABLE 6. Software threats, outcomes, and defences.
Name of the Attack Threats Proposed Measures for Prevention References
Trojan Horses, Worms,  Destruction of  High-Level Synthesis (HLS), and Lightweight framework, [47] and [48].
Viruses, Adware and resources SVM, CNN, RF, NB, and DT are used.
Spyware.
Malware Infection of Data Neural Networks with Lightweight Framework and Classifica-  [49] and [50].
tion of Malware Images, SVM, CNN, RF, NB, DT, and XG-
BOOST are used.
Logic Bombs Malicious code  Use unsupervised anomaly detection to identify potential logic ~ [51]

are triggered under bombs.

specific conditions

it may deployed with ease. The following list of network
assaults’ most prevalent types:

1) TRAFFIC ANALYSIS ATTACK

Without physically accessing the network, an adversary can
still collect sensitive information by “sniffing” data in transit
between and among the devices [52].

2) RFID SPOOFING

An RFID signal must be faked first by the invader [53] to gain
access to the RFID tag’s data. Using the initial tag ID, the
intruder can transmit data while making it look like it came
from a legitimate source.

3) RFID UNAUTHORIZED ACCESS

Unauthorized access to RFID transpires when an individual
gains entry to the system without proper authorization,
enabling them to steal sensitive information or manipulate
the data. The scenario above may compromise sensitive data,
fraudulent use of personal identity, or depletion of financial
resources [53].

4) ROUTING INFORMATION ASSAULTS

Active assaults include things such as establishing up routing
wraps and sending out messages of error [54]. The perpetrator
is attempting to cause disturbance by forging or modifying
routing data.
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5) SELECTIVE FORWARDING

In the event of an attack, it is possible for a non-compliant
node to selectively alter, exclude, or solely transmit certain
messages to additional nodes within the network [55].
Consequently, the transmission of information to its intended
recipient needs to be improved.

6) SINKHOLE ASSAULT

The attack in uncertainty involves compromising a node
situated closer to the sink, commonly known as a “‘sinkhole
node.” This node makes it seem more appealing than others

in the network, so traffic would flow to it instead of
elsewhere [56].

7) WORMHOLE ATTACK

The perpetrator establishes the conduit by stealing data from
one part of the network and sending it via another means to
another part of the network. Using a hacked device or setting
up an unauthorized access point are two standard methods of
achieving this [57].

8) SYBIL ATTACK

One malevolent node spreads itself across the network by
adopting multiple names (termed Sybil nodes) [58]. As a
result, many valuable resources are divided unfairly.

9) MAN IN THE MIDDLE ATTACK (MITM)

One who opposes listens in on or monitors a discussion
between the two IoT gadgets to eavesdrop on private
data [59].
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10) REPLAY ATTACK

An adversary can repeatedly send a verified message to the
target after capturing it, as stated by [60]. A DoS attack could
happen if network traffic remains high.

11) DENIAL OF SERVICE/DISTRIBUTED DENIAL OF SERVICE
(DOS/DDOS) ATTACKS
DDoS attacks, which differ from DoS attacks, involve
many corrupted nodes sending information or requests for
connection to a single target to overwhelm it and make it
unavailable or collapse [61].

Table 7 summarizes the various types of attacks and their
Effects and Countermeasures in IoT Networks.

Table 8 summarizes the various types of attacks and
specifies the type of machine learning applied to each.

IV. NEED FOR A MACHINE-LEARNING ALGORITHM IN
loT SECURITY
Figure 7 represents the current state and projected growth
of the international Internet of Things industry graphically,
which illustrates the need for IoT devices will increase along
with threats and vulnerabilities will also increase in the future.
Machine learning (ML) can find and comprehend patterns
in massive datasets, which is essential to the Security of the
Internet of Things. Because the Internet of Things produces
enormous volumes of data daily, machine learning algorithms
may be trained to recognize emerging patterns and apply
this understanding to identify and mitigate network hazards
efficiently. These algorithms can identify typical activity
patterns by examining data from registered IoT devices.
Any departures from these patterns may interpreted as
possible security risks. ML techniques, such as reinforcement
learning, supervised, unsupervised, and semi-supervised
techniques, are useful in identifying various threats, such as
DDoS attacks, intrusions, and authentication attacks [63].
By employing machine learning, we can recognize and
stop these threats before they do much damage. Because ML
models can train continuously, their accuracy improves over
time, which makes them crucial for tackling ongoing security
issues in IoT networks. We’ll examine several machine
learning techniques, assess their efficacy, and describe how
they improve IoT network security in the next section [63].

V. MACHINE LEARNING (ML)
Table 9 tabulates overall Machine Learning Design
Approaches with different techniques.

Artificial intelligence plays a vital role in our day-to-day
activities; machine-learning concepts are used to implement
Security in an innovative city environment. The goal of
machine learning is to enable the development of self-
improving machines. Data science, at the confluence of
computer science and statistics and serves as the foundation
for (Artificial Intelligence) Al and (Data Science) DS, is one
of the most quickly increasing fields of technology. Recent
progress in machine learning can be attributed to increased
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accessible internet data, advancements in learning theory and
algorithms, and the decreasing cost of computing power [65].

The Figure 8 quickly summarizes various types of Machine
Learning Algorithms.

A. SUPERVISED
In supervised learning, machines are tasked with determining
how inputs lead to desired outcomes by studying examples
of such couples [66]. It uses diverse training instances and
labelled data from training to deduce a function. Data is
collected when determined to achieve specific goals or use
a task-based approach [67]. The two most common guided
tasks are classifying (which seeks to group the data) and pre-
diction (which seeks to match the data). Text classification,
in which a text snippet, like a short message or a product
review, is analyzed to determine its class name or sentiment,
is an application of supervised learning. All machine learning
algorithms work on Classification, Clustering, Regression,
and Dimensionality Reduction principles. Since classifying
data includes the prediction of a name for a particular sample,
it falls under the umbrella of guided learning in machine
learning [66]. A goal, designation, or group (Y) is calculated
analytically from an incoming variable (X). It can determine
the type of the given data elements and whether they are
organized or unstructured. Email service companies need
help with a categorization problem when determining what
should and should not marked as junk.

Mathematically, supervised learning is given in Equa-
tion(1): X is input, and Y is output. Training data is
represented as

(xlsyl)v (XZ»)’Z)an-a(xn’yn)» (1)

where x; represents the i-th input and y; represents the i-th
output. We want to learn a function f(X) that translates inputs
to outputs f(x;) = y;for all i. The genuine output is y, and
the expected output is f(X). Minimize the expected and real
output discrepancy to learn f(X). The loss function L(y, f(X))
is used to assess the difference between the real output and
the anticipated output [68], [69], [70].

1) CLASSIFICATION TYPES

Binary Classification: Binary Classification: This term
describes jobs that need the categorization of two classes,
such as “true” and “false’ or ““yes” and “no” [66].

a: NAIVE BAYES(NB)

The theorem of Bayes is the basis for the naive Bayes
algorithm, which further asserts the independence of each set
of traits [71]. In many actual circumstances, such as spam
filtering, document or text categorization, etc., It is helpful for
binary and multiclass classification tasks and performs well.
Anomaly detection and Intrusion detection on the network
layer [72], [73], [74] are two of the most prevalent examples
of NB in the IoT. The most straightforward equation notation
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TABLE 7. Network threats, outcomes, and defenses.

Name of the Attack Threats Proposed Measures for Prevention References
Traffic Analysis At-  Leakage of Data ( In-  Oblivious communication structure that protects user privacy, RF,  [52]
tack formation in Network) ~ SVM, KNN, and CNN are used.
Unauthorized Access  Modificationand Data  Personal User Function (PUF) with Static RAM, DT, KNN, RF, and  [53]
and RFID Spoofing. Manipulation (Write, =~ SVM are used.
Delete, Read)
Routing Information  Repetitive routes Verification using a Hash Chain’s Integrity, DT, KNN, RF, and SVM  [54]
Attacks are used.
Selective Forwarding Destructive Messages ~ Verification using a Hash Chain’s Integrity, a Method dependent on  [55]
using monitors, RF, SVM, DT, and XGBOOST are used. RF, SVM,
DT, and XGBOOST are used.
Sinkhole Attack Data tampering or dis-  Verification using a Hash Chain’s Integrity, Detected Intrusions, RF,  [56]
closure SVM, DT, and XGBOOST are used.
‘Wormbhole Attack Packet-based Cluster Analysis for Intrusion Detection, RF, SVM, DT, and XG-  [57]
tunnelling. BOOST are used.
Sybil Attack Poor resource distri-  Informed-Trust Protocol, SVM, and RF are used. [58]
bution, duplication of
effort
Man in the Middle At- A Violation of Per-  Securing Message queuing telemetry support (MQTT), Authentica-  [59]
tack sonal Space or Data. tion Between Devices, NB, SVM, and RF are used.
Replay Attack DoS attacks, network  Signcryption (encrypting and digital signing capabilities), SVM,  [60]
bottlenecks DT, and RF are used.
DDoS/DoS Attacks Overloading and  Economic Denial of Sustainability (EDoS) Servers, IoT architecture ~ [62]

crashing of networks

built on software-defined networking, SVM, RF, KNN, and DT are
used.

TABLE 8. Summary of area of attacks and machine learning algorithm applied.

Area of the Attack Machine Learning Algorithm Applied

Hardware Attacks Anomaly Detection Algorithms (e.g., Isolation Forest, One-Class SVM)
Cloud Attacks Intrusion Detection Systems (e.g., Random Forest, SVM)

Application Attacks Web Application Firewalls (e.g., Decision Trees, Deep Learning models)

Data Attacks
Software Attacks
Network Attacks

Data Loss Prevention Systems (Machine Learning-based anomaly detection)
Behavioral Analysis Algorithms (e.g., Hidden Markov Models, LSTM)
Network Intrusion Detection Systems (e.g., k-Nearest Neighbors, Deep Learning)

Number of Intermet of Things (JloT) connected devices worldwide from 2019 to 2021,
with forecasts from 2022 to 2030 (n billlons)

ao

=0

Qe des by

Soco
Tramatorne Shaignm
< Stavacs 2oz

FIGURE 7. The current state and projected growth of the international Internet of Things industry are graphically represented and discussed [64].

TABLE 9. Machine learning design approach with techniques used.

Learning Method

How a Model is Designed?

Techniques Used

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Algorithms, and models may be trained with the
use of statistics with labels (task-oriented
approach)

Learning models and algorithms may process
data without labels (Data-oriented Approach)
Motives such as reward and punishment form the
basis of models (environment-driven approach)

associations

Classification, Regression

Dimensionality reduction, Clustering, and

Classification, control
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for Naive Bayes is given in Equation(2):
[y = argmax P(c) - P(x]|c) )
C

When a fresh data point is added, its expected category is
denoted by y. c is the set of categories to which the fresh
data point may be assigned. P(c) represents the expected
frequency of class c. The probability that a new data element
x conforms to category c is denoted by P(x|c).

b: K-NEAREST NEIGHBOURS (KNN)

In certain instances, KNN is called a ““lazy learning” method,
[75] is an “instance-based learning” or ‘‘non-generalizing”
learning technique. In place of a generic internal model,
an n-dimensional space contains all instances similar to
the training set. Using closeness measures, KNN classifies
new data with the help of previously collected information.
(Euclidean distance function is used) [71]. In the IoT,
the KNN approach is used to detect intrusions, viruses,
and anomalies. The KNN algorithm is simple, low-cost,
and straightforward to implement [76]. Simple k-nearest
neighbor’s algorithm is given in Equation(3):

1. If we have a set of training data with labels, then

Xz(xlvyl)a (x2ay2)a--~’(xn,)’n) (3)

where x; is an instance of data and y; is a class name or goal
variable.
2. For a new input data point x*, locate the k training
instances from X that are closest in some distance measure.
3. Classify x* with the most common label from the KNN.
Regression: The average value of the KNN target variable is
denoted by x* [68], [69].

¢: SUPPORT VECTOR MACHINE (SVM)
One of the popular techniques in machine learning is
Support vector machines (SVMs) [77]. In addition to its
usage in Regression and Classification, SVMs also have
additional applications. An SVM may produce a single
hyper-plane or a collection of hyper-planes in high or infinite
multidimensional space. Due to the high accuracy levels,
SVM has many useful security features; it can be put to good
use in a wide variety of IoT security apps, including breach
detection [78] [79], intelligent grid attacks [80], malware
detection [81], and so on [82]. Simplified SVM algorithm
equation: Input sample x; is sample number i and y; is the
output label, with Let y; be an element in the set {+1, —1}.
SVM locates a hyperplane that differentiates negative and
positive data to the greatest extent possible. The hyperplane
equation is given in Equation(4)

wx+b=0 4

where b is the bias term, and w is the weight vector. SVM
maximizes the margin between the hyperplane and the nearest
positive and negative samples. The optimization problem for
SVM is given in Equation(5):

yilw.x; + b) > 1for every i (@)
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The constraint ensures that all samples are correctly classified
with a margin of at least 1. The optimization issue may
addressed using several approaches, such as quadratic
programming or gradient descent, to achieve the optimum
values of w and b that define the hyperplane [68], [69].

d: DECISION TREE (DT)

Among non-parametric-assisted techniques, the decision tree
is widely used [83]. We turn to DT learning techniques
to solve both problems—categorization and Regression [9].
In this context, the words “ID3” [84], “C4.5” [83], and
“CART?” [85] refer to well-known DT algorithms. DDoS and
attack detection are two examples of security apps that use
DTs as filters [86]. Decision trees are mathematical functions
that translate an input feature vector X to an output label Y.
The decision tree function is given in Equation(6)

Y =f(X) (6)

Each decision rule in the function f corresponds to a
tree node for a vector of input features and an output
label. The algorithm picks a branch after testing one of X’s
characteristics. Each unit leads to a separate decision node
until a leaf node with the output label is reached [87].

e: RANDOM FOREST (RF)

One popular ensemble categorization technique in many
data science and machine learning fields is the random
forest classifier [88]. Multiple decision tree classifiers, called
“Parallel Ensembling,” can be assembled concurrently. RF is
frequently employed in the context of network surface
attacks for the detection of Dual Denial of Decision (DDoD)
attacks [89], abnormality detection [90], and the identity of
unlawful Internet of Things (IoT) devices [91]. According
to research conducted in the past [89], RF provides superior
results than SVM, ANN, and KNN when identifying DDoS
attacks. Here is a simplified Equation(7) and Equation(8) for
the Random Forest algorithm:

Ti1(x) if T1(x) is the mode,
T>(x) if Th(x) is the mode,
y= : )
T,(x) if T,(x) is the mode.
where: y is the predicted output variable (categorical or
continuous) for a given input x. The expected values

Tl(x)’ Tz(x)v MR Tn(x) (8)

are the outputs of n distinct decision trees, each of which
is trained using the experimental data and the characteristics
that are split randomly but in different ways [87].

2) REGRESSION ANALYSIS

Several machine-learning techniques used in regression
analysis enable the prediction of a continuous (y) variable
of interest as a function of the values of more or one (x)
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predictors [66]. Classification differs from Regression in that
it forecasts discrete classes, while Regression simplifies the
forecasting of a continuous variable.

a: LINEAR REGRESSION

This strategy is among the most often used machine learning
models and is widely used as a regression approach. This
technique employs a linear regression line, a continuous
dependent variable, and a set of independent factors. In linear
Regression, the relationship between the independent (X) and
dependent (Y) factors is determined by finding the best-fit
straight line (sometimes called the regression line) [66]. Here
is the notation for linear Regression in Equation (9): The
number of indicators, p, and the number of data, n, define
the dimensions of the

X{r X1z ... Xip
X21 X2 ... Xpp

Kp = | D : ®)
Xnl X2 oo Xpp,

(also known as features). Consider the response variable y
to be an n-dimensional vector. The linear regression model
hypothesizes that the relationship between the predictors and
the response variable is linear as given in Equation (10).

y=XB +e (10)

where: B is the p-dimensional vector representing the coeffi-
cients for each predictor, and epsilon is ““a,” an n-dimensional
vector that is the error term. It is supposed that the error
component follows a normal distribution with a constant
variation and zero means. Least squares estimation is used

to calculate the beta values, which involves finding the values

of B that minimize the sum of squared errors is in Equation (11):

SSE(B) = D (i — XiB)* (an
i
where: “1” indexes the observations in the dataset. The least
squares estimate the coefficients can be found using matrix
algebra, specifically the formula is in Equation (12):

B=XT+X)"DuxT xy (12)
where: (X7 % X)D  is the inverse of the matrix product
XTxX and X7 is the transpose of X. This formula is known

as the normal equations [59], [92].

b: LOGISTIC REGRESSION
Logistic Regression is a powerful statistical method designed
for binary classification problems, determining the probabil-
ity that an instance belongs to a specific class. At the core
of the logistic regression model lies the logistic function,
commonly known as the sigmoid function, which plays a
pivotal role in its formulation [93].

The logistic function (sigmoid) is defined in Equation (13):

S(z) = (13)

14+e2
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In logistic Regression, the linear combination of input
features is transformed using the logistic (sigmoid) function,
given in Equation (14):

1

P(Y = 1|X) = 1 —+ 6_(/50+/31X1+.--+,3nxn)

(14)

Here:

P(Y=1IX) is the probability of the dependent variable (Y)
being one given the input features (X). B is the intercept
term. By, ..., B, are the coefficients associated with each
input feature xp, . . ., x,. e is the base of the natural logarithm.
The logistic regression model outputs probabilities and a
decision threshold is applied to convert these probabilities
into class labels. If the predicted probability is greater than or
equal to 0.5, the instance is classified as belonging to class 1;
otherwise, it is classified as belonging to class 0.

Logistic Regression is vital in IoT security for binary
classification tasks such as intrusion detection, device authen-
tication, anomaly detection, and risk assessment. It predicts
network threats, authenticates device logins, detects anoma-
lies in device behavior, and assesses the associated risk,
providing concise insights into potential security concerns in
IoT environments [93].

¢: NEURAL NETWORK REGRESSION

Modeling complicated non-linear connections between input
factors and outcome variables is the goal of the potent
machine learning method known as neural network regres-
sion. Here is the mathematical equation notation for a neural
network regression with a single hidden layer is given in
Equation (15):

y=fwy-fwy - X+ b1)+by) (15)

where y is the output variable (the factor whose future
you wish to forecast). X is the input variable (a vector
of features), the w; matrix represents the weights used to
pass data from the input layer to the concealed layer. This
hidden-to-output layer weight matrix (w») is what connects
the two layers, by is the bias vector added to the hidden
layer, by is the bias scalar added to the output layer, the
total of the inputs with weights, and f is a triggering
function performing a non-linear transformation. The hidden
layer performs non-linear transformations; its neuron count
influences model complexity. Sigmoid, hyperbolic tangent,
and Rectified Linear unit (ReLU) functions are common
activation functions. The neural network outputs a scalar
value that predicts the output variable [69], [70], [94].

B. UNSUPERVISED

Unsupervised learning is a technique that examines unlabeled
datasets in a data-driven manner, without human intervention,
as described in [66]. Data collection is undertaken for
various reasons, including identifying significant patterns and
structures, classifying trial results, and eliminating defining
characteristics. Unsupervised learning is commonly used for
Clustering, learning features, density estimation, association
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MACHINE LEARNING

rule finding, anomalous detection, dimensionality reduction,
and many other tasks. The mathematical equation notation for
unsupervised machine learning is given in Equation (16):

X =f(Y) (16)

where f is a function that maps Y to X, Y is a matrix
of latent variables, and X is a matrix of input variables.
Unsupervised machine learning finds the best function f
that maps hidden variables Y to input variables X without
knowing their connection [68], [70], [95].

1) CLUSTER ANALYSIS

Without worrying about getting the results precisely right,
“Cluster analysis™ (or “Clustering’’) is a machine learning
technique for finding and organizing clusters of related data
points in large datasets. Clustering is performed based on
shared traits that increase the similarity among members
within the same cluster compared to those in different clus-
ters [66]. Frequent data analysis techniques divide customers
into distinct groups according to their preferences and other
characteristics. Cluster analysis has many potential uses,
including internet security, health statistics, e-commerce, and
mobile data processing.

VOLUME 12, 2024

SUPERVISED
LEARNING

UNSUPERVISED
LEARNING

Naive Bayes
C Iassrfer

K-Nearest
= Neighbours

> CLASSIFICATION > Support Vector
EECLNIQBES
_>

Random Forest

_»
REGRESSION TR o
TECHNIQUES g L-Ogistic Regression

> Neural Network
Regression

K Means

Clustenng
—_
Gausslan Mixture

Model Clustenng

Principal
Component
Analysis

DIMENSIONALITY
REDUCTION

REINFORCEMENT
LEARNING DECISION MAKING Deep Q Networl

FIGURE 8. lllustration of various types of machine learning algorithms.

a: K-MEANS CLUSTERING

Separating data sets using K-means clustering [96] is a
quick and simple process that yields accurate results. In this
method, data points are clustered so that the reciprocal
distance separating them from the centroid is minimized
as much as possible. K-means grouping is susceptible
to anomalies because high values can easily influence a
mean so the outcomes can differ depending on the data.
Clustering using K-medoids [97] is an alternative to K-means
that can be more robust against noise and anomalies. The
K-mean clustering approach is often used in situations
requiring the identification of anomalies [98], [99] as well
as Sybil attacks [100]. K-means clustering has the following
mathematical notation is given in Equation (17): In the
presence of some facts,

X =x1,x2, ..., X, a7

where: x; is a data point in a d-dimensional space, and
several clusters k known in advanced; the K-means algorithm
defines the following terms: Cluster centroids: A set of
k points my,my, ..., m; that represent the centers of
the k clusters. Cluster assignments: A list of n identi-
fiers c1, ¢z, ..., c, that specifies the position within the
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collection where each data element resides. Using these
terms, K-means sets out the following goal function to
achieve is given in Equation (18):

n
min [l — mj|? (18)
T =1

where j = «¢; is the number of the group that the
i-th data item belongs to x; is assigned, and m; represents the
cluster’s center j. The K-means algorithm iteratively updates
the cluster centroids and cluster assignments to minimize this
objective function:

1. Initialize k cluster centroids randomly.

2. Place each observation in the region around its
center.

3. Make sure the average of all the data points in each
cluster is used as the new centroid.

4. The above process 2-3 is repeated until convergence
(when cluster allocations stop changing or when a specified
amount of cycles is reached).

The resulting set of k clusters is the output of the K-means
algorithm [101].

b: GMM CLUSTERING

Gaussian mixture models (GMMs), a distribution-based
clustering approach, are often employed for data clustering.
In a probabilistic model known as a ‘“Gaussian mixture,”
a small number of Gaussian distributions with random
values are combined to produce all the data points [102].
The expectation-maximization (EM) [102] optimization
approach may be used to determine the cluster-specific
Gaussian parameters. EM, an iterative technique, employs
a statistical model to estimate the parameters. Here’s a
simplified mathematical notation for the GMM clustering
algorithm: Let X = Xx[,x2,...,x, takes n data val-
ues as inputs, and K is the number of clusters to be
formed.

1. Choose the number of clusters K.

2. Initialize the parameters of K Gaussian distributions:
Mean: i Covariance matrix: Xy.

3. Place each data point in the cluster whose center is
geographically closest to it: Calculate the probability of each
data point x; belonging to cluster k using Bayes’ theorem is
given in Equation (19):

Pr(cluster k|data point x;)
_ Pr(data point x;|cluster k) - Pr(cluster k)

. (19)
Pr(data point x;)

Assign x; to the cluster with the highest probability.

4. Update the mean and covariance matrix of each cluster
based on the data points assigned to it: Calculate the
new mean u; and covariance matrix Xj; using the data
points assigned to cluster k is given in Equation (20) and
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Equation (21):
1
po=om > (20)

x; in cluster k

Ek:NL Z

x; in cluster k

O — ) - (G — )’ (21

where N is the total amount of observations in cluster k.

5. Update the mixing coefficient for each cluster: Calculate
the new mixing coefficient 7, which represents the probabil-
ity of selecting cluster k in Equation (22):

n

Tk (22)

where the number of observations is denoted by n.

6. Repeat steps 3-5 until convergence, i.e., the process stops
after some fixed number of repetitions or when the groups
stop evolving. The final output of the GMM algorithm is
the K clusters, each represented by a mean pj, covariance
matrix X, and mixing coefficient 7z [103].

2) DIMENSIONALITY REDUCTION AND FEATURE LEARNING
Dimensionality reduction in unsupervised learning is vital
for improved human interpretation, reduced computing
costs, and preventing model complexity. It includes feature
selection or extraction, with the former keeping some original
traits and the latter creating new ones [104], [105]. Feature
selection narrows relevant variables, enhancing data science
and machine learning by removing unnecessary information,
simplifying model complexity, speeding up algorithm train-
ing, and addressing overfitting [ 106]. Simultaneously, feature
extraction methods, like ““feature extraction” [106], enhance
data understanding, boost prediction accuracy, and cut
processing expenses in machine learning systems. Overall,
feature extraction generates new features, summarizing the
original set for a streamlined feature collection.

a: PRINCIPLE COMPONENT ANALYSIS

It is customary to apply the dimensionality reduction
method of principal components Analysis (PCA) to generate
brand-new elements from preexisting traits in a collec-
tion [105]. PCA is a popular unsupervised learning method
in deep learning and data analytics. PCA [107], [108] is a
statistical technique for reducing many independent variables
to a smaller number of independent variables. Constructing
a robust security protocol using PCA in conjunction with
several other machine-learning techniques is possible. PCA
and other classifier methods, such as KNN and softmax
regression, are used in a recently developed model that results
in an effective system [109]. PCA’s basic algebraic solution
notation is given from Equations (23) to Equation (26): X is
an x d matrix with n data values and d variables or traits.

1. Mean center:

Z=X—p. (23)
where u is the mean vector of X
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2. Covariance matrix:
C=1/n)xZ" xZ (24)
3. Eigenvectors and eigenvalues:
Cxv=2»~Lxv (25)

4. Choose the top k eigenvectors with the highest
eigenvalues as principal components

5. Transform X to lower-dimensional space using a
projection matrix [68], [69], [110].

W=1[i,v2,...,vkl, Xpnew =Z W (26)
C. REINFORCEMENT LEARNING

To improve efficacy, software bots, and machines can
use reinforcement learning to autonomously determine the
best behavior in a given setting or situation [111]. This
incentive- or penalty-based learning strategy uses environ-
mental activism expertise to increase benefit or reduce
risk [112]. It is not advised for fundamental issues. It can
teach Al models to automate or improve complex systems
like robotics, automated driving, production, and supply
chain networks.

Reinforcement learning (RL) allows agents to learn by
doing in dynamic environments. Unlike directed learning,
which relies on sample data, RL emphasizes environ-
mental interaction. Reinforcement learning (RL) addresses
the Markov Decision Process (MDP) [113] of sequential
decisions. The ideal action may be inferred from a model
of the environment using paradigm-based RL by performing
activities and watching the results, such as the following
phase and a quick reward [114]. Modeling is at the heart
of AlphaZero and AlphaGo [115]. The Bellman equation,
which describes the core concept of reinforcement learning,
states that a state’s value equals the total of its instant
compensation and the deferred value of the next state is given
in Equation (27).

V(s) = max > PEls, a)R(s,a,s) +yV(H] Q27

S

The anticipated total benefit from beginning at state s and
following the optimum strategy is denoted by V(s), where
s is an arbitrary integer, and max, chooses a to-do that will
maximize the total anticipated prize or reward. >, is the
cumulative total of all future situations s’. Given an action,
the chance of shifting from the state of s to the state of
s’ is denoted by P(s'|s, a). When shifting from the state of
s to the state of s’. via action a, the instant recompense
is denoted by R(s, a, s’), and the reduction component is
denoted by y. Many reinforcement learning methods use
the above-mentioned formula to adjust the value function or
strategy continuously [116].

a: DEEP Q NETWORK (DQN)
A reinforcement learning technique called Deep Q Network
(DQN) expands on the conventional Q-learning methodology
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by utilizing deep neural networks to manage intricate
and high-dimensional state spaces. The central concept
approximates the Q-function—a measure of the expected
future rewards for actions taken in a given state—using a deep
neural network [117].

In DQN, the Q-function is written as Q(s,«,60)

where s stands for state, o for action, and 6 for deep
neural network parameters. Through repeated updates of the
Q-value, the temporal difference (TD) error is utilized in
Equation (28):

0(s,a;0i11) = (1 — ) - O(s, a: 0;)
+o-(r+y- -maxQ®s’, d;6)) (28)

Here: The rate of learning is «. The instant prize is r. The
discount factor is y. The following state is s’.

The difference between the goal Q-value and the
anticipated Q-value is known as the temporal differ-
ence error, and the deep neural network is trained to
reduce it.

DQN strengthens IoT security by learning optimal strate-
gies for intrusion detection, adapting to dynamic threats,
optimizing resource allocation, and aiding in anomaly
detection. Its adaptability and efficiency make it a powerful
tool for addressing complex security challenges in IoT
environments [117].

So far, we have discussed the Machine Learning Algo-
rithms in detail, which we consolidated in Table 10,
providing examples of the many machine learning meth-
ods or attack detection, followed by their respective
Accuracies [117].

Table 11 Summarizes the Name of the Dataset used
for Machine Learning along with Evaluation metrics and
Different types of attacks.

VI. CREATING SECURE DESIGNS: PROBLEMS AND
SOLUTIONS

In this section, we examine IoT security from a systemic
perspective. We first examine a few conditions that must be
satisfied and certain preventative actions. Table 12 displays a
few important specifications

A. CONFIDENTIALITY

Specialized encryption process techniques must used to
ensure data confidentiality, [128], [129], which will prevent
unauthorized usage of IoT infrastructure and the leak-
age of sensitive data. This service is intended to keep
unauthorized users from networks and secure essential
information.

B. AUTHENTICATION AND AUTHENTICITY

By allowing only authorized users to access and take
control of the protected resources, the system can maintain
the Security of the IoT Network [128], [130]. Networks,
databases, computer systems, and other network-based
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TABLE 10. lllustration of various machine learning along with application and Accuracy.

ML Type ML Representation Potential Uses/Detection  Acc(%) Ref.
Technique of Attacks
SUPERVISED NB Probabilistic classification  Detection of Intruders 50-78 [74]
based on Bayes’ theorem
SUPERVISED KNN Assigning based on proximity  Intruder Detec-  99.6 [76]
in feature space tion/Malware Detection
SUPERVISED SVM Finding hyperplanes to sepa-  Intrusion Detection 99.86 [82].
rate classes
SUPERVISED DT Tree-like model based on input ~ Invasion and Unusual 99.9 [87]
features Traffic Source Detection
SUPERVISED RF Ensemble of decision trees Intruder Detec-  99.69 [118]
tion/Malware Detection.
SUPERVISED Linear Modeling the relationship be-  Anomaly detection for ab-  91.04- [119], [59].
Regression tween variables linearly normal behaviour in IoT  99.95
sensor readings
SUPERVISED Logistic Re-  Probability modelling for bi- Intrusion detection in IoT ~ 98.3 [93].
gression nary outcomes networks
SUPERVISED NN Hierarchical interconnected  Network Security in [oT 99 [94]
nodes
UNSUPERVISED K-Means Partitioning data into ’k’ clus-  Abnormal Behavior, Data  94.5 [96]
ters based on centroids Tampering, and Sybil De-
tection in medical IoT.
UNSUPERVISED GMM Clus- Modeling data as a mixture of ~ Anomaly detection, Botnet 93 [103]
tering Gaussian distributions detection, Intrusion detec-
tion
UNSUPERVISED PCA Reducing dimensionality while ~ Real-Time Detection Sys- ~ 98.2 [107].
preserving variance tem, Intrusion Detection.
REINFORCEMENT RL Training algorithms throughre-  DoS 96.5 [116]
wards to optimize decision-
making in dynamic environ-
ments
REINFORCEMENT DQN Extends Q-learning with deep  Proxy detection and Botnet ~ 93-96.1 [117]
neural networks as function ap-  detection, Intrusion detec-
proximators tion, Cyber-physical sys-
tem security
TABLE 11. Name of the dataset used for machine learning along with evaluation metrics and different types of attacks.
DATASET NAME EVALUATION 10T ATTACKS ML TECHNIQUES References
METRICS
CONFICKER Worm, Area under the curve DDoS SVM and BN(Batch Nor- [120]
UNINA traffic traces, and  (AUC), False-positive rate, malization).
CAIDA. f-measure (sensitivity),
specialization (specificity),
Accuracy
RPL-NIDDS17 Accuracy and AUC We’ve got the Sinkhole, lo-  Ensemble Learning(EL) [121]
cal fix assaults, Sybil, black
hole, distributed denial of
service, selective forward-
ing, and hello flooding.
BoT-IoT Precision, Reliability, F-  Scams, denial-of-service =~ NN [122]
measure, and Recall assaults, infiltration, and
denial-of-service
intel IoT Detection rate, False Posi-  Probing, DOS, U2R "User  Clustering. [123]
tive rate, and Accuracy to Root" and R2L "Root to
Local."
DS20S Precision, accuracy, the F1 Probing and DOS. NN [124]
Score, and Recall
MedBIoT F1 score DOS NN [125]
UNSW-NB15 and KDD-  Precision, F1 Score, Backdoor, Reconnaissance Bayesian, Decision Trees [126]
CUP99 erroneous positive rate, and ~ R2L, U2R, DOS, Analysis, (DT), and Clustering.
overall efficacy. generic, fuzzes, and shell-
code.
UNSW-NBI15, Accuracy, false positive DOS DT. [127]
CICIDS2017 rate, specificity, and
sensitivity.

services may be among the resources. It is primarily used to
confirm the user’s identification and to establish the client
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C. INTEGRITY

Maintaining data security means keeping private and
priceless information safe from hackers. There are many
potential threats to data security, including computer
outages. By adding a fixed-length value to maintain
data integrity and identify message encryption issues in
the Internet of Things (IoT), the Cyclic Redundancy
Check (CRC) may be used [128], [131]. The system
should primarily increase the reliability of data transmit-
ted through networks while maintaining correctness and
consistency.

D. AVAILABILITY

Data accessibility is essential for the Internet of Things
because it assures consumers of the Security and depend-
ability of the data they may access. An IoT system must
offer a backup of crucial data to avoid data loss. Attacks like
DoS and DDoS attacks might damage data availability [128],
[131]. The IoT Network should always be accessible,
regardless of system failures, hardware, or software issues.
Predicting the bottlenecks should be done to supply the
bandwidth.

VIl. MAJOR CHALLENGES

A. DATA PRIVACY AND SECURITY

1) DATA BREACHES

IoT devices collect vast amounts of data, often sensitive,
which cyber-criminals can target. Data encryption, secure
storage, and transmission are crucial [36].

2) PRIVACY CONCERNS

With so many interconnected devices, maintaining the
privacy of individuals’ data is challenging. Methods to
anonymize data without losing its utility are needed [36].

B. SCALABILITY

1) DEVICE MANAGEMENT

Managing and securing many heterogeneous devices in a
smart city environment is difficult [132].

2) RESOURCE CONSTRAINTS

Many IoT devices have limited processing power, memory,
and battery life, making it challenging to implement robust
security measures [132].

C. INTEROPERABILITY

1) STANDARDIZATION

The lack of standardized protocols and security measures
across different IoT devices and manufacturers complicates
security implementations [133].

2) INTEGRATION
Ensuring seamless and secure integration of various systems
and devices is critical [133].
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D. REAL-TIME THREAT DETECTION

1) TIMELY RESPONSES

Detecting and responding to security threats in real-time
is essential but challenging due to the volume of data and
potential latency issues [134].

2) FALSE POSITIVES/NEGATIVES
ML algorithms need to be highly accurate to avoid false
alarms and missed threats [134].

E. COMPLEX ATTACK VECTORS

1) ADVANCED PERSISTENT THREATS (APTs)

Sophisticated, multi-phase attacks that are difficult to detect
and mitigate [135].

2) PHYSICAL SECURITY
IoT devices are often deployed in public spaces, making them
vulnerable to physical tampering or attacks [135].

VIIl. UNSOLVED PROBLEMS

A. TRUST MANAGEMENT

1) DEVICE AUTHENTICATION

Establishing the identity of devices in a trustworthy manner
is challenging due to the diversity and scale of IoT networks.
Robust authentication mechanisms that can handle millions
of devices without compromising Security or performance
are required [136].

2) DATA INTEGRITY

Ensuring the integrity of data collected and transmitted by IoT
devices is crucial. Techniques for verifying that data has not
been tampered with, both in transit and at rest, are essential
to maintaining trust [136].

B. ADAPTIVE SECURITY MECHANISMS

1) DYNAMIC THREAT LANDSCAPES

The threat landscape for IoT systems is constantly evolving.
Security mechanisms must adapt quickly to new threats
without requiring manual updates. Which requires ongoing
learning and adjustment by security systems [137].

2) CONTEXT-AWARE SECURITY

Security measures that can adapt based on the con-
text in which a device is operating (e.g., location,
current network conditions) can provide more effective
protection [137].

C. ENERGY-EFFICIENT SECURITY PROTOCOLS

1) LOW-POWER DEVICES

Many IoT devices operate on limited power sources, such
as batteries, making energy efficiency a critical concern.
Developing cryptographic algorithms and security protocols
that minimize power consumption while maintaining robust
Security is a significant challenge [138].
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TABLE 12. Quality features and loT security overview.

Quality features IoT security overview

Data integrity
Data Confidentiality

Data integrity ensures trustworthiness and precision by showing that information has not been tampered with or removed.
Data confidentiality strives to keep information hidden from unauthorized parties, safeguarding users’ privacy and

sensitive information from being obtained by attackers. The information is only accessible to authorized users.

Data availability
Authentication

To ensure that resources (such as data and services) are available, data availability is utilized.
Authentication is the process by which the names of users requesting access to a resource are checked and filtered.

Authentication techniques are essential for inter-thing contact in the Internet of Things.

Authorization
executes several actions by various entities.

The procedure for providing, rejecting, and limiting access to entities is known as authorization. The permission scheme

2) BALANCING SECURITY AND PERFORMANCE

Ensuring that security measures do not excessively degrade
the performance or lifespan of IoT devices is crucial for
practical deployments [138].

D. DECENTRALIZED SECURITY SOLUTIONS

1) SCALABILITY OF BLOCKCHAIN

While blockchain offers promising security benefits, its
scalability remains an issue. Developing blockchain solutions
that can handle many transactions and devices in an
innovative city environment without compromising speed or
efficiency is a critical research area [139].

2) CONSENSUS MECHANISMS

Traditional consensus mechanisms used in blockchain, such
as Proof of Work (PoW), are unsuitable for IoT due to their
high computational and energy requirements. Researching
alternative consensus mechanisms that are lightweight and
efficient is essential [139].

E. HUMAN FACTORS

1) USER EDUCATION AND AWARENESS

Many security breaches occur due to human error. Edu-
cating users about security best practices and designing
user-friendly security interfaces can help mitigate this
risk [140].

2) INSIDER THREATS

Addressing the risk of insiders with legitimate access to IoT
systems but misusing their privileges is a complex problem
requiring sophisticated monitoring and anomaly detection
techniques [140].

IX. POTENTIAL DIRECTIONS AND METHODS FOR FUTURE
RESEARCH

A. ADVANCED MACHINE LEARNING TECHNIQUES

1) DEEP LEARNING AND NEURAL NETWORKS

Utilizing deep learning models, such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), can
significantly enhance the detection of complex patterns and
anomalies in IoT data. Research can focus on developing
lightweight versions of these models suitable for deployment
on resource-constrained devices [141].
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2) REINFORCEMENT LEARNING

Reinforcement learning can be used to develop adaptive
security systems that improve their effectiveness over time.
For example, reinforcement learning agents can learn optimal
intrusion detection and response strategies based on feedback
from the environment [142].

B. FEDERATED LEARNING

1) PRIVACY-PRESERVING TRAINING

Federated learning allows models to be trained on decen-
tralized data sources without centralizing the data, thereby
preserving privacy. Research can explore how to enhance
federated learning algorithms to ensure robustness against
adversarial attacks and improve their efficiency [143].

2) COLLABORATIVE MODEL IMPROVEMENT

Developing techniques for collaborative model improvement
where multiple IoT devices contribute to a global model can
enhance the overall security posture without compromising
individual device security [143].

C. BLOCKCHAIN AND DISTRIBUTED LEDGER
TECHNOLOGIES

1) LIGHTWEIGHT BLOCKCHAIN PROTOCOLS

Researching lightweight blockchain protocols that reduce the
computational and storage requirements can make blockchain
more suitable for IoT environments. Which includes explor-
ing sidechains and off-chain transactions to reduce the load
on the main blockchain [144].

2) SMART CONTRACTS FOR IOT SECURITY

Utilizing smart contracts to automate and enforce security
policies in IoT networks can provide a robust and transparent
mechanism for managing security rules and actions [145].

D. QUANTUM-RESISTANT SECURITY PROTOCOLS

1) POST-QUANTUM CRYPTOGRAPHY

Developing cryptographic algorithms resistant to quantum
attacks is crucial for future-proofing 10T security. Research
can focus on evaluating and implementing post-quantum
cryptographic standards in IoT devices [146].

VOLUME 12, 2024



A. Muniswamy, R. Rathi: Detailed Review on Enhancing the Security

IEEE Access

2) HYBRID CRYPTOGRAPHIC APPROACHES

Combining traditional cryptographic techniques with
quantum-resistant algorithms to provide a layered security
approach that can transition smoothly as quantum computing
becomes more prevalent [146].

E. IOT-SPECIFIC INTRUSION DETECTION SYSTEMS (IDS)

1) BEHAVIORAL ANALYSIS

Developing IDS that leverage machine learning to analyze
the behavior of IoT devices and detect deviations from
normal patterns can enhance threat detection. Which includes
creating models that understand the typical usage patterns and
operational behaviors of devices [147].

2) DISTRIBUTED IDS

Implementing distributed IDS operating at the network’s edge
to monitor and analyze traffic locally can reduce latency and
provide faster threat detection and response [148].

F. EDGE COMPUTING

1) REAL-TIME DATA PROCESSING

Utilizing edge computing to process data and execute
security algorithms closer to the source can enhance
real-time threat detection and mitigation. Research can focus
on optimizing edge computing frameworks for security
tasks [149].

2) COLLABORATIVE EDGE SECURITY

Developing mechanisms for collaborative Security among
edge devices, sharing threat intelligence, and coordi-
nating responses can provide a more resilient security
infrastructure [150].

G. COLLABORATIVE SECURITY MODELS

1) CROSS-INDUSTRY COLLABORATION

Encouraging collaboration among different industries, gov-
ernment bodies, and academia can lead to the development of
standardized security practices and shared threat intelligence
networks [151].

2) PUBLIC-PRIVATE PARTNERSHIPS

Leveraging public-private partnerships to fund and support
security research and implementation can accelerate the
development and deployment of robust security solutions in
smart cities [151].

H. ETHICAL Al IN IoT SECURITY

1) TRANSPARENCY AND EXPLAINABILITY

Ensuring that AI and ML algorithms used for Security
are transparent and their decision-making processes are
explainable can increase trust and compliance with ethical
standards [152].
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2) BIAS MITIGATION

Researching techniques to identify and mitigate biases in Al
models can ensure that security measures are fair and do not
disproportionately affect certain groups or individuals [152].

I. SUSTAINABLE IoT SOLUTIONS

1) GREEN loT DESIGN

Developing IoT devices with sustainability in mind, such as
using eco-friendly materials, designing for durability, and
minimizing energy consumption [153].

2) RENEWABLE ENERGY INTEGRATION

Researching methods to integrate renewable energy sources,
such as solar or wind power, to supply IoT devices,
reducing the overall carbon footprint of intelligent city
deployments [153].

3) ENERGY HARVESTING

Exploring technologies that allow IoT devices to harvest
energy from their environment, such as solar, thermal,
or kinetic energy, to extend their operational life and reduce
reliance on batteries [153].

X. CONCLUSION

This paper introduces the intelligent city and describes the
need for a Machine Learning Algorithm in IoT security. Then,
a literature review of Machine Learning methods, their uses,
accuracy, benefits, and drawbacks are presented, as well as
the usage of various attacks in Datasets and Machine learning.
An overview of Essential Focus Areas for IoT Security
areas and different types of possible attacks are given, and a
detailed countermeasure for various attacks is given. At last,
IoT’s various potential applications and security concerns
are in the planning phase. The information presented in this
article will be helpful to scholars in determining the various
Machine Learning algorithm classes, understanding their
operation, and mapping out potential attack vectors. Here, the
different types of attacks in other areas are discussed, which
helps to identify the possible risks. Then, the security issues
are defined to avoid or handle those types of challenges in the
future. This paper gives an idea about the research challenges
and future Security with a detailed literature review.
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